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STRONG LIMIT THEOREMS OF EMPIRICAL DISTRIBUTIONS
FOR LARGE SEGMENTAL EXCEEDANCES OF
PARTIAL SUMS OF MARKOV VARIABLES
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Stanford University

Let A, A,,..., A, be generated governed by an r-state irreducible
Markov chain and suppose (X, U;) are real valued independently dis-
tributed given the sequence Aj, A, ..., A,, where the joint distribution of
(X;,U;) depends only on the values of A;,_; and A; and is of bounded
support.

Where A is started with its stationary distribution, E[ X;] < 0 and the
existence of a finite cycle C={Ay=ig,..., A, =i, =i, such that
PriZ™,X;>0, m=1,...,k; C}>0 is assumed For the partial sum
reallzatlons where L!_ kX — o, strong laws are derived for the sums
L!_,U;. Examples with r = 2, X €{-1,1} and the cases of Brownian
motion and Poisson process with negative drift are worked out.

1. Introduction. In the accompanying paper [Dembo and Karlin (1991)],
we characterized the composition of high scoring segments among partial sums
of i.i.d. random variables. For biological motivations and applications, see the
introduction and Section 4 of Dembo and Karlin (1991), Karlin and Altschul
(1990) and Karlin, Dembo and Kawabata (1990). In the present paper the
sequence consists of letters A,, A,,..., A, assuming values from a finite
alphabet {a,}] generated under Markov dependence. Scores (reflecting on letter
attributes) are associated with these letters and can depend on diletter occur-
rences such that X; =s,, for A, ; =a, and A, =a, Thus {4,, X,} are
jointly Markov of order 1. Let S,, Z;’ 1X; be the partial sum process of
scores induced by the letter sequence with initial letter Ay =a. A limit
distribution for the maximal segment score M (n) = max,_, ., .[S;, — S,.]
is described in Karlin and Dembo (1992).

The focus of this paper concerns the empirical distribution function of the
random variables U}, U, ..., U,,... . (U, defined with respect to X;,) during a
high scoring segment of {S,, }. (We suppress the designation of the 1n1tlal state
if no ambiguity is likely.) For example, where U =1 iff X = s, j» the partial
sum L} ,U, effectively assesses the aggregate count of a specific score count
over the letter segment (Ay, A;,..., A,).

Formally, the model is as follows Let the letter sequence A, A,,..., A,,...
generated be governed by an r-state irreducible Markov chain with trans1tlon
probabilities p,;, and suppose (X,,,U,,) are independently distributed given
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the sequence A;, A,,...,A,,..., where the joint distribution of (X,,,U,,)
depends only on the values of A,,_; and A,, and is of bounded support.
Where A, is started with its stationary frequencies, E[X;] < 0 is assumed,
so {S,,} entails a negative drift. For {S,,} to have positive probability of
achieving early any positive score, the existence of a finite cycle of letters
={A,=1ig,..., A, =i, = iy} such that Pr{min,,_, ,X7" . X;,>0; €}>
0 is assumed. The quantity
(1) M (n)= sup (S~
O<k<l<n
corresponds to a segment of the sequence {S,,}; with maximal score starting
in state A, = a. For the sample path (4,, X;),(A,, X,),... with some pre-
scribed initial state we define sequentially the stopping times

(2)
Ky=0, K,=min{k>K, ;+1,8,-8 <0}, »=12...,

which are finite valued by virtue of the negative drift of {Sm}. For any fixed
i,K,— K, ,, conditioned on Ay =1,2,..., are iid. integer valued
random variables. Their distribution functlon has talls of exponential decay as

Pr{K, - K,_, > llAx =i} < Pr{S,> 0|4, = i}.

The time frame K,_; + 1 to K, encompasses the vth excursion epoch, that
is, the vth segment of the process {S,,} starting from zero until hitting a
nonpositive value. For each y > 0 and within the vth excursion epoch, define
the stopping time

T,(y) = min{m: m > K,_, and either S,, — S _ <0

.....

3
) orS,, — Sk, | > y}.
Note that the distribution of T,(y) — K,_; depends upon the state of Ax .
The quantities

T.(»)
(4) L(y)=T(y)—K,; and W(y)= X U,
m=K,_,+1
assess the elapsed time and associated sum of U’s, respectively, until the first
departure of {S,, — Sg _} from the open interval (0, y).
The realizations in (3) are of two kinds:

(5) IL(y)=1or0if Sy, — Sk, _,2zyorSy - Sk,_, < 0, respectively.

