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ON THE RATE OF CONVERGENCE IN THE
MULTIVARIATE CLT

By F. GOTZE
University of Bielefeld

Berry-Esseen theorems are proved in the multidimensional central
limit theorem without using Fourier methods. An effective and simple
estimate of the error in the CLT for sums and convex sets using Stein’s
method and induction is derived. Furthermore, the error in the CLT for
multivariate functions of independent random elements is estimated ex-
tending results of van Zwet and Friedrich to the multivariate case.

1. Introduction and results.

A. The Berry—Esseen theorem for sums of independent random vectors.
Let X,, X,,..., X, denote independent random vectors in R*. Let | - || denote
the Euclidean norm in R* and define S, £ X; + - -+ +X,,. Assume that

(1.1) Bs 2 ¥ EIX,|IP <.
j=1

For reasons of simplicity consider normed random vectors such that
(1.2) EX;=0,j=1,...,n and Cov(S,) =k X k-identity.

Let ® denote the standard Gaussian distribution in R* and let @, denote
the distribution of S,,.

For indicator functions of measurable convex sets in R*, say f, and ii.d.
vectors X, the estimate |/fd(Q,, — ®| < c¢(k)B; has been proved by Sazonov
(1968) using the so-called method of compositions due to Lindeberg (1922) and
Bergstrom (1944). Using truncation techniques and more elaborate Fourier
methods, Bhattacharya (1975) obtained this estimate uniformly over more
general translation classes of (unbounded) functions f. Using a Fourier re-
lated approach, Sweeting (1977) provided estimates for individual functions f
extending these results. The dependence of c(k) on % for convex sets has been
shown to be of order O(k) by Nagaev (1976) which has been improved to
O(k/2) by Bentkus (1986) for the i.i.d. case. First, we will provide a short
inductive proof of the Berry—Esseen theorem in R* with explicit constant c(%)
for a class of functions including indicators of convex sets by the method of
Stein (1972, 1987) adapted for R* in order to demonstrate the method.

Let o denote a class of measurable functions uniformly bounded by some
K>0. For fe & and 6> 0, define f; (x) £ sup{f(x +y): llyll <8} and
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THE CLT IN R* 725

fi(x) & —(=f)F(x) and w(f;8) = ((f;f — f;)dP as the average local varia-
tion of f. Furthermore, let |fl, £ sup{|f(x) — f(0)|: x € R*}. We shall prove:

THEOREM 1.3. Let & be closed under the supremum and affine transfor-
mations, that is, f € & implies f5/~ and x — f(Mx) are again in & for every
8 > 0 and affine transformation M of R*. Assume that (1.1) holds and

(1.4) sup{w(f;e): fe &} < As
for every ¢ > 0 and some A > 0 not depending on n. Then

sup|[£(@uy — ¥)]: F < a7} < G,y suplil: 2 a0),

where C,, £ 62.2a,A + 10.7 and a? denotes the 0.875 quantile of the x2-distri-
bution with k degrees of freedom, that is, a, = 2.04, 2.4, 2.69, 2.94 for k = 2,
3,4,5and a, < 1.27k'/? for k > 6.

In particular we obtain for the class € of all measurable convex sets in R*,
using the bound A < 2k'/2 which follows from Corollary 32, page 24 of
Bhattacharya and Ranga Rao (1986) (using Stirling’s formula),

(1.5) sup @, (C) — ®(C)l < C,Bsn ™"/,
Ce?¢

where C, = 124.4a,k'/2 + 10.7 < 157.85k + 10 for k > 6, which shows that
these bounds are still of limited use for small sample sizes.

In the proof of Theorem 1.3 we shall use a multidimensional version of
Stein’s idea of defining differential equations in R!. In order to motivate the
choice of our equation, let us sketch one way of obtaining an equation which is
useful for convergence rate estimates.

