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FINITE REVERSIBLE NEAREST PARTICLE SYSTEMS IN
INHOMOGENEOUS AND RANDOM ENVIRONMENTS'

By DaYUE CHEN AND THoOMAS M. LIGGETT

University of California, Los Angeles

In this article we propose and study finite reversible nearest particle
systems in inhomogeneous and random environments. Using the Dirichlet
principle and the ergodic theorem we prove that a finite reversible nearest
particle system in a random environment determined by an ii.d. sequence
A; survives if ElogA; > 0 and dies out if EA; < 1. Some discussion
is provided to show that both survival and extinction may happen when
Elogi; <0and EA; > 1.

1. Introduction. Reversible nearest particle systems are one-dimensional
spin systems as described below. Associate with each site x € Z! a stochastic
process m,(x) with state space {0, 1}. We say that there is a particle at x when
the number associated is 1 and we regard the site as vacant if the number
associated is 0. The particle at x dies (i.e., 1 — 0) at rate 1, independently of
the occupation of other sites. However, a particle is born to fill the vacancy at
site x (i.e.,, 0 — 1) at rate

Aﬁ(lx)ﬁ(rx)

1 T T

) B(l, 1)

where A is a positive parameter, B(-) is a family of positive numbers with
7-1B() =1 and

l,=x—max{y <x,n(y) =1},

2 r, = min{y > x, n(y) = 1} — x.

Let [, = « (respectively, r, = ) if there is no y such that n(y) = land y <x
(respectively, ¥ > x), and use a convention that B(») = 0, B(»)/B(x) = 1 and
B(x)B(») /B() = 0. Each individual 1,(x) is not Markovian, but the collection
n, = {nAx), x € Z"} is a Markov process on {0, 1}%. The process m, is called an
infinite nearest particle system if © n,(x) = « and is called a finite system if
¥ m{x) < o for all ¢. Infinite nearest particle systems were first introduced in
[10] and were constructed in [2]. The finite version was introduced later in [3].
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FINITE NEAREST PARTICLE SYSTEMS 153

Many articles have been written on this subject since then. It turned out to be

one of the few interacting particle systems that exhibit rich properties and are

fairly well understood. See Chapter VII of [4] for more detailed background.
Inspired by [9] and [6], we replace (1) by

| BUIA(r)

3
@ “B(l 1)
and call the corresponding spin system a reversible inhomogeneous nearest
particle system. The existence of such a spin system will be shown in Section 2
in the finite case. Instead of just one parameter A, an inhomogeneous nearest
particle system is parametrized by a sequence of {A,}. A special case is that A,
is periodic in x, which will be examined in Section 3. By letting A, be i.i.d.
random variables indexed by x € Z!, we obtain a nearest particle system in a
random environment. Here a random environment is a realization of {A,} and
is then fixed throughout all time. This is the main subject of this article and is
treated in Sections 5 and 6. When all A, are the same, (3) reduces to (1) and
we call the corresponding spin system, which is exactly the one we described in
the previous paragraph, a homogeneous reversible nearest particle system.

We briefly outline our goal and the way to achieve it before jumping into

detailed studies. The homogeneous model will serve as a guide throughout this
article. By identifying 7, with a finite set A, = {x|n(x) = 1}, we can view a
finite inhomogeneous nearest particle system as a set-valued process A,.
Similar to the homogeneous cases, the empty set & is the unique absorbing
state. We define the survival probability p# as the probability that the process,
starting from A, never hits the empty set; that is,

(4) pA =PA(A, + @, forall t > 0).

" When A = {x}, we use p* instead of p*. A little thought reveals that p* > 0 if
and only if p” > 0, for any x,y € Z'. So it is not ambiguous to say the system
survives if p* > 0 or dies out if p* = 0, without mention of the initial state. In
random environments, we say the system survives if Ep* > 0 and the system
dies out if Ep* = 0. The Dirichlet principle is used in computing the survival
probability of the periodic system, as we did in the homogeneous systems [5],
but cannot be applied directly to general inhomogeneous systems. Our strategy
is then to confine nearest particle systems first to a smaller sample space
Qy. On Qp we construct two auxiliary models, named Modified I and
Modified II, to which the Dirichlet principle is applied. Attractiveness is used
in comparisons of various models. Sufficient conditions both for survival and
for extinction are derived in Section 4 by passing from Q, to , and are
extended in Section 5 to nearest particle systems in random environments by
using the ergodic theorem. Some discussion is provided in Section 6 concerning
the lack of necessary and sufficient conditions for survival and for extinction.
In particular, we prove the following result for attractive systems.
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THEOREM. Suppose {A,, x € Z'} are i.i.d. and strictly positive and that
B%n) < B(n —1B(n + 1) forn > 2.

