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We consider a continuous time branching random walk on the finite set
{1,2,..., N} with totally symmetric diffusion jumps and some site-depen-
dent i.i.d. random birth rates which are unbounded. We study this process
as the time ¢ and the space size N tend to infinity simultaneously. In the
classical law of large numbers setup for spatial branching models, the
growth of the population obeys an exponential limit law due to the localiza-
tion of the overwhelming portion of particles in the record point of the
medium. This phenomenon is analyzed further: The historical path (in
space) of a typical particle picked at time ¢ (selection) is of a rather simple
and special nature and becomes in the limit singular (in distribution) to the
path of the underlying mean field random walk. In general, the properties
of the typical path depend on the relation in which ¢ and N tend to
infinity.

1. Introduction.

1.A. Motivation and background. In the last years quite some work has
been done studying infinite particle systems evolving in random media (en-
vironments). Many new phenomena have been discovered. Among them are
new types of phase transitions: see Bramson, Durrett and Schonmann (1991),
Greven (1985, 1986), Greven and den Hollander (1992), Baillon, Clemént,
Greven and den Hollander (1990); or changes in critical dimensions: see
Dawson and Fleischmann (1983, 1985); or changes in transport properties of
particle systems: see Greven (1990); or new clustering phenomena: see
Ferreira (1988), Dawson and Fleischmann (1991); or changes in the structure
of the set of extremal invariant measures: see Liggett (1991).

For other models it is shown that results hold comparable with classical
ones; see, for instance, Dawson, Fleischmann and Gorostiza (1989).

If we run a particle system of the branching type in a random medium, we
may observe that the particles start clumping and are as a rule located in a
very small subset of the space. This phenomenon of localization of the
branching system caused by the random medium involving, in particular,
unbounded birth rates was studied on the level of the mean value equation
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(concerning the expected number of particles) in Gartner and Molchanov
(1990) and in Fleischmann and Molchanov (1990). In the latter case even a
total localization (of the normalized mean of the population) in the record
point of the random medium was exhibited.

In Greven and den Hollander (1992) it was found that in a branching
process with bounded random birth rates where the underlying walk has a
sufficiently small drift, a particle present at time ¢ originates from a particle at
time 0, which is only within distance o(#) (localization). Furthermore, the
typical path of a particle present at time ¢ is of a very special type. Only
particles whose ancestors traveled in a specific way through the medium will
have a substantial number of descendants at time ¢. Here the term specific
refers to properties of the process of local times created by the typical path; see
also Theorem 3 in Baillon, Clemént, Greven and den Hollander (1990).

The fact that the typical path is of a very special nature reflects a selection
mechanism corresponding to a survival of the fittest principle. Only particles
whose descendants stay at the good places have the chance of making up a
substantial portion of the population as time tends to infinity.

Both phenomena, localization and selection, seem to be new in the mathe-
matical literature. They occur in models with a (randomly) spatially varying
evolution mechanism and are not present in the classical spatially homoge-
neous models.

The purpose of the present paper is to contribute first of all to a better
understanding of localization and selection and its impact on the normalized
population growth, and second, to clarify the role of the unboundedness of the
random birth rates.

Ideally, one would like to treat models not necessarily of a mean field
character. But as a first step it seems to be reasonable to exploit this simplifi-
cation, to keep the arguments transparent. Compare also with the role of the
Curie-Weiss model in statistical mechanics; see, for instance, Ellis (1985).

1.B. The model. Here we shall introduce the model in an informal way;
for a rigorous approach, see sections 2.A and 2.B below.

For a given (large) natural number N > 1, let particles move and split in the
finite space I :={1,2,..., N} according to the following rules.