Assume that T,, n € N denotes a sequence of R*-valued statistics of n
random elements X,,..., X, with limit distribution 7= on R*. Furthermore,
let V, ., t = 0, denote a continuous time Markov process starting in x € R*
with stationary distribution 7 and infinitesimal generator A. For a bounded
measurable function ~, we have the following formal identity using the
diffusion equation for V:

h(x) = m(k) = ER(V,,,) — Bh(V,,)
w d
= = [ BV de

= (A¢)(x),
where ¢(x) & —[:Eh(vt,x) dt.

(1.6)

For some generators A, the r.h.s. of Eh(T,) — m(h) = EAY(T,) can in fact
now be estimated by means of Taylor expansions and partial integration. This
describes our view of Stein’s method.
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In our case we may choose m = ® and V, , as the Ornstein—Uhlenbeck
process

av, .= -3V, . dt + dw,, Vo,x =%,

where w, denotes the standard Brownian motion in R* and obtain as in-
finitesimal generator Ay(x) = Ay(x) — yP(x)x. Here A denotes the Laplace
operator and Vv, --- v; denotes the jth derivative of ¢ in the directions
V..., 9 € R

Replacing w, by a Poisson process and w by a Poisson distribution, one
obtains the difference equations of Barbour (1988) who treated the multivari-
ate Poisson case. The defining equation

(1.7) AY(x) — 4D(x)x = h(x) - D(h)
has to be interpreted carefully.

It is valid only for points x, where h(x) is locally Hélder contin-
uous. Applying this equation we need to evaluate expressions of type
E(Ay(S, + x) — Ag(S,, + x") which is made easier by introducing a smoothed
version of h — ®(h), say —x,(‘|h), ¢ > 0 small, which is adapted to the
equation (1.7). Define for 1 > ¢ > 0,

(1.8) x/(xlh) 2 [(h(y) = R(£72 + (1 = £)"*x)) D(dy).

Notice that in terms of the Ornstein-Uhlenbeck process V, ,, we may write

—x(xlk) = E(h(V, ) — h(V,,,)), where 1 — e * £ ¢ since 2(V,,) =

D(xe /2 + (1 — e~ *)2w,). Then —x,(-|h) = h — ®(h) and x(:|h) = 0.
Assuming that

(1.9)  x(xlh) = O,(llog(I11 — ¢)|”) holds for £ 11 and some y > 1,

the functions
1 1 ds
1. A _
(1.10) () 2 5 [xa(lh) 7=
are well-defined solutions of

(1.11) Agy(x) = ¢P(x)x = —x(xlh)

for every x € R* and 0 < ¢ < 1 [cf. Lemma 2.1G)].

Of course we have to estimate the error in replacing A — ®(k) by —x,(-|h)
by an appropriate smoothing inequality (see Lemma 2.11).

The equation (1.11) leads us to estimate

[ER(S,) - ®(h)| = [EAU(S,) - E4(S,)S,|

applying Stein’s method similarly as in Bolthausen (1984) (in his proof of the
Berry-Esseen theorem for general linear permutation statistics) combining
the equation (1.11) with an induction on n.

Notice that in one dimension the connection with Stein’s equation
fO(x) — f(x)x = h(x) — ®(h) is given by f(x) = yD(x).
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B. A Berry-Esseen result for functions of independent random elements.
Let X,,..., X, denote independent random elements taking values in a
measurable space (2, ). Let ¢,: 2" - R* denote a measurable function. We
shall consider statistics of the type

T = tn(X17° cey Xn).
For convenience we may assume
(1.12) ET = o.

Define T; £ E(T|X;) and let A; £ [smallest eigenvalue of Cov(T; +
-++ +T;)]. Assume that (perhaps after rearrangement of X,,..., X,)

J .