() If Elog A, > 0, the nearest particle system in a random environment
survives a.s. 4
(i) If Ex, < 1, the nearest particle system in a random environment dies
out a.s.
(iii) If Elog A, <0, EA, > 1, and A, > &€ > 0, there is a probability distri-
bution {B(n)} so that Ep® = 0 and there is another choice of {B(n)} so that
Ep®> 0.

Finally we would like to point out that analogues of the theorem are also
valid for infinite inhomogeneous reversible nearest particle systems, although
the proofs are entirely different [7].

2. General form of reversible measures. In this section we shall
determine and construct all finite inhomogeneous reversible nearest particle
systems. By the nature of nearest particle systems, the birth rate is deter-
mined completely by the location x of the newly born particle and distances
l,r to its nearest particles to the left and right. Denote the birth rate by
b(x,l,r). Let the death rate be 1 in accordance with homogeneous nearest
particle systems. We would like to know what kind of form the birth rate
b(x,l,r) must take if an inhomogeneous nearest particle system has a re-
versible measure in the sense of Definition 7.1.1 of [4].

Rephrase the question as follows. The state space Q is the set of all finite
subsets, including &, of Z!. For each A € (), there is a positive number 7(A)
called the reversible measure of A so that for any pair A # J, x & A,

(5) m(A)q(A, AU {x}) =m(A U {x})q(A U {x}, A),

where q(A, B) is the infinitesimal transition rate from A to B. Now the death

rate g(A U {x}, A) = 1. So the birth rate g(A, A U {x}) is simply the ratio of

the reversible measures of two relevant sets. In particular, say x; <x, <
© <x,, we have

w({xl,xz,x3}) — b(2e. e — 2o ) = ’”'({xz’xs})
W({xpxz}) = bl % 2%) 77'({xz}) '

w({xi, %o} )”T({xz, x3})

m({x1, Xg, X3}) = m({x2})
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and, in general,

’”'({xp xz})ﬂ({xz’ x3}) T Tr({xn—l’ xn})

(6) 7T({x1, XgyXgyeuey xn}) = W({xz})‘ﬂ'({xa}) .. W({xn——l})
Let m({x}) = A, and b(x, y) = w({x, y}) /m({x}Dw({y}), and rewrite (6) as -

m({x1, X3, X3, ..., %, })

=AgAy, ’\xnb(xl?x2)’ b(xg, xg) "+ + b(%,_1,%,).

(7)

This is the general form of the reversible measure of an inhomogeneous
nearest particle system.

Now we may reverse the order and define a Markov process A, on () as
follows. Choose two families of positive numbers A, and b(y, z) indexed by
x,y,2z € Z' such that b(y, z) = b(z, y). Assign to each finite subset of Z! a
positive number according to (7). Define the infinitesimal rate for A # & as

1, if B=AN\ {x},x €A,
(8) q(A, B) = {m(AU {y})/m(A), if B=AU{y},y¢A,
0, otherwise.

In addition, q(&, A) = 0 for all A € ). We call the corresponding process a
reversible inhomogeneous nearest particle system. When b(x, y) = B(lx — y|)
for some probability measure B(:) on Z*, B(n) > 0 for all n, then (7) and (8)

can be rewritten, assuming x; <x, <x3 < **+ <x,, as

(9) W({xvxz’xs’ cee 7xn}) = Axl’\xQ e Ax,, l__IZB(xL —%;_1),
1, if B=A\ {x},

(10)  q(A, B) = {A.B(L)B(r) /B, + 1), if B=AU {x},
0, otherwise,

where [, and r, are defined in (2).
To rule out possible explosions, we assume

(11) sup ), b(x,y)A, < .
x y

Considering the motion of the two extreme points of A,, we can apply
Corollary 15.44 of [1] to conclude that the inhomogeneous system will not blow
up in finite time. In the presence of (9) instead of (7), assumption (11) reduces
to sup, A, < «. In the periodic case of Section 3 or the random environments
of Section 5, assumption (11) either holds automatically or can be replaced. We
shall return to this point at the beginning of Sections 3 and 5.

3. The periodic case. Take two positive numbers A,, A, and a probabil-
ity density B(:) on Z* such that B(n) > 0 for all n. Let Ay, ,; = Ay, Ay, = A,
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1/a(2)

Survival region

1 1 /;(2)

Fic. 1. Survival region in the period 2 case.

Then construct an inhomogeneous nearest particle system according to (9) and
(10). Assumption (11) is always satisfied and A, is well defined. The following
cases are degenerate and can be viewed as homogeneous nearest particle
systems: (a) A; = 0, (b) A, =0, (c) A; = A,. A phase transition occurs along
each of these lines and the exact critical point is identified by Theorem 7.1.10
of [4] as (0,1/% B(2n)), (1/X B(2n),0) and (1, 1) respectively. The next theo-
rem, analogous to Theorem 7.1.10 of [4], completely distinguishes the survival
region from the extinction region in the A;-A, plane (see Figure 1). Let
ay=X%_,82n), & =L5_,B@2n —1) =1-a,and

Recall that p' and p2 are the survival probabilities, defined in (4), for the
systems with initial state {1} and {2}, respectively.