Let y > 0 be given. Because of 1rreduc1b111ty and the presence of a finite cycle
of states of positive increase, € = {A, = iy,..., Ay, = i, = io}, Where

Pr{Z X;>0,m= 1,...,k0;€} > 0,
i=1

it follows that within each successive r — 1 excursions (recall r is the number
of states) there is a uniform (with respect to the initial state) positive probabil-
ity that a level exceeding y is traversed during one or more of these excur-
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sions. Consequently, with probability 1 some excursion (actually infinitely
many excursions) of the partial sum process reaches level y or greater. In
particular, for each y > 0, there exists a first excursion epoch with the
properties I,(y) = 1, while I(y) = --- =1,_(y) = 0.

We can now state our main results (resolving the determination of the
parameters w*, u* in Lemma 1).

THEOREM 1. Let I(y) = 1 while I(y) = -+ =1,_,(y) = 0 [see (5)]. Then
L 1
(6) Viy) o5 a.s.asy oo,

for any value of A,.

THEOREM 2. With the index v determined as in Theorem 1,

W,(y)
L,(y)

- u* a.s.asy - x,

(7
for any value of A,.

Since M,(n) - « a.s. as n — « [see Karlin and Dembo (1991)], it follows
from Theorems 1 and 2 that also
L(M(n)) 1 W(M,(n)

_ s — _— u

M, (n) w* L(M,(n))
with L(M_(n)), W(M_(n)) defined on the segment of maximal score over the
time frame {1,..., n}.

Let p(6) be the maximal eigenvalue of the matrix of elements
(8 (Po)ij=pijE[e0X1|A0=iaAl =j]-

and 7, > 0 and , > 0 the corresponding right and left eigenvectors normal-
ized so that (my, s> = 1 and (m,,e) = L_1my(j) = 1.

* as.asn o o,

LEMMA 1. The equation p(0) = 1 has a unique positive root 6* and

(9) w* = ZApijE(Xleo*Xlle =i, A, =j)me(J)¥e(i) > O,
,J

(10) w* =Y pi;E(Uie” %1Ag = i, Ay = J)mee(J ) e ().
,J

For the i.i.d. case cf. Dembo and Karlin [(1990a), Equations (21) and (23)].
Proofs are given in Sections 2 and 3 and examples are given in Sections 4
and 5.

2. Proof of Theorems 1 and 2. The proofs of Theorems 1 and 2 in
several respects parallel the i.i.d. case [Dembo and Karlin (1991)]. In particular
an analogous sequence of nine lemmas is used here.
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The first four lemmas furnish the essential estimates for a typical excursion
extended to the Markov case; their proofs are given in the next section. The
revised Lemma 1 is stated above, while the revised Lemmas 2, 3 and 4 are
stated here where

Q,={i:forall y > 0, Pr{I(y) = 11A, = i} > 0}.

LEMMA 2. For anyi € Q. (6* determined as in Lemma 1),
0 <& < Pr{I(y) = 114, = i}e®” <K,
where K and 8 do not depend on i.

LEMMA 3. Fory — o [see (4) for definitions],

L(y) ‘

(11) E - ) =1, 4=

o)

uniformly with respect toi € Q.

LEMMA 4. Fory — o [see (4)]

Wi(y) _
Ly(y)

uniformly with respect toi € Q.

4
u*

of3

Since the Markov chain is finite, for all y > y,, any integer » and any initial
state, I,(y) = 1 imply A, =i € Q,, where y, is independent of both » and
A,. Thus the estimates of Lemmas 3 and 4 establish the analogs of Lemmas 5,
8 and 9 paraphrasing the arguments of the i.i.d. case with averaging over
Pr{Ay =ilAxy €Q,}

The index random variable J, where the global maximum of the partial
sums sequence {S,,} is first attained, is well defined and finite valued owing to
E[X] < 0. Moreover, as in the i.i.d. case, from large deviation theory  has at
least an exponential decay tail probability, even conditioning on A, =i. We
can conclude that Pr{J = k|A, = i} < ce ®* with ¢ and b both positive con-
stants independent of i{ and the proof of Lemma 7 follows the i.i.d. case,
mutatis mutandis.