(1.13) Cov(T, + -+ +T,) = k X k-identity, A; > o’ 1<j<n.
Let A2T-% %_1T; denote the remainder in Hoeffding’s projection. Define
= 2 (X L#j)) and assume that the following moments of first and second

order differences measuring the stochastic influence of single observations and

pairs of observations on A are well defined.
Let A; 2 A — E(AIX)), — E(A;X), 1 <j <1 <n and define

n
Bs2 ¥ EIT°,  Bso2 maxE|T,°, B,;2 max E|Al?,
4 J s J P 1<j<n
(1.14) J=1 ! =~

Bp2 &  max ElAl" for2>p>1.

THEOREM 1.15. Assume that conditions (1.12)-(1.14) hold. Let f denote a
measurable function such that |fly = sup,|f(x) — f(0)| < © and let S denote a
random vector with standard normal distribution ®. When 2 <p < 2, there
exists a constant ¢ depending on k and p only such that

(1.16) |Ef(T) — Ef(S)| <clflo| Bs + n®/2By/5Bp,1 + n°B3/5B3)3, 2

+C(0( f; clBS)’

provided that B3 < c,(log n)~3/k, where ¢, and c, denote absolute constants.

The estimate extends results of van Zwet (1984) and Friedrich (1989) to the

case of multivariate statistics T'. Using a similar martingale decomposition for
A as in the latter paper while avoiding Fourier inversion techniques, we arrive
at a comparable error bound.
. The proof is based on Theorem A.3 of the Appendix which might be of
independent interest. This result can be also proved via Stein’s method and
the equation (1.6) and induction but for vectors 7; with nearly the same
covariance and third moment behavior. Therefore we decided to give the
shorter proof based on standard techniques.
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A Berry-Esseen type estimate can be proved by the Stein method of
Theorem 1.3 for multivariate functions of dependent random vectors like
general rank and sampling statistics. The estimates depend on slightly higher
moments of A; as in (1.11) but not on moments of A;;. Details will appear
somewhere else.

RemMaRks 1.17. (a) The estimate (1.16) remains true for p = 2 with
1/(2 — p) replaced by log n.

(b) We have B, ; < np, , [see (2.26)] and Bl/" >BV4, p=qz=1l

(¢) Therefore, to achieve an error bound of order O(n=2 + w(f;n"12)) in
(1.16), we may assume B3, = O(n~??) which implies B3 = O(n"'/?), to-
gether with

(1.18) 33/2 2 =0(n"%?)

and

(119) B, =0(n"32) or B,,=0(n"%?) forj<p<2.
The assumptions (1.18) and (1.19) follow from

(1.20) Bi/32 = 0(n%?).
(d In the case of a U-statistic U£X,_, ....; ., h, ,;, where
h, 4 h; (X , X; ) and h ( ) denotes a measurable function

