The Annals of Probability
1991, Vol. 19, No. 3, 1280-1297

LARGE DEVIATIONS FOR MARKOV PROCESSES WITH
DISCONTINUOUS STATISTICS, I:
GENERAL UPPER BOUNDS

By PauL Dupuis,! RicHARD S. ELLIs?2 AND ALAN WEISS

University of Massachusetts, Amherst, University of Massachusetts,
Ambherst and AT & T Bell Laboratories

In this paper we prove an upper large deviation bound for a general
class of Markov processes, which includes processes with discontinuous
statistics. We also specialize the results to a class of jump Markov processes
that model scaled queueing systems.

1. Introduction. In order to prove that a stochastic process satisfies the
large deviation principle, one must establish an upper bound for closed sets
and a lower bound for open sets. For many systems, the upper bound, at least
for compact sets, holds in some generality. This state of affairs is illustrated,
for example, in papers by Donsker and Varadhan [3], Gértner [9], Ellis [6] and
de Acosta [2]. By contrast, the lower bound often requires an analysis on a
case-by-case basis.

The purpose of the present paper is to establish the upper large deviation
bound for a general class of Markov processes taking values in D(0, T']; R™). A
key step in the proof is to adapt a result of Dupuis and Kushner [5], which is
an analogue for stochastic processes of results in the last three papers refer-
enced before. Future work will treat more refined bounds and applications.

Our results, which hold in some generality, were motivated by problems
involving queueing networks. For the purpose of introduction, we shall now
discuss a relatively simple case. Queueing networks involving two classes of
customers or consisting of two queues may be modeled by jump Markov
processes X(¢) taking values in the subset R2= {x € R?: x = (x,, x,), x, > 0,
x5 > 0} of R2. These processes have constant jump rates and directions in the
interior D? = {x € R% x, > 0, x, > 0}, in the boundary set D™ = {x € R%
x; = 0, x5 > 0} and in the boundary set D*? = {x € R x, > 0, x, = 0}. Jump
rates and directions are also specified for D% = {(0,0)}. For each point
x € Z2, the jump directions consist of vectors v € {1,0, —1}2; the correspond-
ing jump rates are denoted by A,(x) > 0. So that the process remains in Z2, it
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is stipulated that A (x) = 0 whenever x € Z2 and x + v & Z3. More general
processes will be considered in Section 3.

In order to study large deviation phenomena for such networks, we consider
the scaled process X®(¢) = ¢X(¢/¢), where ¢ > 0 is a small parameter. For
each x € R2, this process has the infinitesimal generator

1
(1) Zf(x)== X A2)[f(x+ev) - f(x)].
ve{1,0,-1)2
For each s = &, {1}, {2}, whenever x and y are in D*, we have A, (x) = A, (y).
However, the sets of jump rates in the four regions are in general all different.
Since the function x — A,(x) is in general discontinuous, we call X°(¢) a
Markov process with ‘discontinuous statistics’.

Clearly the definition of X°(¢) may be extended to give a process in all of
R2. The main result of this paper, Theorem 1.1, is an upper large deviation
bound for a class of Markov processes which includes the scaled queueing
process as a special case. The first paper to study the large deviation properties
of such processes with discontinuous statistics appears to be [4]. This work
uses techniques from the theory of viscosity solutions of Hamilton—-Jacobi
equations to study processes that model a class of queueing systems known as
Jackson networks. One of the motivations of the present work is to extend the
upper bound results of [4] to cover as large a class of Markov processes as
possible. As our future work will show, in the presence of special geometries
(e.g., one smooth boundary separating two regions of smooth statistical behav-
ior) our upper bound can sometimes be improved.

Assumptions on the process. We first define the class of Markov processes
under consideration. Fix n € {1,2,...}. The following quantities are given.

1. A bounded measurable vector-valued function b(x) = (b(x),...,b,(x)) of
x € R™.

2. A bounded measurable n X n matrix-valued function a(x) = {a;;(x), i, j =
1,...,n}of x € R™.

3. A measurable function x, mapping points x € R" to measures on R" such
that

(2) w.(K°) = 0foreach x € R” and sup u,(K) <

xeR"™

for some compact subset K in R".