TuroreM 1. (i) The system survives if and only if at least two of & Ay, Ay

are larger than 1.
(i) In the neighborhood of the curve {(Ay, Ay)Ié = 1, min(Ay, A,) < 1},

Cy(& — 1) < Ap' + Agp% < Cyllog(¢ — )7, foré> 1.

Proor. Since both the reversible measure in (9) and the birth rate in (10)
are invariant under translation by an even number, we define A ~ B if Aisa
translation of B by 2k for some k. For later reference let () stand for the set
of equivalence classes of ( under this ~ . Consider the induced Markov
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process on the set ) and manipulate it in a similar way as in proving Theorem
7.1.10 of [4]. Letting w(&) = 1 and q(J,{0}) = Ay, q(T,{1}) = A,, we extend
the validity of (5) to the empty set. Then apply the Dirichlet principle (Theo-
rem 2.6.1 of [4]) to obtain

(12) '+ App® = inf ¥ 7w(4) T [A(A) - h(A\ ()],
S peh x€A

where

A= {hlh: 0 - [0,1], A(D) = 0, k(A) = h(B)

if A~B, lim inf h(A) = 1},

n—o [Al=n
and here [ A] stands for the number of even sites in A. Note that all terms on
the right-hand side of (12) are increasing in A; and in A,. One can compare it
with the homogeneous nearest particle system with parameter min(A,, A,) or
max(A;, Ay) to conclude that the system survives if A; > 1 and A, > 1, and dies
out if A; <1 and A, < 1. So we may assume A, <1 <A, without loss of

generality. Let

0 ~ /\1

R ISR S B I ST

[A]l=0 k=1 Qgrq

Ael
mi= ¥ w(A) = A1+ ad; + aaphd + @Al + o ]

[Al=1

A€

1+ (1= 2a)A; ]?
- 1—ay)
and

1

= 2 m(A) = A}

)

1+ (1- 2a2))\1r(a2 + (1= 2a,)A, \*7

[Al<F 1 — a5 1—ay)
Ac
k=23,4,....
Choose

0, if[A] =0,

[A] ’ N
h(A)={ Y 1/mm, /| Y, 1/mm,, ifl<[A]<N,

m=1 m=1

1, ) if[A] = N.
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Substitute it into (12) to get
Y w(A) X [h(A) = (AN (D]

Ae x€A

Aot Axp®

IA

N 1/km, )2

= rr( A ——L—"—

kZI[Ek Tr( )(Z ]./m'7Tm
1

N 1/km,’

When ¢ = a,(A, + Ap) + (1 — 2a)M A, < 1, Afa, + (1 — 2a9)M]1 <1 —
“2)‘1 Note that , is nonincreasing and N ll/kwk — o as N - . So p,
p%=0.

When £ = ay(A; + Ay) + (1 — 2a)A;A, > 1,

"2 g, + (1= 2a5)A, | ¢!
1 — az)

° 1
Lo

5 1141 2a))
k2 1 — aA

ay — afd; —ay(l — 2a,) N}

[1+ (1 - 2ay)2,]”

1 1 1 e a2/\1
OB L T oh, + (1= 2a5)A0, |||

Therefore,

[1+ (1~ 2a)A,]” -t

@z — afd; — ay(l — 2a;)\]

E-1
g
£ —aghy

This proves the second inequality of the second part of the theorem. For the
first inequality, consider

Apt + Agp® <

D, = {AlA € , [ A] = k, and the rightmost site of A is even}.

If x,,y, are even, y;,¥s,.--,¥—1 are odd and x; <xy <x3 < *** <X, <Yy
<y < -+ <y, the sets

A, = {xl,xz,x?,,...,xn,yl,yz,...,ys}, s=1,2,8,...,1—-1,

form an 1nterpolat10n sequence between A, = {x, ¥y, X3,...,%,} €D, and
Ay = {2y, X5, X3y ... X, Y1, V2s - - - » Y1} € Dy For any h e JZ’ let I,=0,
1 - azAl
Th = Z m(A) = Tk>
YA, (- 2a)h

o]
II

— ¥ w(A)h(A), k=1,2.3,....
kAeDk



FINITE NEAREST PARTICLE SYSTEMS 159

Then
Y 7(A) X [h(A) — k(AN {x})]?

Aec x€A

> Y w(A)[h(A) — h(A N {x})]? (where x is the rightmost sité of A)
Al

=2CL ¥ w(A)([h(A) - k(4 )]

k A,eD,
+[A(AL) = R(A)]* + - +[h(A) = h(A,)]’)

m(A)[R(A) - h(Ay)]?
l

=CY ¥

k A,eD,

[T a,cnm(AN[R(A,) — B(A))]]”
= C% EA,eD,JT(Az)l

™

>CY —————[I,-I,_,1
S T el

= Cl§ w1, — Ik—l]2 = C1[Z _1_]

k T
= ——-—§ ! C -
2§ aghy > Galé- D).