I, eente g, gpr e 4 S A T,

of .92” " to R 1t follows by Mlnkowsky s lnequahty that (1.20) holds provided
that

~~~~~~

3/5
(1.21) max (Ellhj1 ; ||5/3) ”® <Dn-"*v2,  D>o.

1<j,< -+ >j.<n
For further applications to L- and R-statistics, see Friederich (1988) and

van Zwet (1984).

These moment conditions sharpen results on the error in the CLT for
multivariate U-statistics of degree two by Gotze (1987) which were obtaincd by
using characteristic function methods.

2. Lemmas and proofs of the results. For a measure @ on R* and
g > 0, define @,(A) £ Q(¢~'A). Let h denote a bounded measurable function.

LemMa 2.1. (i) For every x € R*, 0 <t < 1, we have

(2.2) Ayy(x) — PP(x)x = —x,(xlh).
(ii) There exist absolute constants c; > 0 such that for t > 0,
(2.3) suply(x)| < c;lhlod;(?),
x

where A;j(£) £t707D/2 j> 2, A, () £1og(t™!) and A(t) £ A(t) £ 1. For
k=1, we have A,(t) 2 1
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(iii) Let Q denote a finite (signed) Borel measure on R¥. Then

Jo(x)v'Q(dx)
(2.4)
< chj(t)sup{'fh(xs +a)Q(dx)|:0<s<1l,a€ Rk}llvllj

for every 1 >t > 0 and j > 1. Note for later use that we may choose c; =
(1 — t)*2%a,, with ag 2 [le®@@Fv3 d*y < 1.602|v]°.

Proor. (i) In order to validate the formal calculations of (1.6), notice that
by change of variables y — ¢~ ¥/2(y — (1 — $)/%x),

(25)  x(xlh) = [hd® = [h(Nely - (1 -8 x)d"y,

where ¢,(z) 2 t7*/2p(t"1/2z) and ¢(z) denotes the Lebesgue density of the
k-variate standard normal distribution .
Now it is straightforward to verify that the equation

(2.6) 2(1 - t)%ut(x) = Au,(x) —uP(x)x, t>0,

is satisfied for the functions u,(x) £ ¢(y — (1 — £)/?x) with y arbitrary,
u(x) 2 ®(h) and thus for u,(x) £ x,(x|h) by interchanging differentiations
and integration in y € R*. This is obviously allowed since A is uniformly
bounded. Similar interchanges of differentiation and integration prove for
Jz1

X (xlh)v’] < sup{lh(y +x(1 - s)1/2) - h):ye Rk}
(2.7 (1 -s)"? f|¢gj)(y)vj'dky

. ,
< |hlo(1 — 5)"*s /%0 Il

where a; denotes an absolute constant independent of k.
Now (2.6) implies, after division by 2(1 — ¢) with u,(x) 2 —x/(x|h) and
t>0,

1. d
xa(alk) = x(xlh) = [ ds—x.(xlh)

(2.8)

1 1 ds 1 1 ds
— - — _ @)
5 | Ax(alt) 75 = 5 [ xP(alh) 23—

Thus x,(x|/h) = 0 and interchanging integration and differentiation in (2.8)
which is justifiable because of (2.7) yields the result (2.2).

(ii) The estimates follow immediately from (2.7) by interchanging differen-
tiation and integration in s. The estimates for £ = 1 and A,(¢) follow from the
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properties of the function ¥ being a solution of Stein’s equation [see Stein

(1972)].
(iii) We have by Fubini’s theorem and interchanging differentiation and

integration,

J#(x)v'Q(dx)

=U1ds(1 — 5y

X [B)eP(y = (1= 8)/2x)0! dy Qa)|

_ s)—1+j/2

<[ [1(r = @ =925 QU)o ()07 dty