For & > 0, we define an operator .#° on twice continuously differentiable
functions with compact support by the formula

: o af(x) e 7f(x)
o Zf(x) = Elbi(x) oz, + Ei,jz=1aij(x) dx; 9x;
1 S

+—£_ R™\{0} flz + ev) = fx) - Eiz=:1vi l‘;g:) (V).
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Under the assumption that for T > 0 there exists a Markov process {X*(¢),
0 < t < T} corresponding to the infinitesimal generator .#° (in the sense that
the process solves the martingale problem [13] for this generator) and with
paths in D([0,T]; R"), we will state our main result in Theorem 1.1. The
existence of such processes is discussed in [13, 7, 11].

Clearly, the operator (3) generalizes the infinitesimal generator in (1) that
arises in the modeling of queueing networks. With the choices u, = 0 for all
x € R", {a;;(x)} smooth, and {b,(x)} discontinuous, the operator (3) arises 1n
the modehng of communication channels that incorporate a ‘‘hard limiter”

a phase-locked loop (a form of a suboptimal nonlinear filter).
Some notation is needed. For x and a in R", define
n n
H(x,a) = Y b(x)a; +3 L a;(x)a;a
i=1

i,j=1

(4) )
+ [exp(z i) 1= L o uuta
R™\(0} i=1 i=1
and
(5) h(x,a) =1lim sup H(y,a).

310 (y: |y—x|<8)

The latter is the upper semicontinuous regularization of H(-, a). Consider the
Legendre-Fenchel transform

6 (x,8) = sup [a B~ h(x,a)],
defined for B € R™. In terms of this, we define the functional
(7) L(¢) = f 1((s), b(s)) ds

when ¢ is absolutely continuous and #(0) = x. In all other cases, we set

I(¢) = +co.

THEOREM 1.1. For T > 0 and & > 0, we assume that there exists a Markov
process {X*(¢), 0 <t < T} corresponding to the infinitesimal generator _£*
and with paths in D(0,T]; R"). Let a compact set C be given. Then the
following conclusions hold:

(i) Define
(L) = {6 = D([0,T]; B"): L,(¢) < L}.

Then for all L < «, the set U , P, (L) is compact.
(ii) For each closed set F in D([0,T1; R™),
limsup ¢ log P{X® € F} < — inf I (¢),
e—0 ¢EF

uniformly in x € C.
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Remark 1.2 points out how our assumptions on the quantities appearing in
-Z° may be weakened so that Theorem 1.1 remains true. The theorem will be
proved in Section 2 of this paper. In Section 3, we will consider special features
of the theorem when specialized to jump Markov processes that model n-
dimensional queueing networks. In particular, we will obtain a useful repre-
sentation for the Lagrangian I(x, B) appearing in (6) (see Theorem 3.1). In
Section 4, we will consider the analogous theorem for discrete time processes.
In Section 5, we will conclude with an informal discussion on the conditions
under which one may expect the upper bounds obtained here to be best.

Theorem 1.1 refers to Markov processes with discontinuous statistics. Large
deviations of analogous Markov processes with continuous statistics have been
studied in a series of papers by Wentzell beginning in 1976 ([14, 15, 16, 17]). He
assumes a quasi-uniform continuity condition on the function

L(xyﬁ) = sup [a ' ﬂ - H(x,a)],
aER”
where H(x, a) is defined as in (4). This condition, which is somewhat difficult
to verify in practice, implies the continuity of the function x — H(x, «). Under
this and other assumptions, he proves the upper and lower large deviation
bounds for the process with infinitesimal generator . Related results are
discussed in [8] (Section 5.2).

Here are the main steps in the proof of part (ii) of Theorem 1.1. The

essential facts used are that

(8) exp[;{(X’f(t) ~-X(s)) ra — js’H(Xf(u),a) du}]

is a martingale and that for fixed a, H(x, a) is bounded independently of x.

1. Prove that as ¢ — 0, {X°(¢), 0 < ¢ < T} is superexponentially close to a
piecewise linear approximation {Y*(¢), 0 < ¢t < T} (Lemma 2.4).

2. Prove that {Y*(¢), 0 < ¢ < T} is exponentially tight (Lemma 2.5).

3. Verify that for 6 > 0,

lim sup log E, {exp[(Y*(¢) — Y*(0)) - a/e]} < h®(x, a)

e—0

uniformly for x in compact subsets of R", where

h°(x,@) = sup H(x,a).
{y:l y—x|<8}

This is proved in Lemma 2.7.

4. Adapt a result of Dupuis and Kushner [5] to show that Step 3 implies the
upper large deviation bound for {Y*(¢), 0 < ¢ < T} in compact sets, with
upper rate function I? defined as in (7) with I(x, B) replaced by the
Legendre-Fenchel transform of A%(x, a) (Proposition 2.9).