Each particle may jump with rate « > 0 to a site z € I, chosen at random,
that is, according to the uniform distribution on I, (mean field random walk,
totally symmetric random walk). In particular, the new position is chosen
independently from the present one. Additionally, each particle situated at
y € I is replaced with rate £y(y) > 0 by two particles (binary fission) both
located at the same site y. '

This means that the birth rate £,(y) possibly changes from site to site
(varying medium). Moreover, these birth rates will be realized from indepen-
" dent identically distributed (i.i.d.) random variables &,,(1),..., £éy(N) (random
medium). Here we will focus on the case of exponentially distributed variables.
(For a discussion of this assumption, see Section 1.D below.)
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We would like to stress that always first the random medium ¢y =
[éx(D),. .., En(N)] is realized and then given ¢ we define, via the evolu-
tion rules described above, a continuous-time Markov branching process
{®4(¢," |£y); t = 0} with initial state . Here ®¥ (¢, yl¢y) denotes the number
of particles at time ¢ at site y.

This process ®¥(-|£y) we call mean field branching random walk-in the
random medium &,. We mention that for simplicity of notation we will often
drop the dependence on ¢y, for instance, we write ®¥ instead of ®¥(-[|¢y), if
no confusion is possible. Also, we write ®3; if the process starts with exactly
one particle situated at y.

1.C. Results. The paper is devoted to the following four questions. What
is the approximate size of the total population TN, ®¥4 (¢, zl¢y) = @4 (¢, Iylén)
at time ¢? At which points will the main portion of the total population be
located? From which initial particles will this population mainly be created?
What path will a typical particle picked at time ¢ have followed during the time
interval [0, ¢] in space? To answer those questions, we let £ and N both tend to
infinity (rescaling of time and space), formally simply expressed by ¢, N — .

~ (I) EXPONENTIAL LIMIT LAW; LOCALIZATION. If we only look for the expected
number of particles (given ¢, ), then we can use results from Fleischmann and
Molchanov (1990). There the exact asymptotics of these expectations as
t, N > » were obtained. Moreover, it was shown that there is a complete
localization in the record point y, , of the random medium, that is, at that site
y where £y(y) takes its maximum.

In this paper we shall try to investigate in more detail the meaning and
extent of this localization phenomenon. If we assume for the moment that
&n(y) does not depend on y (constant medium), then it can be shown that
®L(¢, Iy) /H{Pr (¢, I)} converges stochastically to 1 as ¢, N — o, that is, to its
expectation (law of large numbers). Here 1(y) = 1 refers to the population
which has exactly one particle at each site. Such a law of large numbers (LLN)
is expected to remain valid also for a bounded random medium if we replace
the expectation by expectation conditioned with respect to the medium; com-
pare the LLN in Greven (1986).

One effect of localization in our model with unboundedly varying birth
rates is now that this law of large numbers setup leads to an exponential limit
law which is similar to the situation in a classical (i.e., without spatial motion)
supercritical branching process, namely for the Yule process (pure birth pro-
cess).

Recall that y; y denotes the record point of the medium ¢, and that
* ¢, N > « means that both ¢ and N tend to infinity. Let —, denote conver-
gence in distribution and let W be an exponentially distributed random
variable with mean 1.
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TuEOREM 1 (Exponential limit law; localization). For almost all ¢ we have

(1.1) q)zlv(t, IN,fN)/IE{(DI{J(t’IN)lfN} t,N—g—m: W’
(1.2) X (¢, 1, nléw) /E{OY (2, I)lén) — W,
(1.3) DY (t, Inlén) /E{O (£, Ty)lén} o W

Consequently, the complete localization of the means mentioned above implies
the corresponding effects for the particle system itself: The system at time ¢
essentially consists of particles situated at the record point y, » and originated
from the particle also placed at y, .

REMARK 1.4. Note that E{®} (¢, Iy)|éy} grows superexponentially (under ¢,
N — ) due to the (a.s) unboundedness of the birth rates £5(y) (as N — );
see Fleischmann and Molchanov (1990), Remark 5.14. Compare this also with
the bounded case in Greven and den Hollander (1992). The position of y, » in
I, where the localization takes place is of course uniformly distributed.

For some speed regions, that is, relations in which ¢ and N tend to infinity,
we will determine, which historical path a typical particle taken from ®2(z,-
|€x) will follow in space. Before describing it, we will first point out heuristi-
cally how this is related to the occurrence of the exponentially distributed
variable W in Theorem 1 (instead of a nonrandom limit 1).