which yields the desired estimate (2.4) using the second step of (2.7). The value
of ¢, follows by inspection of these arguments using 3 /! ds(1 — s)1/2573/2 <
(1 — t)'/2 and the fact that (u,v) has standard normal distribution under

®(du) when |lv||=1. O

LEMMA 2.9 (Stein’s method). Let X denote an independent copy of X
1 <j < n. Furthermore, define S, ; £ N (S, — X;), where N; denotes a posz-
tive definite matrix such that Cov( S, J) Lk x k-zdentzty Let 7 be uniformly
distributed in [0, 1] and independent of X,,..., X,. Finally, let

H; (xlu,v) & EyP(N; % + ro)(3(u + v)3 = (5 —m)v® - 3ub).
- Then

(2.10) |Ex,(S,h) = z (a1 X5
Proor. Using (2.2), we have
_EXt(Snlh) = E(Alpt(sn) - ll’t(l)(sn)sn)

Y E(v(S,) X2 - ¢(8,)X,)

=1

i<
= Z)l [EyP(S, - X;,) X2 + Ey®(S, — (1 - r) X,) X2X,
J= N

—-Ey®(S, - X;)X; - Ey®(S, — X;)X?
~EyP(S, - (1 - 1) X;) X1 - 7)].

Since X, and X are independent for every [/, j and X and X; have the
same distribution, the first and fourth term in the square bracket ca.ncel and
the third term vanishes by independence of S, — X; and X;.
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Since YN u?v — v31 — 7)) = PP (u + v)® - G + 1 — ) — Fu®),
the second and fifth term together yield the function H; ,. This proves (2.10).
O

LEmMMma 2.11. Assume that (1.3) holds. For ¢ > 0, let b 2 (1 — ¢2) and
8 2 ¢/b. Then '

(2.12) Sup{‘ffd(Q(n) - ‘D)lz fe A}

< %SUP{IfX£2('|h) dQ,|:h € .,Q/} + %a, 84,

where a2 is the %-quantile of the x2-distribution with k degrees of freedom.

ProoF. From standard smoothing inequalities [see Bhattacharya and
Ranga Rao (1986), Lemma 11.14, page 95], we obtain the following upper
bound for the Lh.s. of (2.12) using &= {f(b"1): f € &}

o

/hd(Q(n)- q))b*q)s th =faj8:(b~_1)7 fe'M}

+(a+1)a 8A]/(2a -1,

where a = ®(||x|l < a,) = £ and ®,(A) is defined at the start of Section 2.
This together with [hd(Q,, — ®),* ®, = — [ x.2(-|h) dQ,, yields (2.12). O

ProoF oF THEOREM 1.3. We shall show by induction on n that

sup{|[1d(@u ~ ®)|: 7= o7} < Cuti,

where C, = 62.2a,A + 10.7.

(2.13)

Notice that w.lo.g. sup{|fly: f€ &} = 1. Since B; > n~1/?B3/2 = n=1/2p3/2
by Holder’s inequality, the estimate (2.10) obviously holds for 8; > C; ! or
n <ny% C2k°.

Assume that (2.13) has been proved for n — 1 > n,. From Lemma 2.11, we
conclude that it is sufficient to use (2.2) with ¢ = £2 > 0 to be determined later.
Notice that (1.9) holds since for h € &7,

Ix,(xlR)l s‘f(h(y) - h(yt1(2 + (1= 0)2))I(lIyl > 1 - )77 @(dy)l

+ o(lyll > (1 - ¢)"?)

<cA(Q =)l + A -8)"%) +0((1 -)*?), k>2,t11.
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Let @, ; denote the distribution of S,, ;- By Lemma 2.9, we may write

|Ex,(Salh)l < Zn: E|[H, a(-IX;, X;) dQ,,;
j=1

[H; (1%}, X;)d(Qn,; - q’)‘

(2.14) = ngE

ij!,;z(-l)_(j,Xj)d@‘

n
+) E
j=1
£1,+1,, say.

Put @ £ Q,, ;— @ in Lemma 2.1(iii). Then (2.4) yields by the definition of

Hj,sz’
8 (1%, )@, — #)(a)