5. Justify the passage to the limit § — 0 (Proposition 2.10).

Part (ii) of Theorem 1.1 follows from steps 1, 2 and 5.
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ReEMARK 1.2. We now discuss how our assumptions on the quantities
appearing in the infinitesimal generator ¢ may be weakened and yet leave
Theorem 1.1 true. The assumption (2) on the measures {u,, x € R"} guaran-
tees that there exist positive constants C; and C, such that

(9 H(x,a) <h(lal) = CyeC

for all & € R™. The specific form of % is used only in the proof of step 2, the
exponential tightness of {Y*(¢), 0 <¢ < T} (see Lemma 2.5). We comment
further on this later.

Instead of (2) and (9), let us assume that for each x and « in R",

(10) | Iofu,(dv) <o and H(x,a) < h(la),
R™\{0}

where % is some finite function. It follows that if [ denotes the
Legendre-Fenchel transform of %, then [ grows superlinearly. According to [8]
(pages 144-148), the process in (8) remains a martingale and the proofs in
steps 1, 3, 4 and 5 remain valid with only minor modifications. We indicate in
Remark 2.6 how to modify the proof of step 2. It follows that Theorem 1.1
remains true under the hypotheses in (10).

Theorem 1.1 also remains true if .#° in (3) is replaced by

e ) f( ) & *f(x)
Zof(x) = ¥ bi(e) "5 t L) e,

F(x+v) — f (x)—fv o)

R™\{0} X;

ri(dv),

where {b{(x)} and {a};(x)} are suitable ¢-dependent coefficients and {n%} are
suitable e-dependent measures. In the absence of specific applications, we will
not bother to indicate sufficient conditions that these quantities must satisfy
in order that the theorem remain valid.

2. Proof of Theorem 1.1. Throughout this section, H, h and ! are
defined by (4), (5) and (6), respectively, and A is a function satisfying (9). For
the sake of notational simplicity, we take T = 1.

Note that part (i) of Theorem 1.1 implies that the function I, (¢) is lower
semicontinuous. This fact will be used often in the sequel.

ProposiTiON 2.1. For any compact set C C R™ and L < o, the set
U, ecc®.(L) is compact.

Proor. The upper semicontinuity properties of the function A(x, a) imply
that I(x, B) is jointly lower semicontinuous (see the proof of Proposition 2.10).
Using the fact that A(x, @) < h(lal), the proposition follows from the corollary
to Theorem 1 of Section 9.1.3 and Theorem 3 of Section 9.1.4 of [10]. O
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Before proving part (ii) of Theorem 1.1, we present several lemmas.

LEMMA 2.2. Forall a € R", allx € R*, and all t > s > 0,

1
Ni(t) = exp[—e—{(Xs(t) - X*(s)) ‘a — f:H(X‘(u),a) du}]
is a P-martingale in t.

The proof is a straightforward adaptation of the proof of [13] (Theorem
4.2.1).
Next define (for b > C; = C,C,)

I(b) = sgg[ab —h(a)]
= sup[ab — (a)]
a>0

1
= Fb(log(b/Ca) -1).
2
Note that I(b) grows in a superlinear fashion as b — +c.
LemMma 2.3. Given 6 > 0 and s > 0,

Px{ sup |X°(u) — X*(s)| = 8} <2nexp — [(t - s)(8/2n%(¢ - s))/e],

s<u<t

whenever 5/2n'/%(¢t — s) > Cj. This inequality is valid for all x € R™.

Proor. The proof follows the argument used in [13] (Theorem 4.2.1). Let
a =(a,0,...,0) € R", where a > 0. Then

Px{ sup (X°(x) — X°(s)) -a > 6a/2n1/2}

s<u<t

< Px{ sup Ni(u) > exp[;{‘(Ba/2n1/2) —(t- s)TL(a)}]}.

s<u<t

By Lemma 2.2, this last quantity is bounded above by
exp — [((8a/2n'/2) — (¢ — s)h(a))/e].
Minimizing with respect to a > 0, we obtain the upper bound
exp — [(¢t — s)I(8/2n2(t - s))/¢e].