We start with the simplest relation in which ¢ and N tend to infinity,
namely such that ¢ = o(N). Here a typical particle starts at time 0 at the
record point y,  and does not make any diffusion jump until time ¢. The
process started with exactly one particle placed at y, 5 and conditioned on
the event that no diffusion jump occurs is a (nonspatial) pure birth process
with birth rate £y(y, ). For this Yule process with parameter £5(y, y), it is
simple to see by explicit calculation that in the limit # — « an exponentially
distributed limit variable W (with parameter 1) occurs, uniformly in N. This
explains the occurrence of W in the case of the speed region ¢ = o(N).

If ¢ now has a faster growth than o(N), then additionally certain diffusion
jumps occur in a typical path. On the other hand, we can write ¢ = s + (¢ — s)
with s = o(N). By the reasons just explained, at time s we have about
WE{®) (s, I)|£y} many particles situated in y; y. By the Markov and branch-
ing property, in the remaining time ¢ — s, all these particles give rise to i.i.d.
branching processes starting with exactly one particle at y, ,. Then, roughly
speaking, for those family sizes, the LLN for i.i.d. random variables holds.
Thus, the limit variable W reflects only the events occurring already during
the time interval [0, o(N)]. Therefore it is not surprising that for all speed
regions, we get the same exponential limit law in Theorem 1.

" (II) TYPICAL PATH; SELECTION. Now we turn more seriously to our second
question, which is concerned with the path of a typical particle. The latter is
simply a particle taken at random from the population at time ¢{. For a
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rigorous definition of a typical path, we use the construction of the whole
historical process with the complete family tree. This object is widely studied
in mathematical literature; see, for instance, Harris (1963), Chapter VI. We
shall not indulge in carrying out the details of such constructions.

Label every particle which is present at time ¢ by i = 1,..., ®}(, Iyl&y)
(the order of numbering will not play any role below). With the ith particle, we
can associate a spatial path Z}(¢) == {Z}(t, s); s € [0, t]} which says that the
ancestor of particle i, which is alive at time s is at position Zj(¢, s). This
object is by construction a cadlag function, that is, it belongs to the space
DI[0, ¢], Iy] of maps from [0, ¢] to I, which are right continuous and have left
limits.

Consider for a given realization of the historical process the empirical
distribution

_, OV INlEN)
(1'5) [CDZ{,(t, IN,fN)] Z 5z,i,(t)
i=1
of a path, that is, the path distribution of a particle taken at random at time .
Now integrate this object (1.5) over the law of the historical process (for a fixed
medium ¢,) to obtain a distribution defined on the Borel o-field of D[[0, ¢], I ]
and denoted by 9y (¢," [£x).

DeriNiTION 1.6. The typical path Zy(¢t) = {Z\(¢,s); s €[0,t]} is a
D[[0, ¢], I ]-valued random variable with law (¢, [£5).

Our second main result can be formulated as follows. Here a < b means
that a/b — 0 holds, whereas a ~ b stands for a/b — 1.

THEOREM 2 (Typical path; selection). For almost all ¢ we have the follow-
ing situation:
(a) For every relation in which t and N tend to infinity:

(1.7) P(Zy(t,0) = Zy(t,t) = y1 nlén} =2 1
_1 [t 9
(1.8) £t [ ds{Z(t,5) =yin) Tz L

(b) The finer structure of the typical path depends on the relation in which t
and N tend to infinity.
Ift < N log N, then

(1.9) P{Zy(t,5) = y1,n foralls € [0,t]l¢n} TN

If't ~ cN log N for some constant ¢ > 0, then

(1.10)  P{in Zy(¢) there occurs a jump from x to y|éy}

> U,
t,N—>o
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provided that x,y € Iy \ {y, n} and x + y. But

P{Zy(t) makes at least one jump away from y; y|éx}

(1.11)

_t,—N:; 1- exp[—cpkz].

Consequently, in all speed regions, the typical particle starts and ends up at
the record point y, y, and the fraction of time it spends outside y, 5 tends to
0 in distribution. Under ¢ << N log N, the typical particle has a path which
stays all its time at y, . In the regime ¢ ~ cN log N, a typical particle will
also visit other points besides y; 5. But if it jumps from y, 5 to a site
Yy # ¥, n, then after that it is not allowed to jump to any other site than y,; y.