Since A is arbitrary, we conclude that A;p' + A,p? > Cy(¢ — 1) > 0. This
proves the second part of the theorem, which implies the first part. O

The periodic model with period 3 can be analyzed in the same way. Say
Agni1 = Ay Agpio=Ay, Az, =24y and ay = XBBn), oy =LBBnr + 1), a, =
Y B(3n + 2). Now the analogue of ¢ becomes

(@ +af + af = 3aga,a;) A d5h0 + (ayay — a2)(Adsy + Agdg + AgAy)
+ag(Ag + Ay +Ay).

The corresponding expression is more complicated if the period > 4. We do
have, however, a simple expression for the following special case.

ProposiTION 2. If a), =YL%_oB(sN+k)=1/N fork=10,1,2,...,N—1,
then the periodic model of period N survives if and only if (A + A, +
“r +Ay)/N > 1.

The proof is similar to that of Theorem 1.
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4. Comparisons of attractive models. In this section we consider
attractive models defined by (9), (10) with (11) and

B(n +1) B(n)
1 B(n) ~ B(n-1)

The corresponding Markov process is denoted by A, throughout this section.
Because the state space  is ‘“‘too big,” we shall first consider the nearest
particle system restricted to a ‘‘small”’ subset of (), to which we can apply the
Dirichlet principle and then use these results to study A,. The main theme of
this section is to compare A, with modified models.

Modified I. A Markov process A,y is constructed on the state space
Qy={A€QA=Bor An{-N,-N+1,...,N-1,N} # &}
according to
BuU {x}, atratew(BU {x})/m(B)ifx & B,
B> {B\{x}, atratelifx e Band B\ {x} € Qy,
B\ {x}, atrateOif x €Band B\ {x} & Qy.
This process is reversible with the same 7 defined in (9). Define
T =inf{t; A, = O}, p* = P¥(1 = x),
= inflt; A =2}, ok = PO(r = ).

By (13), both A, and A, are attractive and can be coupled so that A, C A,y
for all ¢ if initially Ay C Ayy. We conclude that

(14) py=p* forallx € {-N,...,N}.

In particular, a crude estimate corresponding to the case N = 0 gives two
practical criteria for extinction.

ProposiTioN 3. If £ (A, — "< wand T ,B(k)k% < », then p° = 0.
ProoF. The first assumption implies that IT, . 4A, is uniformly bounded

above for any A € Q. Define the diameter of a finite set A to be

|All = max x — min x.
x€A x€A

Define the following for each A € Q:

0, if | Al =0,
Al ) N

h(A) = kzll/k kzll/k, if1 <|All <N,
1,  if [|All> N.

Note that X 5,-,m(A) < Cn. By the Dirichlet principle applied to the Modified
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I process,

p<pl<s L T Y m(AU {z)[h(A U (x}) - (A)]®

n=0 ||All=n x&A

© ! N1\

OS> —%ZBU)P/(% H

n=0 jal-» (1 +1Al) et

ExaMpLE 4. If A, =1+ Clx| ™% a > 1 and T ,B(n)n® < «, then the corre-
sponding inhomogeneous system A, dies out.

PROPOSITION 5. The survival probability p® = 0 if

XX o Ehr 0 Aeprngr o 4, B(%) B(%2) -+ B(2,) <o,

n x; Xy X,
and

Z Z Z e Z /\_ylA_yl_y2 T /\_yl_y2" —ymB(yl)B(yZ) o ﬁ(ym) <

m Yy Y2 Ym

Proor. Use the partition D, = {A|A € Q,, |A| =n}, m, =L ocp 7(A).
Then the assumptions imply that ¥ ,m, = L ,cqm(A) < ». Therefore,
¥ ,1/nm, = «. Define the following for each A € Q:

0, if: |A| = O,
|Al N

h(A) = kzll/kwk kzll/kﬂ-k, if 1 <|A| <N,
L if |A| > N.

A routine argument similar to that used in Section 3 yields pY <
limy_ (EN¥1/km,)~! and the conclusion follows from (1.4). O
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On the other hand, it should not be surprising that as N — « the Modified I
model behaves very much like the original A,. In particular, the survival
probabilities will coincide in the limit as shown in the next lemma, which will
be used later.

LEMMA 6. limy _,, p% = p* foranyx € Z*.
Proor. Without loss of generality let us fix a point x and introduce
T, = inf{t; |A,| = n}, 0" = P¥(r, < ),
m, = inf{¢; 1A,5] = n}, 0% = P¥(r, < ).
Then 0" \ p* and o}, \ p§ as n — . There is an n such that " < p* + /2.
For that n, limy _,, 0% = 0". There is an N’ such that when N > N’, 0% < o"
+ &/2. Therefore,

€
pl’(,<Q'1§,<Q"+-2—5px+£.