The excursions characterized by {x;(n),7;(n),o(n)} (the first [Alogn]
excursions with I (n) = 1) are no longer independent, and their initial states
A, (ny may belong to _, the complement of , in {1,...,r}. Neverthe-
less, the key step of Lemma 6, namely Pr{&’} < (1 — a)“4!&"] follows from

(13) Pr{-ny<8;,83,...,8,,.1<1<8, |4, =i}=a>0,

with my,ny < © and a > 0 all independent of i. We establish (13) as follows.
Since the chain is irreducible there exists m; < © and for n, > m,K, such

(12) E[
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that Pr{A,, =i,lA, =i} >0, min{S,,...,S,,} > —n,. Here i, is the initial
state of a cycle ¢ of length & with Pr{iZ" X, >0, m=1,...,k; €} >0.As ¢
is of finite length and Pr{LX " X, >, m=1,...,k; €} > 0 for some & > 0,
(13) follows by cycling through ¢ at most (1 + n,)/é times.

3. Proofs of Lemmas 1-4,

Proor oF LEMMA 1. Since P is irreducible, so are P,, and the Frobenius
theory guarantees that their spectral radii p(6) > 0 are also simple eigenvalues
having unique (up to scaling) strictly positive () and () principal eigenvec-
tors. Without loss of generality we normalize w(9) and (8) so that
(¥(0), w(0)) = 1 and (e, w(9)) = 1.

Because all the entries of P, are analytic and log convex in 0, it is well
known that log p(6) is convex and the components of w(8) and ¥(6) under the
normalizations prescribed are analytic in 6. For the case P, = ||p, ;e%ull we
apply Karlin and Ost (1985), Theorem 1, to conclude that log p(8) is strictly
convex. In fact, setting

A= ”‘\/pij eXP(olsij/z)”, B = "‘/pij eXP(ozsij/z)”,
in terms of the Schur product matrices we have

"(01 2 02) = p(A=B) < yp(A<A) Yp(B>B) = p(8,) /p(8s)

with equality (since A and B are irreducible) iff A = D~ 'BD for some positive
definite diagonal matrix D. But this is not possible for 6, # 6, under our
assumptions on the X process. In the more general case of (P),;; =
pi;jEle’¥|A, = i, A, = j], by the Schwarz inequality,

Elexp(((6, + 02)/2)X)lAg = i, A, =]
< (B[e"¥A, =i, A, = j])*(E[e"¥4, = i, A, = j])"

with equality only if X conditioned on A, =i and A, = is constant. The
proof continues as above where the strict convexity of log p() follows by the
assumptions on the X process; trivially so if p,; > 0 for all i and j and with
some further technical arguments if P is merely irreducible. O

The proofs of Lemmas 2-4 rely on the martingale family (with respect to
Ay, ALLLY)

exp(6S,, + tW, A
(14) p, = PO ¥ W) Mol Bn) gy
p(6,¢) 7g,:( Ao)
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which constitute the natural Markov chain extension of the Wald martingale
prominent in the i.i.d. case. Here W,, = L2 ,U,, p(6, t) is the spectral radius of
the matrix (P, ,);; = p;;Elexp(6X; + tU)IA, =i, A, =j], and the strictly
positive vector 1, , is the corresponding right eigenvector, normalized so that
¥ ,m, (i) = 1. Analyses and extensions of Markov chain martingale families as
in (14) are presented in Ney and Nummelin (1987a, b) and Nummelin (1983).

We apply the optional sampling theorem to the first exit time variable of the
sum process S,, from the interval (0,y), L = L(y) < K. By large deviation
estimates the distribution of L(y) tails down exponentially fast as
Pr{K, > I} < Pr{S, > 0} and S,, has negative drift. Therefore, for every i and
for |¢| sufficiently small and 6 close to 6%,

A, = i]

Proor oF LEMMaA 2. The monotonicity of I(y) implies the eﬁstence of y,
such that for all y > y,, Pr{I(y) = 1|]A, € Q_} = 0.
Take ¢ = 0, § = 6* in (15) so that {(6*,0) = 0. Then for any i € O,

A
(15) E|exp(6Sy, + tW, — L{(O,t))M

1
1"a,t( 4A)

with £(6,¢) = log p(9, ).