REMARK 1.12. The results in Theorem 2(a) are related in spirit to Theorem
3 in Baillon, Clemént, Greven and den Hollander (1990), since we can conclude
that the law of the typical path, respectively, various functionals of this path,
become in the limit singular to the corresponding laws (properly rescaled) of
the underlying mean field random walk.

~ 1.D. Remarks on the role of the exponential distribution. The results
presented above naturally raise the question whether the restriction to expo-
nentially distributed birth rates is essential to obtain the localization and
selection phenomena.

A comparison with the model in Greven and den Hollander (1992) where
one has bounded birth rates shows that, of course, there is a big difference: As
discussed in Section 1.A, in the bounded case the localization is much weaker.
But even if the ¢y (y) are unbounded (above), a picture different from Theorem
2 may occur. For example, let the birth rates £,(y) be distributed with a
density proportional to exp[—72], r > 0. Then with the methods from Section
5 we can easily see that also in the simplest speed region ¢ = o(N), a typical
particle will not necessarily stick completely to the record point y,  of the
random medium ¢, since the difference between the two highest peaks of the
medium will become arbitrarily small as N — .

On the other hand, one expects that distributions with still fatter tails than
the exponential distribution should localize at least as strongly as expressed in
Theorem 2. This however is slightly more subtle than one might expect at first
sight, and therefore we decided to focus on the exponential case; see also
Astrauskas and Molchanov (1991).

1.E. Organization. The paper is organized as follows: We start in Section
2 with constructing the medium, the process and analyzing properties of the
generating function and moments. Section 3 is devoted to properties of the
mean field operator in a random potential, in particular to asymptotic proper-
ties as N — «. In Section 4 we prove the exponential limit law (Theorem 1)
and in Section 5 the assertions on the typical path of a particle (Theorem 2).
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2. Construction of the process and basic tools.

2.A. The random medium. For a fixed constant p > 0, we consider the
exponential distribution function F.(r) =1 —e **, r > 0.

Fix N> 1. Let &y :=1[&4(),...,Ey(N)] be a vector with independent
components distributed with F,. With probability 1, the sites y in I, may be
strictly ordered by means of the order statistics of &,. In fact, we introduce
Yk~ and £x y as follows:

(2.1) En(yi,n) = €un> o > én(yn,n) = €N N

Moreover, we use the convention ¢, y = .

By a classical property of the exponential distribution, the increments
{8 — €m+1,n3 1 <M <N} are independent and &y, y — £p41 v has the
exponential distribution function F,,, which is independent of N [see, for
instance, Feller (1966), Section 1.6].

From now on we suppose that all random quantities appearing are defined
on a common probability space [, F, P]: We construct our medium in such a
way that the series scheme {¢y; N = 1,2,...} = ¢ has the property that for
fixed M > 1 the increments & y — €344,y are the same for all N > M.
According to the previous remark this is achieved as follows. For each N > 1,
the order statistics (2.1) can be realized by [n, + -+ +7n, ..., Tn_1 + TN, TN ]
with 7;,m,,... independent and where 7y has distribution function Fy,
K > 1. Then from the order statistics a version of the random medium ¢y is
constructed.

This construction implies the following.

LEmMA 2.2. With probability 1,

N
)y (51,N“§M,N)_1 ~pN/log N as N — .
M=2

Proor. First of all, note that
EEn—éun=mt+ Ay ~p tlogM as.as M- x,

[see Fleischmann and Molchanov (1990) formula line (4.8)]. Since the loga-
rithm is a monotone function, the sum in the lemma can be bounded above
and below by integrals. But by I’Hdpital’s rule,

des(logs)_l/(N/log N)~1 as N - o,

e

and we are done. O

" 2.B. Definition of the process for given medium. We start by explaining
some terminology. Fix N > 1. Let ¢ belong to Z% == {0,1,2,...}". We inter-
pret ¢ as a population: ¢(y) describes the number of particles situated at y. In
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particular, ¢ = 8, (Kronecker symbol) will refer to the population consisting of
exactly one particle at site y.
For each fixed ¢y, we introduce a generator Gy ,, defined by

N N
Gy, 8(9) =K leo(y) N7t Zlg(<0 +6,-8,) —g(e)|
y= z=

N
+ ¥1¢(y)§N(y)[g(¢ +8,) —&(¢)]

where g is any function on Z%.