The conclusion of the lemma follows by applying the analogous estimates to
the positive and negative parts of each component of sup, _, . (X*(u) — X*(s)).
' O
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Define the piecewise linear process
Xe°(ie)(ie + € —t) + X°(ie + €)(¢t — ig)

€

Ye(¢) =

for ¢t € [ie,ie +¢) and i = 1,2,...,[1/¢]. The next lemma will imply that
when proving the upper bound it is enough to work with Y*. We do so because
it is easier to prove an exponential tightness estimate (Lemma 2.5) for Y*¢ than
for X,

LemMma 2.4. For all 6 > 0 and uniformly in x € R",

(11) lim sup & log Px< sup | X°(2) - Y*(¢)| > 5} - —w.

-0 0<t<1
Proor. By Lemma 2.3, the left-hand side of (11) is bounded above by
lim sup ¢ log[(2n/s)(exp - f(6/2n1/2s))]
>0

< - limiglfsi(ﬁ/2n1/2£) = —oo, ‘ O

LemMA 2.5 (Exponential tightness). Let a compact set C € R™ and B < »
be given. Then there exists a compact set K € C([0, 1], R") such that

limsupe log P{Y°* ¢ K} < —B

e—0

forall x € C.

Proor. Since Y* has continuous sample paths, we may look for a compact
set in C([0, 1]; R™). Define the sets

KE(M)= N {6 €C([0,1]; R"): $(0) € C,wy(2™™) < 1/log m},

m>M
where M > 2 and

wy(3) = sup |4(s) — d(2)].
ls—tl<é
By the Arzela-Ascoli theorem, each K(M) is compact. The piecewise linear
nature of the process Y° implies that if m is any integer satisfying 2™ < ¢,
then wy(2™™) < wy(27™*1)/2. Hence, Y* € K(M) if

Yee N {6 € C([0,1]; R™): ¢(0) € C,w,(2™™) < 1/log m}.
(—loge/log2)=2m=M

For the rest of this proof, m will be an integer such that 27" <¢ < 271,

We have the upper bound

P{Y: ¢ K(M)} < f‘, Pfwy(27%) > 1/log i}.
i=M
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Using Lemma 2.3 and the fact that 2¢/log i is increasing for i > 2, we obtain
(for M large enough so that 2¥/4n'/2log M > C,)

P{Y* € K(M)} <2n(m —M+1) max 2exp— [27*""1](2!/4n"/? log ).

M<i<m

Using the explicit form of 7, we have
27i*m=1](2i /4n1/2 log i)
= 2™ !log 2’ — loglog i — log(4n'/%C;) — 1] /4C,n'/? log i
= 2"a;.
If M is sufficiently large,

mina; = a,,.
i=M '

We therefore have the bound

P{Y* & K(M)} <2n(m — M + 1)2™exp(—2™a ),
which implies
(12) lims(l)lpelong{YEGEK(M)} < —ay.

Since @, T as M — «, the lemma is proved. O

REMARK 2.6. We indicate how to modify the proof of Lemma 2.5 when
hypotheses (3) and (9) are weakened to hypothesis (10). The sets K(M) are
redefined to be

UM{¢ € C([0,1]; R"): ¢(0) € C,w,(27™) < 1/f(m)},

where f(m) is some function that maps the nonnegative integers to [0, »), is
monotonically increasing, and satisfies f(m) > « as m — », The proof of
Lemma 2.5 may be modified provided f satisfies the condition

(13) 27(2 /cf(i)) > = asi—> o

for ¢ > 0, where I denotes the Legendre—Fenchel transform of the function 13
in (10). Since h(a) is assumed to be finite for all @ > 0, [ grows superlinearly
and so a function f satisfying (13) may always be found.

We need one more lemma before proving part (ii) of Theorem 1.1. Fix § > 0
and define

h°(x,@) = sup h(y,a).
ly—x|<8

Then h°(x, a) is upper-semicontinuous in x, convex in a, and h%(x, a) | h(x, a)
as 6 | 0. Furthermore, for all «, all x, and all y such that |y — x| < 8,

H(y,a) < h’(x,a) < h(lal).
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LeEmMMA 2.7. Let compact C C R" be given. Then
lim sup log E, exp[(Y*(¢) — Y*(0)) - a/¢] < h®(x, @)
uniformly in x € C and a in bounded sets.
Proor. By Lemma 2.2,
1= Ex{exp%[(Y‘;(s) -Y°(0)) - a - /:H(Xe(u),a) du]}
Hence, if |x — y| < §/4, then

1> Ex{ (eXP%[(YE(S) - Y*(0) - a — eh®(y, a)])lA(e,s>}
~ expl ()] &.{emp| £ (V"(e) = 7°(0) - |