1=Pr{I(y) = 1A, = i}e’™

71'o*,o(Ach))

XE|exp(6%(S100 = 3)) " A

16 A, =i, I(y) = 1]

7"o*,o(AL(y))
‘"'o*,o(Ao)

Since S, ,, >y when I(y) = 1 denoting c(6*,0) = min {m (i)} > 0, and by
the normalization, g« o(i) < 1, the upper bound

+ Pr{I(y) = 014, = i}E[exP(B*SL(y))

Ay =i, I(y) =o].

1> Pr{I(y) = 114, = i}e®™c(6*,0)

ensues by discarding the second term of (16). For any a,>0>a_, let
I(a,,a_) = 1if and only if there exists m such that S,,...,S,_, €(a_,a,)
and S, >a,. As I(a,,a_) decreases in both a_ and a, for any y, €
(O’y - K),

Pr{I(y) = 114, = i}
17 o .
(D > Pr{I(y0) = 114y = i} min Pr{I(y = 3o, ~30) = 114g =J}.
By the optional sampling theorem for the stopping time L = L(y — yo, —¥)

[the first exit of S, from the open interval (—y,,y — y,), associated with
I(y — ¥4, —¥o)] applied to the martingale exp(6*S, X o(A,))/ (g o(Ao)),
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we have

O*SLWo*,o(AL)
‘"'o*,o(Ao)

XPr{I(y = Yo» —¥o) = 1lA, =j}

* o( A
exp(o*SL) Ty ,0( L) I(y - Yo, _yo) = 0, AO =J]

1=E[e

I(y — o, —y0) =1, 4, =J]

+E

Wo*,o(Ao)
XPr[I(y — Yo» —¥o) = 0lA, =j}

j [exp(ﬂ*(y -y + K)) ]Pr{I(y — ¥Yos —Yo) = 1|A0 =J}

c(6*,0)
exp(—0*y,)
c(6*,0)

Combining, we have

](1 = Pr{I(y — 55, —50) = 114, = j}).

g* . Lc(8*,0)e™0 — 1
e”7 Pr{l(y) = 1A, = i} > Pr{I(y,) = 1IA, = i} P

Since i € Q,, Pr{I(y,) = 1|A; =i} > ¢ > 0 for y, = —(1/6%)log[c(6*,0)/2].
So for any y

* . €
e’ Pr{I(y) =1|A0=‘}260T=5>0’

-1
where the condition of y < y, is clear by the monotonicity of I(y). O

Proor oF LEMMA 3. Set

ar i
Gu(ii) = o log{ e, o) }

770,0(j) a=o*’

S, =8, — G(A,,i) and k(9) = (d2/d6%)log p(6, 0).
Following the recipe in Dembo and Karlin [(1991), Equations (35)—(36)],
differentiating successively (15) in 8 leads to

(182) E[(8y ~ w*L)e" Stmpn o( AL)Ag = i] = 0,
E|(8; - w*L) e Simpe o(A,)IA, = i

= E[(R(0*)L + Gy Ay, 1))eSom o( A,)Aq = i],
E[($y - w*L)"e"Stmpe o( A,)IA, = i

(18b)

- 6E[(gL - w*L)Z(k(e*)L + Gy(Ap,i))e Stmp o(AL)A, = i]
(19) 4 4E[(S, — w*L)(K(6*)L + Gy( Ay, i))e” Sempe o Ap)lAg = i]
+ E[(R'(0*)L + Gy(Ay,i))e® Semg o(AL)Ag = i]
= BE[(R(6*)L + Gy(Ay,i)) e Stmp o( AL)lAg = i.
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Since m, , is positive and analytic in 6, max; ;|G,(j,i)| < C, n = 1,2,4. This
yields [cf Dembo and Karlin (1991), Equatlons (38)-(43)]

(20) E|($, - w*L)'e"Simye o(AL)Ao = i| = 0(3?).
Applying the lower bound of Lemma 2 for i € ), results in

4 3
E|(8, - w*L)" exp(6* (S, = 3))myw o AI(y) = 1, Ag = i

= 0(¥%).