In view of (14), we are done. O

Modified II. Choose A, B(n) as before. In what follows, x, <x, < -+ <
X, <x,,., < ' . Define a Markov process on ) according to
{20, %95, %1}, atrate 1,
{x,%0,...,%,} = {{xo,%1,...,%,,%,,4},
at rate m{xq, X1,..., %, 1 }/m{xg, X1,...,%,}.

This Markov process is called the Modified II process and is denoted by Ayj,. It
may be interpreted as mountain climbing. A mountaineer climbs an infinitely
high mountain, setting camps en route. From the highest camp he either
abandons the site and goes down to the second highest camp or climbs up to
set a higher camp. Then {x,} is (the height of) his base camp, {x,} is (the
height of) his present camp and {x,, x;, ..., x,} is (the heights of) camps he
keeps. The survival probability pf; of the process Ay, starting at {x} may be
interpreted as the chance the mountaineer ever climbs up the infinitely high
mountain.

For the sake of simplicity and convenience, let us agree to fix notation as
follows throughout the rest of this article. Let y;,5,"..,%,,... be positive
integers and x; =y, X3 =¥, + Y9, ..., X, =Y+ Yo+ - AV,

PROPOSITION 7.

: B(y)B(y2) *** B(yn
vz im DT - p P00

Y1 Y2 Yn xlez . Xk
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Proor. Apply the Dirichlet principle again. For any h € %, take ¢, as
small as we wish. Then there is an N, so that when |A| > N, h(A) > 1 —¢,.
So,

Y m(A)[h(A) - k(AN {x})]®

AeQ,

o

S OE o AOIBGD - BO A, e A,

1y;=1y,=1 yp=1

>

T Mz

X[h({xl,...,xn}) - h({xly-"’xn—l})]z

0

N
: 2 :B(yl)B(y2) :B(yN)k;l/\O/\xlez Axk

y1=1ys=1 yn=1

X[h({xy, ..., 2}) = A ({1, xk—l})]2

\Y
s
s

- h({xy,...,xx}) = R({OD]

y1=1y,=1 yn=1

%
N
N

Xp
(by Cauchy’s inequality)

P g—“" > B(y1)B(y2) - B(ywn)
>(l-&)° Y Y - % ):}ev=11/A0Axle2---)\

y1=1ys=1 yn=1

Xp

All numbers involved in the last line are positive. The sequence is monotone in
N and is bounded below by its limit, say ¢. We conclude that

Aophi = inf L m(4)[A(4) ~ h(AN {(xP]* = (1 —&)%.

Letting &, = 0, AppY = 6. O

Note that all possible states a Modified II process will visit is a small subset
of Q if the initial state is fixed. For example, if initially A, = {0}, the possible
states are {0, x,, x,,...,x,} for some positive integers n, x, x5, x3,...,x,. If
the initial state is {x}, —N < x < N, then we may replace 0 by Q, defined
previously. This leads to comparison of two modified models, and by the
Dirichlet principle we have the following.

ProposiTION 8. LN _ A 0% > TN Aot
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ProOOF. Some modifications are needed. With the change of 7m(J) = 1 and
q,{x;)=A,,i=—-N,—N+1,..., N, both the Modified I and Modified II
processes are reversible in the sense of (5), with respect to the same 7(-) given
in (9). Now the Modified I process can start from @, the probability g3, that it
never returns to & once it leaves < is related to the quantity appearing in the
statement and can be computed by applying the Dirichlet principle. Likewise,
the counterpart for the Modified II is also computed and is compared with the
terms of the Modified I. We have

N N
L Apk=d L A= inf ¥ w(A) T [k(4) - k(AN (5D)]
x=-N x=—-N €L AcQy xE€A
> higngeZ%v(A)[h(A) —h(AN {z))]?
N N
=% X A= AP,
x=-N x=—N

where
Oy = {AIA = {xq, %1, Xg5 .. ., %},

Xg <% <%, < -+ <x,,x0€[-N,N]} cQ. O

5. Random environments. From now on we consider nearest particle
systems in random environments. Let A, be i.i.d. random variables with finite
first moment, and let the birth rate be given by (10) with the reversible
measure given by (9). In addition we assume (13), so that the nearest particle
system is attractive. We first explain that (11) can be relaxed. We show that
the nearest particle system without death will not explode by considering the
motion of its edge. Conditioned on the X,’s, let x, be the Markov chain on the
positive integers that moves from m to m + n with probability B(rn)A,, . ,./K >
where u,, = L% _,8(n)A,, . ,. In order to show that a.s. explosions do not
occur, it suffices to show

1 1
+ oo +
Mo, MKy,

P +”'<°°).=O a.s.

sby Proposition 15.43 of [1]. This is equivalent to

1
—+ -+ <M| =0, forany M.