— exp[-R%(y, a)]Ex{(exp[;l—(Ye(e) ~ ¥4(0)) a])1A<;,a>c}:

where A(e, 8) = {supy., ../ X°(v) — x| < 8/2} and A(e, 6)° is the comple-
ment. This implies

1
Ex{exp[;(Y‘;(s) -Y°(0)) - a]} < (exp h%(y, @))
. . »
+ Ex{eXP[;(Ye(e) - Y*(0)) - a] ‘ 1A(e,a)°}'
Using Lemma 2.3, we have the bound

1
Ex{exp[;(Ye(e) - Y0 e Lucr)

* k + 1)élal k+1)8 ké
< ) exp (—L—)Px{g—z sup |X8(u)—x|2—}
k=1 2¢ 2 O<u<e 2

©  [(k+1)slal .[Bykd
sBIEIeXp o l( 2% )

for some B; > 0, B, > 0. Given M > 0, there exists ¢, > 0 such that for all
0 <& <eg,,

i( szS) (M +1)(k + 1)élal

> .
2¢ - 2¢

Hence for all sufficiently small ¢ > 0, the last term is bounded above by

B, Y exp[-M(k + 1)8lal/2¢] < B;exp(—B,M/¢)
k=1
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for some By > 0, B, > 0. Thus for all sufficiently small ¢ > 0 and for all

1
Ex{exp[—(Ye(e) - Ye(O)) . a]} < ehs(y:a) + Bae—B4M/e.
€
The lemma follows from this. O

We now proceed to the proof of part (ii) of Theorem 1.1. Define
13(x,B) = sup [a-B - k¥ (x,a)].
acR™

Define I3(¢) as I,(¢) was defined in (7), but with ° replacing /, and define
the level sets ®2(s) as the level sets ®,(s) were defined in the statement of
Theorem 1.1, but with I3(¢) replacing I.(¢).

REMARK 2.8. In the proofs to follow we will need to use the fact that the
level sets U , < ®?(s) are compact for compact sets C C R”, s < » and § > 0.
The results of [10] cited after our Proposition 2.1 yield this assertion.

ProOPOSITION 2.9. Let 6 > 0 be given. Then the conclusion of Theorem 1.1
holds with the rate function 12°(¢) replacing I1.(¢), and Y* replacing X°.

Proor. Fix a compact set C C R” and s < «. Let C' C R" be a compact
set containing

U U @) L) ssin U {6(5): ¢ € KM,

xeC0<t<l1 O0<t<1

The set K(M) is defined in the proof of Lemma 2.5. Define

h(x,a), x€C,

Hia(x, @) = {TL(IaI), xeC.

Let 7> 0 be given. By Lemma 2.7, for all sufficiently small ¢ > 0 and all
x € R,

1
(14) E, exp(;(Ye(e) —-Y*?(0)) ~a) < exp(hj(x,a) + 1)

for all x. Let a continuous, bounded function 6: [0,1] X R - R" be given.
Together with the stationarity of X° and the Markov property, (14) implies
the bound

(15) B, o 205(Y,9) < exp(r/0),
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where we set
(1/e)-1

G3°($,6) = E,o [(¢(ie + &) — d(ie)) - (i, d(ie))

—hy(d(ie), 0(ie, d(ic)))e]

when ¢ is absolutely continuous and ¢(0) € F, and G§;°(¢,0) = +o in all
other cases. Then (15) and the fact that 7 can be made arbitrarily small imply

1
limsup ¢ log E, exp(—Gf;e(YE, 0)) <0,
€

>0

uniformly in x € C.
Let a Borel measurable set A ¢ K(M) be given. Then for each function 6,
and uniformly in x € C,
limsup ¢ log P {Y*® € A}

-0

1 -
(16) < limsup ¢ log E, exp(; [G;ff(Y&, 0) - inf Gfi*(9, 0)])
€

-0
1 . . 8, ¢
< hirilglf(dflelfl;GM (¢,o)).
Since ¢ € A implies U, _, . {¢(2)} c C', it follows that
iminf inf G§°(¢,0 inf G2°
(17) lim in Jnf Gu®(¢,0) = inf G™(4,0),
where G2%(¢, 0) equals

f:[di(t) -0(t,¢(2)) — h2( (1), 6(¢, (2)))] dt

when ¢ is absolutely continuous and ¢(0) € C, and G?%(¢, §) equals + in all
other cases. Note that G2?%(¢, 0) is lower-semicontinuous in ¢ for each 6.
Combining (16) and (17) gives
(18) limsup elog P{Y* € A} < — ¢in£G”(¢, 0)

-0 €
for each bounded continuous # and A ¢ K(M). The convergence in (18) is in
fact uniform in x € C. Let ¢ > 0 be given. As in [5] (proof of Theorem 4.1), for
any given ¢, there is a bounded continuous function 6, such that

G*(¢,0,) = (Igg"o)(¢) A M) —c.