Since both S, — y and exp(6*(S, — YNmgx o(AL) are bounded when I(y) = 1,
we can reduce (21) to

M_i
y w*

(21)

C

2

(22) E <3

I(y) =1, A,=1i| <

for some constant C independent of i and all y large enough. O

ProoF OoF LEMMA 4. In a similar manner we derive the analog of Dembo
and Karlin [(1991), Equation (46)], namely

E[(W, - u*L)" exp(6*(S;, ~ 3))mpr o AU (Y) = 1, Ag =i

= 0(y?),

(23)

l t g ( ’ ) ‘ ’

W, = W, — Hy(AL,i),

ar « (T
RU@=Wm4ﬂi2}
t=0

’"'a*,t(./)

[so max; ;|H,(j,i)| <C, n =1,2,4]. We can now convert (23) [as done with

(21)] into
O L) [ED) 1
(L(y) “ ) ( y ) O(yz)'

As L(y) = y/K conditional on I(y) = 1, the proof of the lemma is complete. O

(24) E I(y)=1,A,=i|=

4. Examples. A complete accounting of the frequencies of the different
transitions for large scoring segments is given for two letter sequences gener-
ated as a Markov chain with scoring values of the form s,; = +1 or —1. In
this context consider a two-state Markov chain with scores X; = 1 or —1 and
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letter transition probability matrix

[ o l-a
1-8 B I

where @ = Pr{A; = 0|A, = 0} and B = Pr{A, = 1|A, = 1}. The transition ma-
trix that governs the score values has the form
P = Pijeo*s"j )
where 6* is determined as the unique positive root of the equation p(9) = 1
[p(8) being the spectral radius of the matrix ||p,;e®*4][.
The feasible scoring arrays (carrying negative mean, with some positive
probability for high scores) divide into three categories.

CATEGORY 1. X, depends only on one state, for example, X; = (—1)*
(591 = 811 = —1, 819 = Sgo = 1). Here B > a for negative mean.

CATEGORY 2. The score measures state transitions, for example, X, =
(—1)A*41 50 50, = 8;0= —1, S0 =8;; = 1; here 2> a/(1 — a) + B/(1 — B)
for negative mean.

CaTEGORY 3. The score looks for long runs of the same state, for example,
X, = (—1)*P404) with s,, =1 and —1 otherwise. Here, 8/(1 — ) + 2 >
a/(1 — a) for negative mean.

In all three categories (as well as in the general case), the strong law of
empirical distributions on high score segments is determined by the conjugate
Markov chain. This chain has transition matrix

L2 3]
1-6 1) ’
with y = ae® 0, § = Be?**1 and where w* and u* are first moments of its
stationary distribution.
Therefore, in order to specify the parameters of Theorems 1 and 2, one

needs to solve for 6*, the root of the equation p(6) = 1.
For the scoring examples mentioned above,

[} 1-— -0
PO = a ieﬁ)eo ( ﬁeoi)"e ] in Category 1,
) , L a)e-?
P® = a —a;)e“’ ( ﬁ‘:o)e ] in Category 2,
) , L — a)e-?
P® = a _a;)e_o ( Beoi)"e ] in Category 3.
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Letting ¢ = e’ solves the following equations

(25a) l=at+B¢tt—aB+1—-—a—B+aB for PP,
(25b) l1=(a+B)é—aB?+ (1 —a)(l-B)¢ 2 for PP,
(25c¢) l=at+B¢t—af+(1—a)(l-B)E?2 for PP.

Equation (25a), apart from the root £ = 1, has the relevant root &* =
VB/a > 1, so that the conjugate transition matrix (8 > «) in this case is

[ B (1—/3)]
1-a) a ’

where the @ and B parameters are interchanged compared to the original
transition matrix.

Equation (25b) has four roots, £, = 1, the trivial root [corresponding to
p(0) = 1], a negative irrelevant root and two positive roots. Rearranging (25b)
and factoring out (¢ — 1) we obtain

(26) g(i—l)(i—1)+ 1——§—A 1+LA -0,

a B &p ap
whered=1/a — 1,8 =1 /B — 1. From the two positive roots, the larger root
lies in the interval (max(d, B) + 1,%) and the smaller root is located in the
interval (min(&, B), Y&B). The larger root entails either ae® > 1 or Be’ > 1,
and accordingly this outcome is not relevant. The smaller positive root of (26)
produces the correct conjugate transition matrix:

[ a 1 — £*a

1-¢&B &
Equation (25¢) has three roots, one of them ¢ = 1. Of the remaining two
roots, one is negative and therefore irrelevant. The relevant root is

1
£+ = 52(1—a+a;3+ V(1 —a+ep)’ +4a(1-a)(1-B) ),
yielding the conjugate transition matrix
[ af* 1— af*
1-gse*  B/er |