Moy, My

lim P

n—oo

n
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It is then enough to compute

E lmP|— + - + <M)
n—© l"’xl I-an
A, A A
= lmE,) e Rt B
n—o ¥i Mo /fol /.an_l
1 1
XB(y1)B(y2) - B(yn)I 4o <M
X x,

IA

M n
hm E/\Z /\xlez )‘an(yl)ﬂ(y2) B(yn)(_n_)

n—o
Yi

‘ MEM\"
- lin ¥ 808+ B~
Yi
MEX\"
= lim( ) =
n—-ow n

In the previous argument I( ) stands for the indicator function.

As functions of an i.i.d sequence {A,}, both sequences {p*} and {A, p*} are
also ergodic and stationary [1, Proposition 6.31]. It follows from ergodicity that
Ep* > 0 is equivalent to the fact that the nearest particle system in a random
environment survives a.s. We say the system survives if Ep* > 0 and the
system dies out if Ep* = 0.

LeEMMA 9.

llm chv=—NAxpx R T EJICV=—N)‘pr7
N-w Zi\,=—N)‘::c N-o z;{::\,=—NA::C

and Ep* > 0 if and only if the limit is positive.

ProoF. As we did in constructing the Modified I model, we may confine the
nearest particle system to

&

Qua={A€Q,A=Bor AN{N,N+1,..., M} + 2}

and the corresponding survival probability is denoted by p{y, »}- By attractive-
ness pfy p; < pic, p; if [A, B] 2 [C, D]. Furthermore, p{;._1, .., is a stationary
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ergodic sequence indexed by x and by the ergodic theorem

llm ZJIC\,= —N/\xpi’
N-oowx Ziv_ N/\

-N+L-1 N N -
Z:xc=—+N )‘x + EJc=N—L+1)‘ac Zac— —NAxp[xx L,x+L]

< lim + lim

N—o T _nAs N—oo DR
< lim Zx——NAxpfcx—L,x+L]’ Zﬁv; N
_ E/\OP[O—L,L]

By Lemma 6 and the dominated convergence theorem,

llnlE/\op[ LI = hm E)\opL = EXyp°.

Together we have proved

I L _nApN  Ergp® 5 LY A
im < = lim ————
N-wo L3 _NA, E), N-wo L _nh,

Combining this with the opposite inequality from (14), we get the desired
equality. O

THEOREM 10. If Elog A, > 0, then Ep* > 0.

Proor.

Exop° L3 _nAp
= lim ——— (by ergodicit
EA, AR TN (byergodicity)

N wAp%
lim —ﬁ—ﬁu (a.s. by Lemma 9)
N-o Zx——NA

N
L _NAPT

> 1\l/i—lPoo ——Z—x—_TN——— (by Proposition 8)
EpQiA
= ;:o 0 (by ergodicity)
1 B(yV)B(Y2) -~ B(yn)
> —F lim
Ll R T A, A

Edo Now 'S0 Xk

(by Proposition 7)
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= —l— IimEY Y - % B(%l)ﬁ(yz) o B(yw)
E)y N> P o zk=11/Axle2 ’\xk
(by dominated convergence theorem)
. 1
" Ea, z\lflinszg;ll/Al,\z S
1 1

E .
EX, k=11/A1Ag o A,

Since ElogA, > 0 implies ¥ ,1/A A, -+ A, < as.,, EAryp®> 0. Hence
Ep®> 0.0

THEOREM 11. IfEA, < 1, then Ep* = 0.

E Z Z Z i‘; AxleQ Ax"B(yl)B(yZ) ﬁ(yn)

=X X X - X EMEM, - EX, B(y1)B(3:) o B(Yn)
n=1y;=1y;=1 yn=1
=X (EM)"E X 0 X B)B(y:) - B(Y.)
n=1 y1=1yp=1 yn=1
= Y (Er)' <o
n=1
So almost surely for a given sequence ..., A_g, A_g, A_q, Ay, Ay, Ay, Ag,
A4,o--,
YL X o XA A B(y)B(Y)  B(y,) < .
n Y1 Y2 Yn
Similarly,

EEL T A d i A

m z; 2 Z,

X B(21)B(23) * - B(2,) <> as.
By Proposition 5, p° = 0 a.s. Hence Ep® = 0, and Ep* = 0 by stationarity. O

6. The intermediate case. The intermediate case EA > 1 and
E log A < 0 is more delicate than those treated in the previous section. In this
case, we show that both extinction and survival can occur for appropriate
choices of {B(n)}. It does not appear possible to find necessary and sufficient
conditions for survival. Nevertheless, when combined with Theorems 10 and
11, the results below can be regarded as saying that EA = 1 and ElogA =0
are both places where a change occurs in the answer to the question ‘“‘Does
survival occur for all, for some or for no choices of {8(n)}?”
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THEOREM 12. If Elog A < 0, there is a probability distribution {B(n)} so
that Ep°® = 0.