By the lower-semicontinuity property of G2°, there exists an open neighbor-
hood N(¢) of ¢ such that ¢ € N(¢) implies

(19) G®(y,0,) = (13%(¢) A M) — 2c.

Choose a finite subcover (with radii less than ¢) from among the N(¢) that
cover the compact set K(M) and index the subcover as N(¢;),1 <i < N. For
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fixed x €C, let J={i: d(¢;, P?*(s)) =c}. Then according to (12), (18)
and (19),
lim sup ¢ log P{d(Y*, ®2(s)) = 2c}

-0

< lim sup elog[Px{Ye e¢K(M)} + Y P{Y°e N(d’i)}]

-0 ied
< ~[(a n A (1220000 7 )~ 2)|

Letting M — « and using the fact that each I}%,(¢,) > s, we get
(20) lim sup ¢ log P,{d(Y*, ®?°(s)) = 2¢} < —s + 2c.
-0 .

Since the cardinality of J has a bound that is independent of x, (20) is
uniform in x € C. According to [8] (Theorem 3.3.3), the compactness of the
level sets ®2°(s) and equation (20) imply the assertion of Proposition 2.9. D

Part (ii) of Theorem 1.1 now follows from (20) and Lemma 2.4 if we prove
the following.

PropOSITION 2.10. Given s > 0 and ¢ > 0, there exists 8 > 0 such that

®(s —c) C {p:d(,D.(s)) <c}
forall x € C.

Proor. We first prove that for any pair (x,8), 1°(x, 8)1 l(x,B) as & 0.
Clearly /%(x, B) is monotone increasing as & | 0, and bounded above by (x, B).
To complete the proof, we derive a general lower semicontinuity property for
1%: for any triple of sequences 8, - 0, x; = x, and B, = B,

(21) liminf 1°%(x;, B;) = (=, B).-

Choose a(n) such that
a(n)-B—h(x,a(n)) =l(x,B) —1/n.
Since A is upper-semicontinuous, there exists § > 0 such that |8 — B'| < § and
|x — x'| < 28 implies
a(n)-B' — h(x',a(n)) =1l(x,B) — 2/n.
From the definition of A%, |8 — B'| < & and |x — x'| < § imply

a(n) - B — h(x',a(n)) = l(x,B) — 2/n.
The property (21) follows from this. We note that the same proof shows that
1(+, +) is jointly lower-semicontinuous.
Next note that if & > 8’ > 0, then I3(¢) < I2(¢) < I.(¢). This implies
@, (s) c ®(s) c ®2(s) whenever s < » and & > §' > 0. If the proposition is
not true, then by using the compactness properties of the level sets ®2(s), we
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may assume the existence of x;, >x €C, §, > 0, and ¢, > ¢ such that
I(¢)>s, I2(¢;) <s—c. For any j>i, Ifjf‘(d)j) < Ifj{'(d)j) <s —c. Lower
semicontinuity yields I?(¢) < s — c. The monotone convergence theorem then
gives I,(¢) < s — ¢, which is a contradiction. O

Combining Proposition 2.10 with (20) and Lemma 2.4, we obtain
lim sup ¢ log P,{d(X*®,®,(s)) = 3¢} < —s + 3c.

-0

Since the level sets ®,(s) are compact [part (i) of Theorem 1.1], this estimate
implies part (ii) of Theorem 1.1 ([8], Theorem 3.3.3).
This completes the proof of Theorem 1.1.

3. Results for queueing networks. A large class of queueing networks
may be modeled by jump Markov processes taking values in the nonnegative
orthant

R1={xeR":x=(x1,x2,...,xn),. min xiZO}.
i=1,..

n
The processes have constant jump rates and directions in the interior of R%
and in each of the boundary faces of codimension % =1,2,...,n. In this
section we specialize our main result, Theorem 1.1, to such processes. In
Theorem 3.1, we derive a useful representation for the Lagrangian I(x, )
appearing in (7). The assumptions on the processes are made for notational
convenience only. They may be relaxed to cover various state dependency
effects (routing, arrival rates, service rates, etc.).