5. Brownian motion and Poisson process with drift. Consider the
diffusion X(¢) = 0B(¢) — ut, u > 0, with {B(#)},, o being the standard Brown-
ian motion on R. Clearly X(¢) > —x a.s. as ¢ — o, but the maximal segmental
exceedance M(t) = max,_, ., (X() — X(v)) - © a.s. as t - « at the rate
of O(log t); see, for example, Karlin and Dembo (1992). The first passage times
T(y) = inf{¢t: M(¢) > y} are therefore a.s. finite. The composition during the
maximal segmental exceedance {u* to v*} such that M(¢) = X(v*) — X(u*) is
the same as in the first y exceedance {K(y) to T(y)} with X(T(y)) -
X(K(y) =y.
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The latter event can also be characterized as the limit as ¢ —» 0 of the law of
{X()}=3’ conditioned on X(L,(y)) =y and X(¢) € (—¢,y) for 0 < ¢t < L (y).

The conditioned process, designated X*(#), is also a diffusion with drift
u(x) = u coth(u(x + £)/0?) and the same variance o2. This is an application
of the general formula of Karlin and Taylor [(1981), page 263, Equation (9.5)].
The diffusion process X*(¢#) on the state space (—¢,y) has an entrance
boundary at —¢ and exit boundary at y.

Consider now the random variables

W(y) = j‘L ) ( ( ) )
0
with g(-) bounded and properly continuous. Form X*(ty)/y, a diffusion
process derived from X*(¢) by a time and scale change. The process X*(¢) has
drift u coth(u(yx + €)/0?) and variance o2 /y, so it converges to a determinis-
tic process with drift x, uniformly for x € [§,) as y — « (for any & > 0).
Then

—W( ) = [“Wy (X*(2)) dt.

Asy > wand ¢ > 0, —¢/y — 0 is the entrance boundary of X*(2). Therefore
as y > o, X*(t) > 6 for all ¢ > r and some small 9,7 > 0. In particular, for
g=1, W(y) =L.(y) and as y - », X*(t) > ut. The iid. theory readily
1mp11es that L .(y)/y - 1/u.

It follows that

1 LYY
lim lim —W. lim lim ¢ X*(t))dt
lim lim 7y We(o) = lim lim [ "% g (X (1))

= uf g(én) d¢ = f g(¢) dé.

Consider S(¢) = N(t) — at where N(¢) is a Poisson process of rate parame-
ter A and a > A is assumed. Let

M(u) = max [S(t+7) - S(2)]
O<t<u-—r7

be the maximal segmental value of the process S(¢) in the time interval [0, «].
Let [K,, T,] be any segment of maximal value, that is, T, > K, and

S(T,) - S(K,) = M(u).

We ascertain strong laws for the length of such segments L, = T, — K, and
therefore also for the number of jumps occurring in them. For th1s obJectlve
let 6* be the unique positive root of the equation

6a — A(e® — 1) = 0.

The strong law of L,/M(u) as u — « is the same as the strong law for
L. (y)/y (as ¢ » 0 and y — =), L_(y) being the first exit time of S(¢) from
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(=&, y) conditioned on the event &(y) {S(L (y)) > y}. Using the Wald analog
exponential martingale family P,(¢) = exp(ON(¢) — At(e® — 1)), it can be shown
that

(1e” - a)
—y——Ls(y) -1 as.asel0andy T,

reflecting the limiting behav10r of {N(#)}2<}’, conditional on &(y) as a Poisson
process of parameter Ae®”

The proof may either be directly implemented by exploiting the martingale
character of P,(¢), or via discretization of N(¢) as the sum of ¢n i.i.d. Poisson
random variables each with rate A /n and letting n — o,

An alternative method is to exploit the i.i.d. exponential waiting times
between unit increases. Since the maximal segment will start and end at a
positive jump, this segment score is based on partial sums of the i.i.d. variables
X; =1 — aW,, where W, are exponential with parameter A and the 1 reflects
the Poisson jump. We can apply the results of Dembo and Karhn (1991) for X,
with E[e® %] =1 equivalent to e " Elexp(—a8* W,)] or Ae® = 6*a + A. More-
over, multiplying by e®%: changes the original Poisson process to the conju-
gate Poisson process of rate Ae®"

The foregoing method can also be used to analyze count renewal processes
subject to linear negative drift.
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