Proor. Take a large positive number M such that
1
Elog(A \% _ﬁ) =logy <0.

By truncating, we may assume that A~! < M. Choose ¢ > 0 so that y + & < 1.
Then by the strong law of large numbers there is a random constant C so that
A; =+ Ay < C(y + &)V for all N. Take a distribution B(r) such that

L [(y +e)M]"B(n) <M.
Regard x, =y, + y, + - +y, as a random walk on Z'. Then

S OY X A A B BOW)
n=1y,=1 yn=1
<Y T A AgMY Y By e B(n)

n=1N=zn x, =N

<CY Y (y+e)"MYN-"P(x,=N)
n=1Nzx>n
CY M™ Y (y+&)"MVP(x, =N)
1 N=n

n

™

CY M TE[(y+e)M]™

1

n

[ME[(y + &) M]™]" < o,
1

s

-c

n

and therefore the process dies out a.s. by Proposition 5. O
The next result is motivated by Proposition 2.

THEOREM 13. If EA > 1, EA2 <» and A > ¢ > 0, there is a probability
distribution {B(n)} so that Ep® > 0.

It suffices to show Ep% > 0, or equivalently, to show the Modified II is
transient. By Royden’s criterion [8] the Modified II is transient if there are real
numbers h, p with the following properties:

D) hyppg=—hg 4

(2) There is a set A’ such that X ghy g # 0and X gh, 5 =0 for A # A",

(8) L 4L gh?% p/as g <, with conventions 0/0 =0, x/0=o if x+0,
and a,p =0ap 4= A A, " A, BB - Bly,) if A=
{0,x,x,,...,x,_j} and B ={0,x,,x,,...,%,} and a, p = 0 otherwise.
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Let

Hy = Z B(k)An+k and /‘Ln,m= Z B(k)An+k+£
k=1 k=1

1- minﬁ(k))-
k=1
Set

Axlez . Ax"
hap= _hB,A = - B(y1)B(y2) =+ B(¥n)

/-"Oﬂ'xl o Xy_q
if
A={0,x,%x5,...,%,_,} and B ={0,x,,%,,...,%,}
and h, p = 0 otherwise. Then it is easy to verify properties 1 and 2 with
A = &. We will see that property 3 holds if for some N,

Axll\xQ ce AxN
(15) o=E } — B(y1) "+ B(yn) <1.

2
Yireoos IN /'LO’pr’ith T Hay—1,xy
The proof of (15) consists of three lemmas.

LEMMA 14. Suppose Uy, U, ... are independent random variables with the
uniform distribution on [0, 1]. Then

E))"
lim E (E)

=0.
noo TIP_[(1 - Uy -+ U)EA + U, -+ Uge]®

Define two families of random variables {V,,V,,...,V, },{W,,W,,..., W _} by

PV, = ) B(k), Vo= X B(k),...,V,, = X B(k)| =B(y1) " B(Ym)»
k=1 k=1 k=1
W, =1-UU, - U, m=123,....

Lemma 15. If B(k) = qp*~1, then (V,,V,,...,V, ) converges in distribution
to (W, W,,..., W _)asq — 0.

LEMMA 16. Assume A < M and EX? < ». The difference between
B(y1) - B(yw)
pvcoone TINA (D52 1B(R))EA + (1 = T3 ,8(k))e]*

and

B(y1) - B(yn)
Z E N x x 2
V1o IN ns=1[zks=1B(k)Ak +(1- z:/res=13(k))8]
is bounded by C(N)\ L ,B%(k) .

Proor oF THEOREM 13. Without lost of generality we truncate A so that
A < M. By Lemma 14 we may choose N so that

(E))Y
E > < —.
MY, [(1-U, - U)EX + Uy -+ U] 2
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Now fix N. There is a family {8(k) = qp*~!} such that
B3+ Bow) 3
vy TN B(R) BN + (1= Ti B(R))e]” 4

by Lemma 15. Then (15) is true by Lemma 16 if we take ¢ small enough.
Consequently,

o Axlez cen /\xl
EY Y 5= BO) B

I=1y4,..., ¥ l"‘OlJ'xl T lu’xl_l

(16) <|TE T B (y1) " B(%)

2 2 B
=1 y5,..., v R0, F ey, x, xX1-1,%

X[1+ o+ &2+ -]
(e ¢]

<
So
AgA, ot A,
(17) Y Y s —5B() B <= as.
L y1,e00, kY] Ko %, X1

By Royden’s criterion [8], p;; > 0 a.s. O

Proor oF LEmMMA 14. Let 7 = min{m; U,U, -+ U, <1 -1/ VEA}. Take
N to be the integer part of EA /g2