For every fixed £y, there exists a family of continuous time Markov
processes ®f = ®f(-|¢y) with state space Z%, generator Gy ,,, initial state
¢ € Z% and right continuous trajectories [cf. Ethier and Kurtz (1986), Chapter
4], which we call mean field branching random walk in the random medium
én-

In fact, the first term in the definition of Gy ,, refers to a mean field
diffusion jump from y to z, whereas the second one represents a binary
splitting of a particle situated at y. Of course, for fixed &5, these processes
have the branching property:

q)lll\,/-'—lp =2 q)l'l\ll + q)lll\ll’ b, ¥ e Zlf’

where ®¥ and ®Y are independent.

As remarked in Section 1.C, in order to define the typical path we used the
richer structure of the historical process. But to carry out the proofs of the
announced results, we finally operate only in the semigroup context just
introduced.

ConveENTION. The conditional expectation of quantities with respect to the
branching process ®§(-|¢y) given £y will be denoted by Ef{-|¢x}. In the case
¥ = 8, we simply write ®% and E {|£y}. We also omit the upper index (¢ or y)
if the initial state is obvious from the context.

2.C. The transition probability generating functions and moments. For
branching processes the most convenient way to study the law of the process
at a time ¢ is via generating functions and moment equations. This route will
be taken here, too. For future reference, in this section we collect the neces-
sary facts on the equations governing the evolution of generating functions
and moments.

We will use the following notation:

N
! 0° = T1[0(2)]*®, 6e[0,1]", 0 ez,
' z=1

We also need the mean field operator Ay acting on functions f on Iy as
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follows:

N
Anf(y) =N"' X f(2) = f(y), yely.
z=1

LEMMA 2.3.  For fixed 6 € [0, 1]V and for given &y, the transition probabil-
ity generating functions

Ef0%%®ley} = upn(t, 910, &y), >0,y €1y,
give the unique solution of the equation
(2.4) u=«xAyu —éyu(l —u)
(the shorthand notation for the vector-valued differential equation

)
S 4(6y) = kAyu(t,y) — et -u(t,n)], t20,yely)
with initial condition u(0,y) = 6(y), y € I.

Proor. Given &y, let Ty := {Ty(¢); ¢t > 0} denote the semigroup corre-
sponding to the generator Gy ., . Then for g,(¢) := 6%,
) uy(t,¥10,éy) = Tn(t)ge(0,).
The branching property implies
TN(t)go(zay) = u?v(t, yloa fN)
Hence, inserting this in the right-hand side of

a
a_tTN(t) = GN,§NTN(t)’

we see that the function u , satisfies equation (2.4). The initial condition and
uniqueness are obvious since N is fixed at this point. O

An important tool in studying the mean number of particles is the linear
equation appearing in the following lemma.
LEmMMA 2.5. Fix éy and z € Iy. The (conditional) expectations
E{Pn(t, 2)lEn} = my(2, ylz, én), t>0,yely,
are the unique solution of the equation
(2.6) m=«xAym + éym

with initial condition m(0, - ) = §,.

PrROOF. Let again 6 € [0,1]" and recall that 1(y) = 1. We have

a
mN(t7y|z’ §N) = IEy{(DN(t,z)IfN} = 60(2) uN(t7y|0’ gN) .
=1
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If we differentiate (2.4) with respect to 6(z), we see that the functions
mp(+, « |z, &) fulfill the equation (2.6) with initial condition m(0,y) = 6,(y),
since

(2.7 un(t, 10, éx)p-1 = 1.

Due to the fact that N is fixed here, the uniqueness is trivial. O
Equation (2.6) can be used to derive the following symmetry property.