For x € 9R?, we define B(x) ={i €(1,2,...,n}: x, = 0}. For x in the
interior of R’;, we define B(x) = @. Let B(x) denote the collection of all
subsets of B(x). Thus, if S ={1,2,...,n}, and S = {subsets of S}, then
B(x) S and B(x) c § for all x € R". The inverse mapping B~%: S - R"
partitions R’ into the interior, faces of codimension 1, faces of codimension
2,..., the origin.

Let V denote the set {—1,0,1}*. We consider a jump Markov process X(#)
that takes values in R"” and whose jump measure is supported on the set V.
For v € V, A (x) denotes the jump rate in effect at x € R” in the direction v.
The corresponding queueing process is defined to be the restriction of the jump
Markov process to the nonnegative integer lattice Z”. In order that the
queueing process never leave Z7, we assume that whenever x € Z? and
x +v &Z%, then A (x) = 0. We also assume that for all pairs of points x and
¥ in R% such that B(x) = B(y), we have A, (x) = A (y) for all v € V.

We define the scaled queueing process

X°(t) = eX(t/e),

where ¢ > 0 is a small parameter. For each x € R", this process has the
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infinitesimal generator
1
Zf(x) = T M@ +e0) = f(2)].

Theorem 1.1 applies to this process. As we now indicate, the 2 and !
functionals may be represented in alternative forms.

Let s €S be a subset of S and let x € R? be any point in the set {x:
B(x) = s}. Recall that s = & corresponds to the interior of R?. For « € R",
we define

H(s,a) = ZVAU(x)[exp(a "v) - 1.

For B € R", we define
L(S’B) = S8up [a B - H(s,a)].

a€R™

Clearly, for x € R, the Hamiltonian A(x, @) in (5) may be represented as

h(x,a) = \—/( H(s,a).
s€B(x)

Our next theorem indicates an interesting representation for the function
l(x, B) defined in (6). See Theorem 16.5 of the book by Rockafellar [12] for
another proof.

THEOREM 3.1. For each x € R and B € R",

l(x,B)=inf{ Y p.L(s,B): X pBs=B, A p20, ¥ Ps=1}-

seB(x) seB(x) seB(x) seB(x)

Proor. For each x € R and a € R", we may write

h(x,¢) = V H(s,a)

seB(x)
= sup{ Y p.H(s,a): A p,=20, Y p,= 1}.
seB(x) seB(x) s€B(x)
Thus
I(x,B) = sup {a B — h(x,a)}
a€R”
= sup inf{a~B - Y p,H(s,a): A ps=20, Y p,= 1}.
ac€R” seB(x) seB(x) seB(x)

According to Rockafellar [12] (Corollary 3.7.3.2, page 393), the supremum and
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the infimum of the last display may be interchanged to give

I(x,B) = inf{{ sup (a “B- X psH(s,a))}:

acR” seB(x)

A p,z20, ¥ Ps=1}~

seB(x) se€B(x)

In order to prove the theorem, it suffices to show that for any fixed set
{p,, s € B(x)} satisfying A seBPs = 0, L e ByPs = 1,

fe.) = sup [a-p- ¥ p.H(s,a)
aER" seB(x)

equals
g(x,B)=inf{ Y p.L(s,B,):each B, eR", T psﬁs=B}-

seB(x) seB(x)

A short calculation shows that the function g — g(x, B) is lower semicon-
tinuous and proper convex. Hence it suffices to show that the Legendre—Fenchel
transforms of g(x, - ) and f(x, -) are equal: For all « € R",

g*(x,a) = sup {a- B - g(x,B)}
BER
equals X . g(,)p; H(s, a). This is elementary since

sp (% pu(a B~ L(s,8)

B,€R", s€B(x) \seB(x)

Z ps Sup {a'Bs _L(S’Bs)}

s EE(I) BGER"

E psH(S, a)'

seB(x)

g*(x’ a)

This completes the proof. O

4. Discrete time processes. In this section we state the analogue of
Theorem 1.1 that is appropriate for discrete time processes. The proof follows
the same lines as in the continuous time case, and is in fact simpler since step
1 in the outline given in the introduction is no longer needed.

We define our process as follows. We assume that a famlly {n,, x € R™} of
probability measures is given such that the mapping x > u, is measurable in
x. We also assume the existence of a probability space supporting a sequence of
independent and identically distributed random vector fields {b,(x)} such that
for all Borel measurable sets B c R",

P{b,(x) € B} = u.(B).