P(r>n)=P(UU, --- U,>1-1/VEX)

L R B S
S(\/ﬂ—l)(U)_(\/ﬁ—l) (N+1)"

Therefore,

%) -5 (2] re-m <) T (ina)

is finite by the choice of N. By the dominated convergence theorem,

(EV)"
lim E s =
noe TIioa[(L-Uy - U)Ex + Uy -+ Upe]

0. O

Proor oF LEMmA 15. Let G(n) = L7_,B8(k), g(c)A= max{n; G(n) < ¢},
F,(cy,¢9,...,¢,) =P(W, <¢;,Wy<cy,...,W, <c,),
Z(c1,¢95...,¢,) =P(Vy<¢;,Vy<0¢y,...,V, <c,)
= X X X B)B() Bya)-

xy<g(cy) x3<g(cy) x,<g(c,)
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We shall prove %(cy,cy,...,c,) = Flcy,¢y,...,¢,) for any {c;,c,,...,c,}

with ¢; <c, < -+ <c¢, by induction on n. This is true when n = 1. For
n>1,
C1 [Co Cn1Cp, — U,
F(cy,C9,...,C,) = ———dF,_(uq,Ugy...,U,_1),
n( 1> %2 n) /;) '/;41 ’/;t,l_z 1 -u,_; n 1( 1 2 n 1)
F(cneornne) = L L L By)B(y2) o B(a)
x;<8(cy) xg<g(cy) x,<g(c,)
glcy) gleg)—x; glc,_1)—%,_9 8(c,)—2,_,
-Y ¥ - ¥ %
y1=1 y2=1 yn—1=1 yn=1
XB(¥.)B(y1)B(¥2) *** B(¥n-1)
gley) gleg)—x, glen_D)=%n 2 1 &len)
- ¥ - % )

Xn-1
y1=1 yp=1 Yn-1=1 p Yn=%p-1+1

XB(¥n)B(y1)B(¥2) ** B(Yn-1)
glcy) gleg)—x, 8len-D=%n-2c — G(x,_,)

-y ¥ - ¥ T

y1=1 yz=1 Yn-1=1

XB(y1)B(¥2) ~* B(¥n-1)

C1 Co Cp1Cp, — U,
f f f —————dZ,_(u,ugy... Uy q).
0 “u,

Up-2 1 - un—l

We conclude that %(cy,cy,...,c,) = Flcy, ¢y, ...,¢,) from the induction
hypothesis. O

Proor oF LEMMA 16. Let &7, be
r B : B(y) " B(yNO)o i
BATEREN IN I—Is=1[(2ks=1B(k))E)‘ + Ezk=xs+1B(k)]

-1

XTI [SEL1B(R)AL + eZ5or B(B)] )
Then ‘
B B(y1) - B(Yw)
e T [(Z5218(R)) EX + 2(1 = Ti,B(R))]*

E B(yl) - B(ow)
o TN T2, B(R)A, +8(1 — Tim,B(k))]”
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B(y1) - B(yn)ZF.B(k)(A, — EX)
,,,,, T _1[(Z518(R))EX + (1 - 5,B(k))]”
o TEB(R)(Ag + BA) +26(1 — z;:;lﬁ(k))}
M, [Z5,8(R)A, + (1 — T3, 8(R))]” |

X 24 2
(4~ ol <E T B(yl)-"ﬁ(yN)(kzlﬁ(k)m—EA)) o
Yis--sIN =

4M
= B\~ BT B(n) g

2 N 2 24M2
(o — Hy) < NY () — ;) < N?—5 var(A) ¥ B%(n). o

2
=1 €

Whereas Theorems 12 and 13 deal with the two extremes of the distribution
B(n), the next proposition provides an example of nonextreme B(n). Once
again, as in Lemma 15 as well as Theorem 13, the geometric distribution
seems to be indispensable.

ProposiTioN 17. If B(n) =pq"™ ', 1 >p >0, g=1—-p and
E log(pA, + q) < 0, then p* =0 a.s.

Proor. Let %, yq,...,y, run over positive integers, x, =y, +y, + - +y,
and
mi= 1 X B By, Ay,
k x,=1
Then
Trl++1= Z Z B(yl) B(yk)Axl Axk
ko oxp=l+1
l
=N 2 T B(L+1-s)
s=1
i1 B(l+1-5)
=A FB(1) + Bl —8)————=
1+1| Ty ﬁ( ) sglﬂ-s B( 3) B(l _ S)
q
=Agpt ');77;
Aivr

= (pA +q) T
l
l .
=AM I—Il(p)\i +q)
i

I+1
<—TI(pr;+a).
pi=1
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When E log(pA, + ¢) < 0, L7/ < L(1/p)1iHpA; + q) < = a.s. This verifies
the first half of the assumption of Proposition 5, and the same argument
works for the other half. Then by Proposition 5, p* = 0 a.s. O
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