LemMmA 2.8. For fixed £y,
[Eyq){N(t,z)IfN} = [Ez{(DN(t’y)lgN}’ t=20,y,2z€ly.

Proor. By Lemma 2.5, the expectations fulfill (2.6). Therefore we may
represent them with the help of the Feynman-Kac formula:

9l

Here w? := {w?; s > 0} is a mean field random walk in I, that is, a Markov
process in I, with generator xAy, starting in y € I,. If in the integral in
- (2.9), we use the substitution s — ¢ — s, the symmetry of that random walk
implies our claim, since a path and the reversed path have the same probabil-
ity. O

29)  ma(tke. ) = Efa. (7)o [ ds )|

From Lemmas 2.5 and 2.8, together with linearity, we get by summation
immediately the following duality relation:

LemmA 2.10. For fixed &y,
[Ey{q)N(t’ IN)IfN} = El{¢N(t’y)I§N}’ t>0,y€ly.

In order to see whether the expected number of particles gives sufficient
information on the number of particles themselves, we shall use later on as
usual second moments.

To get an equation for the second factorial moment of ®} (¢, Iyl¢y), we
start with the generating function of ®3(¢, Iyléy), which by Lemma 2.3
satisfies equation (2.4) with initial condition (0, y) = 6, 8 € [0, 1]. Differenti-
ate twice with respect to 6, set & = 1 and use (2.7) to obtain the following:

LEmMa 2.11.  Fix &y. The second factorial moments
EA®N(t, In) [Py (2, Iy) — 1]|én) = vn(t yléN), £20,y €1y,
‘are the unique solution of the equation

0 = kAyv + Egv + 26y miy (- léy)
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with initial condition v(0,y) = 0, where (similarly as in the notation of
Lemma 2.5),

my(t,ylén) = E(Pn(t, Iy)|én},  t20,y€ly.

3. The mean field operator with random potential. In this section
we derive asymptotics for the largest eigenvalue of the mean field operator
with exponentially distributed random potential and deduce from there bounds
for normalized first and second moments of the number of particles in y, .

3.A. Preparations. We start by recalling in Lemma 3.1 and 3.2 some
results from Fleischmann and Molchanov (1990), in particular Proposition 3.9
therein. Given ¢,, consider the symmetric operator (i.e., N X N-matrix)

Hy . =«xAy+ &y

(mean field operator with random potential).

Let Ay x> '+ > Ay n denote the eigenvalues of H ), Ex which are strictly
ordered with probability 1. For an asymptotic analysis, it is "useful to introduce
ey, v and wy n for 1 < M < N defined by

Aun=éun—KteEy N
and
. _ -1
oy, n(y) =«N 1[9M,N +éun— )], yely.

In the case x = 0, use the convention w,, y = 8y v

LEmMA 3.1. Let 1 <M < N. The following assertions hold with probabil-
ity 1:

(@ 0<ey y<éy_1n— €un if «k>0and gy y = 0 otherwise.

(b) wy, i is an eigenfunction of Hy . associated with the eigenvalue Ay y
and normalized such that TN oy v() = 1.

© Z¥_llog yI7* = N.

(Here || - || denotes the Euclidean norm in RY.)
The next lemma concerns the asymptotic behaviour of the eigenfunctions.
In particular, they are localized.

LemMa 3.2. Fix K > 1. The following assertions hold with probability 1:
(@) wg, vk, n) > 1and log yll > 1as N - o,
(b)) wpy Nk x) = OQA/N) as N — » uniformly in M + K.

3.B. Asymptotics for the largest eigenvalue of Hy . . This section is
devoted to an asymptotic expansion of the largest eigenvalue A; y of Hy . .

r

ProposiTION 3.3. With probability 1, as N — o,
M y=¢& n—k+k/N+pk?/Nlog N+o(1/Nlog N).
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Proor. Because of Lemma 3.1(a) we may suppose that « > 0. Write
M y=§& n—Kk+K/N+yy.
Note that k/N + yy = &; 5 > 0. By the defining equation for w, y and Lemma
3.2(a),
(3.4) e, n~k/N as N> o,