(2.15) < ay(1 = 9% sup | [ £, - ?)| fe o)

X (HIX; + X,0° + (8 = 1IX0° + SIX1°).

Hence we obtain by the induction hypothesis (2.13) taking expectations over
X, X, and r in (2.14) and using | X, + X;I° < 4(I1X;II* + 1| X;II°) the inequality
n
L <ay(1-22)e ' Y (4+4+%-Er+3)EIXIPC,
j=1

(2.16)
X Y EINX|°.

1<i<n
1#j
Notice that in order to apply the induction hypothesis we have to use the fact
that o is invariant under x — N; 'x.

Since N; % = Cov(S, — X,) and (x,(Id — Nj ))x) = E(X,, )" < B3/*llxll”,
the inequality B; < C; ' implies || N;x|| < fllx[, where f < (1 — C; 2/3)/2. Thus
E_IB3Ck).

By (1.8), we obtain with M, , £ Id + (1 — t)(N;? — Id),

1/2

(2.17) I < Ba(Zas f3(1 - %)

'[Xs(x + N;'2)v* d®(2)| = [hd® ~ [h(y)em, (v - (1 - s)/%x) d*y,

where ¢y denotes the k-variate normal density with covariance matrix 3 and
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mean zero. Thus with ag defined in Lemma 2.1(iii),

%ftlds(l _ s)—1+3/2

'/4/1,(3)(x + N 'z)v® @(dz)| <

'fh(y)so“"’ (y— (1 —5)"x)vdry
< 53Ihlo sup [|ef) (y)v?|d*y
s%sup<vM53v> a5 < f¥ullPay.

This inequality together with the definition of H; .. implies similarly as in
(2.15)-(2.16),

(2.18) I, < f Z (5+4+%—Er+ DEIX|I® < @382
Hence (2.17)-(2.18) together with (2.14) and Lemma 2.11 yields
D4 sup{'/fd(Q(n) -®)|: fe M}

<B3 013f ((1 — )1/23_IB3CI¢+ %) + %ake(l—sz)_l/zA,

Choosing ¢ optimally, that is, such that the first and third terms are approxi-
mately equal, we get e(1 — £2)"1/2 £ (£C,a;f3/a,A)/?B, and therefore

D < G fflear G + G (o).

Choosing C, and hence n, sufficiently large, we obtain that the factor in
square brackets is smaller than 1. More precisely: Since C,8; < 1, we have
f<@-C;2%71/2 Some tedious but straightforward numerical estimates
now lead to the choice (2.10) for C, thus completing the induction. O

Proor oF THEOREM 1.10. Let S and Y be random vectors independent of
X,,..., X, with standard normal distribution and distribution K [defined in
(A1)-(A2) of the Appendix] on R*. By the smoothing lemma of Sweeting
(1977), Lemma 5, we have

£ |Ef(T) — Ef(S)

max|Ef;3 (T +2Y) = Ef:(S + Y)

<
2a — 1
+2IfloP(IY Il > bL) + elo( f;2be)

=)

1
+2Ifloe”"*~Pexp|(s"72/2)] + 2|ﬂo(
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where @ 2 P(|Y||>b) > 1,0<e<¢' <1/b, 1 €N sit. &" £ lbe' < 1. Choos-
ing £ £ cBy, ' 2 /% and [ = [¢~1/2/b], we obtain for B; sufficiently small,

(219) D < cmax|Ef5(T +eY) — EfiZ(S + e¥)| + clfloBy + co( f3cs).

Write g(x) for Ef,t(x + ¢Y). Then we have
E(&(T) - &(s))| < |IE(g(S,) — &(8))
(2:20) + Y IE(2(S,_1) - 8(S)) AT+, + -+ +d,,
j=1

say, where
S;&T, + - +T; +E(T|Xj+1,...,Xn); So=T, S,=T,+:+T,.
By interchanging integration and differentiation, Theorem A.3 immediately
leads (with A replaced by g) to
|Ey§(S, — X, + x)v/| < clhlollvll,

which together with Lemma 2.9 implies
(2.21) I < cpBs.

In order to estimate J; write
J, < |E(g(S,_1) — &(S) - £'(S)8,)| + [Eg'(S,)5]