LARGE DEVIATIONS FOR MARKOV PROCESSES 1295

For n > 0, we define X, recursively by
X,..=X, +eb,(X,), X,=x.

Under some additional assumptions, the existence of such random vector fields
is proved in [1]. However, as in the case of continuous time, we shall simply
assume the existence of the processes we work with.

Define the continuous parameter version X° by

&
for t € [ie,iec +€],i=1,2,...,[1/¢]. Define
H(z,) = log| exp(ay)n.(dy),

and define h(x, @), I(x, B) and I.(¢) by (5), (6) and (7), respectively.

Xe(t) =

Assumptions on the u,. We assume there exists a function h(a), defined
for a € [0, ), which is finite for each a and satisfies

H(x,a) STL(IaI)
forall x € R*, «a € R™.

THEOREM 4.1. Under the previous assumptions on the measures u, and
under the assumption that the processes X° described in this section exist, the
following conclusions hold:

(i) Define

®.(L) = {¢ €D([0,T]; R*): I.(¢) < L}.
Then for all L < « and all comapct sets C, the set U , P, (L) is compact.
(ii) For each closed set F in D([0,T]; R™) and for each compact set C in R™,
limsup elog P{X° € F} < — inf I (¢),
deF

>0

uniformly in x € C.

5. Concluding remarks. Theorems 1.1 and 4.1 provide large deviation
upper bounds for very general classes of Markov processes that live in finite
dimensional spaces. The theorems in fact include and in most cases extend all
such upper bound results known to the authors. However, we have not
addressed the following question: Is the rate function obtained by Theorems
1.1 and 4.1 the best possible? Intuitively, the best upper bounding functional is
the pointwise largest functional that satisfies the conclusion of Theorem 1.1.

Suppose that I.(-) is a rate function for which the conclusions of Theorem
1.1 hold as well as the lower bound: for each open set O in D([0,T]; R™) and
for each compact set C in R™,

limsup e log P{X® € O} = — 1nf I(9),

>0
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uniformly in x € C. One can show that if both the upper and lower bounds
hold with the same rate functional I.(-), then subject to the regularity
properties of I.(-) implicit in the statement that part (i) of Theorem 1.1 holds,
I(+) is unique. It follows that if one can prove the lower bound result with the
same rate functional as that used in Theorems 1.1 and 4.1, then I (-) does
indeed give the best upper bound. Since I, (-) as defined by (7) is the rate
function found in every case in the literature known to the authors for which
upper and lower bounds hold (e.g., [4, 8, 14, 15, 16, 17]), it gives the best upper
bound in these cases. For cases in which there are at present no well-
established lower bound results, we offer the following observations. To
simplify the statements, we make all references with regard to the simple
one-dimensional model

dX° =b(X*)dt +¢?dw,, X°(0) =z,
where b(-) is assumed to be bounded and measurable. This model is covered by
Theorem 1.1.
Suppose that

’ —0’
ORI

CaseE 1. Suppose that ¢ < 0 and b > 0. With regard to the question of
whether or not I.(-) defined by (7) gives a lower bound result, the only real
issue is the value of 1(0,0). For ! defined by (6), we obtain 1(0,0) = 0 (see
Theorem 3.1). However, this is obviously incorrect as far as the lower bound is
- concerned. Consider the case a = —1, b = 1. By exploiting symmetry, we can
consider a reflected diffusion in place of the original process and prove that the
value of 1(0,0) must at least be 3. This case may be characterized by the
tendency of the process to push away from the point x = 0 with positive speed
in both directions. In such a case a more refined technique than that used in
this paper must be developed in order to obtain the best upper bound.

Case 2. Suppose a > 0 or b < 0. Here the nature of the process is such
that it either tends to move across the point of discontinuity (x = 0), or it
tends to be held at x = 0 (when a > 0 and b < 0). In both these cases, (7)
gives the correct rate function for the lower bound. However, these results
have not yet been verified in a general setting.

On the basis of these simple examples, we conjecture that our upper bound
rate functional is the best available in at least some multidimensional settings
corresponding to Case 2. By this we mean a process that has one or several
smooth (n — 1)-dimensional manifolds across which the statistics jump and
that has the tendency either to move across these manifolds or to be pushed
from both sides into them. We note that the Markov processes that model
queues are of this type and that the results of [4] support this conjecture.
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