2 Ji1+ s,

say, where 8, 2 E(AlX,,..., X,) — E(AlX,,4,..., X,,). From Theorem A.3, we
_ obtainfor 1 <p <2,0<t<1,lall <Ay?

(2.23) EIE(g?(8S, + ta)lX;1q,..., X,)a®] < cA;P%all®

(2.22)

and therefore
E|E(g'(S, + ta) — g'(S)Xps1, .-, X, )a]
(2.24) < AP all? + ea; 2llallI(llall > AY?)
< cA;P/?||all?.
By assumption (1.13), A; > j/2n and therefore (2.24) implies for p < 2,
Zn: J; 1 <cnP/? lZn: 1=P72E||5,II”
=1 =1

c
< 1 ElIA|IP =
2_p7'1mlalx A, 2=
since by Hélder’s inequality ElI5,I” < ElA,|I*.
For p = 2, the factor 1/(2 — p) may be replaced by log n.
Furthermore, define 8, £ E(8,X;, X, ,1,...,X,) and 8, ,, £ 8;,,_1 —
8m- Let 8,,=0,8,,, =0and §; ,,=0for/=1,....,n -1, m>n.

(2.25)

nBp,1s
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By Lemma 1 of Chatterji (1969), the martingale structure of S,, and §;;
yields for 1 < p < 2,

l
E|S, - S/f <2%? Y E|I5P, O0<m<l<n,

i=m+1
(2.26) ;
El5;, - 8;,," <2*7 } El5F, 1<j<l<ms<n.
i=m+1
Rewriting Jl’ 5 We have
ln/t]
Ji2< X 1Eg'(S;)8y; — Eg'(Sj+1y)ug+ vl
j=1
2.2
( 7) ln/t]
= Z (Jl,j,a +Jl,j,4)7
j=1
say, where

Jl,j,3 & |E(g'(sjz) - g'(S(j+1)z))5z|jz|7
l
Jyja 2| E8'(Sysm) X O jiem|-
m=1

Since by construction,

Jl,j,3 = |E[(g'(sj1) - g'(s(jﬂ)z)) - (g'(sjz - Tz) - g'(S(j+1)z - Tz))]5z|j1|,
we obtain by similar arguments as in (2.24) using Holder’s inequality and
(1.13),

p—1

l
E 6jl+m

m=1

Jl,j,3 < CAj_l(p+1)/2E||81|j1" ”Tzll

(p—1gq

< c(jl)(p+1)/2n(p+1)/2E1/q ”Tl”q

El/pllfs”jz“p,

l
Z 5jl+m
m=1

where 1/p + 1/q = 1. By independence of 6, and T;,, p=(p - 1)q,
together with EII(S,WII” < E|l§,lI” < E|lA,|I” (Hélder’s inequality) and
ElT _18;4ml? < Imax, E|§;, | [see (2.26)], we conclude

Jyjs< cn(p+1)/2j(p+1)/2l(p+1)/2+1/qE1/q||Tl||qm’gx (El/q||8ﬂ+m||p)(E1/”||A,||p)

< cen®+ 1)/2j(P +1/2](p+1)/2+ 1/qﬁé/3ﬁllz’/{r + l/q’
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by Holder’s inequality. Since L ;, ;;., J®*V/2 < c(n/1)'+®*D/2 we have

n(p+1)/2 ( ( n )1+(p+1)/2
=1

[(p+1/2+1— 1/173%/33], 1

Z ZJ113<C

2—-p l
(2.28) I=1jl<n
n2_1/p
< e BY3,

for 1 <p < 2. For p = 2, the factor 1/(2 — p) may be replaced by log n.
Furthermore, write

1
Jij4 < Z_IIE[(g'(S(jn)l) — &' (Sg+1 = T1))

_(g'(s(jn)l - le+m) - g'(S(j+1)l -T,- le+m))]51,jl+m|-
By similar arguments as in (2.24), we obtain
1
Jjas<c ¥ (GL+m) Y03 2EN8, i1l ITINIT ol
m=1
Hence, by
E(18;, 11 ml 1700 lIT) < B2/, 5y I/21T /2B 3IT P

and independence of Tj,,,, and §; j; ., we have
(2.29) Y X Jyja < en®2y, ) (t-1) 3/2/3 /332;3 5 < cn’B3 mﬂ%ﬁ,r
I=1l<n I=1t=1+1
Summarizing, we obtain by (2.19), (2.20), (2.25), (2.28) and (2.29)

(2.30) D < C(Ba + w( f;cBs) +n*?B/3B, /(2 —p) + nzﬁz/aﬁgﬁ,z)»

using
3/2 1/3
nB, 1 < cn®?B, 1Bys. O

APPENDIX

Let Y denote a random vector independent of X, ..., X, with distribution
K in R* and characteristic function K(¢) satisfying

(A1) fIIxII”K(dx) <o forevery p €N,

(A.2) IK(¢)l = 0 for every ¢ such that [l£] > 1.

For an example, see Bhattacharya and Ranga Rao [(1986), Theorem 10.1, page
85]. '

The following result is a useful tool for deriving asymptotic expansions in
the CLT for multivariate functions of independent random elements [see
Gotze (1985)], in so far as it does not require truncation.
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THEOREM A.3. Assume that X;,..., X, denote independent random vec-
tors in R* such that

(A4) EX;=0, 1<j<n, B,= Zn: EIX;|° <», s2>3,
j=1
and
(A.5) A, £ minimal eigenvalue of Cov(X, + -+ +X,) > 0.
Let f denote a measurable function f: R* - R and assume
M,(f) = sup{f(x)/(1 +llxll°): x € R*} < oo,
B,A;%7% < (logn) °/16k.
Then there is an absolute constant ¢, such that with & £ ¢,85/A,,
F(x) 2Ef(X,+ - +X, + Y + x)

(A.6)

satisfies
IFO(x)a’l < e(r, k) M,(f)(1 + lxlI°)(1 + Bs/A) (1 + A7) lall”
for every x,a € R*, r € N U {0}. :

Proor. For Ic({l,...,n}, let RIéZje,Xj and R, 2 X, + - +X,.
Let k, denote the Lebesgue density of K,(A) £ K(¢~'A). Let C, denote a
positive definite matrix such that C, R, has covariance equal to the & X k-
identity matrix. Replacing f(x) by f(x) = f(C; 'x), £ by & £ £/A%/? and K, by
K.(A) 2 K,(C;'A), we obtain M,(f) < M,(f)Q +IC;!I°) and K(¢) = 0 for
ellC, I IEll = €li¢]l > 1. Thus (A.1)-(A.2) hold for K as well. Let ¢ denote in the
following a generic constant depending on k% only. Writing F(x) = Ef(C, R, +
eC,Y + C,x), we conclude that it is sufficient to prove (A.6) for the normalized
quantities above. In order to simplify notations we shall write again f instead
of f, R, instead of C,R,,, etc.

Define E; f 2 EfT1; < I(1X;ll < 1). Then

D2 /Ef(R,, + )P TTI(IX] < 1) + I(1X;1 > 1)) d*y
(A.7) J
= ). EF(Ry.) 1_; I(”Xj" > 1),
I JerI°
where Fy(z) £ [E;f(R; + z + )k (y)a” d*y. We have
IFy(2)] < eM,( £)(1 +llzlI*)sup{(1 + ll2II*****) Etk(R; + 2)a™: 2 € R*}

(A8)  <cM(f)(1+ ||z||s')mlngzp_;+ 1 f \DB(E; explitR, 1R (te)(ta) )l d*t

<eM,(f)(A + llzII°),

by Lemma 11.6 and Corollary 14.4 of Bhattacharya and Ranga Rao (1986),
provided that B, < (16k(log n)*)~! and |I| > n — log n, n sufficiently large.
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Here we have used |[Cov R; — Id|| < B%/*(log n)!=%/¢ < § for n sufficiently
large. From (A.7) and (A.8), we obtain

logn
D<)y ¥ ETLI(X> 1)(1 + 1LY BIXII(IX) > 1))

1=0 |I|=n-1 J&I jel
(A.9) "

+eM(f) Y e Y E}(1+

I>logn Il=n-1

L X

JjeIl

) T1EIX;I°.
Je&I

The estimate of the second summand of (A.9) follows from [|k"(y)ld*y =
O(¢™") and EI(|X,|l > 1) < E||X;|I°. Since

Y Y EIXIIIXN>1) TT EIXI =o(B)™Y,
lel,l+j

\Il=1 jelI

we obtain from (A.9),

logn
D<cM(f){1+ ¥ ls-lpgz!-1+( Y cpgu-l)s-r
(A.10) =1 I>logn

<cM/(f),

by our assumption on the size of B,.
For the estimation of the second part of (A.9), we have used El|R,|” < ¢,
for every p [see, e.g., Gotze and Hipp (1978), Lemma 4.5, page 75]. O
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