Furthermore, sum w; y over the ordered sites y,, y, insert éx(yy n) = €y v
and use the normalization property in Lemma 3.1(b) to get

N
B ~1
1=kN1 Y (éi,v —éunteLn) -
M=1

Bringing the term with M = 1 to the left, we obtain

N
(3.5) ')’N/91,N=KN_1 > (fl,N—gM,N'l'el,N)_l'
M=2

From (3.4) we know that as N — oo:

[1+e n/(é1n— fM,N)]_l -1,

uniformly in M =2,...,N (recall that ¢ y—éyn=mn+ " +mp_1)
Hence, taking the factor (¢; y — &) ~) ! out in each summand in (3.5), we see
that the sum may asymptotically be replaced by Lj_,(£; y — &y &)~ To-
gether with Lemma 2.2, we have

Yn/€1,n ~kp/log N as N — .

Inserting (3.4) in the left-hand side of the latter relation, the asymptotics in
Proposition 3.3 follow. O

REMARK 3.6. The log N-term in the asymptotic expansion of A; 5 reflects a
property of the exponential distribution expressed in Lemma 2.2.

3.C. Localization for the means, bounds for second moments. The next
task is now to apply those properties of the mean field operator with random
potential to the evolution of the mean number of particles in our branch-
ing process. For this purpose we rely on the following lemma obtained in
Fleischmann and Molchanov (1990), Theorems 2.1 and 2.3, combined with
Lemma 2.8 above. Recall that y, 5 is the record point of the random
medium &,.

LeEmma 3.7. With probability 1, all three expressions,
[Eyl,N{(DN(t’ IN)|§N}’ E1{¢N(t’yl,N)I§N} and [El{(DN(t7 IN)|§N},

are asymptotically equivalent to exp[A, yt] as both t - © and N — » (in any
relation).
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At this point we add one more technical fact needed later, which is not
surprising in the light of the previous lemma.

LemMA 3.8. With probability 1,
sup{exp[ —A; N¢]E,{®n(2, Iy)|én); ¢ >0,y €Iy, N> 1}
is finite.

Proor. Since the initial particle of the process starting in y, y has the
largest birth rate, we get

Ef{®n(t, Iy)|én} < [Eyl,N{(DN(t’ Iy)|én}-

Using the well-known spectral representation for the solutions of the finite
system (2.6) of linear ordinary differential equations with m(0) = 1 [see
Fleischmann and Molchanov (1990), formula (3.23)], we have

N

my(t, 1, nlén) = 2 eXP()‘l,Nt)wM,N(yl,N)”wM,N”_z-
M=1
Therefore we get
N
eXP(—)‘l,Nt)[Ey{q’N(t’ IN)|§N} = Z IwM,N(yl,N)“IwM,N”_Z'
M=1

Then Lemmas 3.2(b) and 3.1(c) applied to the terms with M # N and Lemma
3.2(a) applied to the case M = N yield the claim. O

Later on we shall use the following boundedness property of second mo-
ments.

LemMmA 3.9. With probability 1,

lim sup sup(exp[ — 24, y¢JE{DZ(t, Iy)|én); ¢ = 0,5 € Iy
N-ox .

is finite.
Proor. In view of Lemma 3.8 it suffices to study the second factorial

moments vy (¢, y/€y) introduced in Section 2.C. Because of Lemma 2.11,
similarly to formula (2.9) we have the Feynman-Kac representation

UN(taylfN) = [E{j:ds 2§N(w§,)m%\l(t - S, w;”)exp['j:drgN(w;V)”§N},

t>0,yely, N> 1 If we bound ¢5(w?) by its maximal value £, y, we get
the ‘estimate

un(t,ylén) < 2_/:(13 §1,Nm%\/'(t - 8,51, n)exp[ £ ns].
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By Lemma 3.8, we find a constant, denoted C, such that
m3(t — 5,51, n) < Cexp[2A; y(t —5)].

Inserting this in our estimate for vy(¢, yl¢y), we end up with
¢ .
exp[ -2y yt]un(t, yléy) < Cf dsé, n exP[_(z)‘l,N - f1,N)3]-

Because of Proposition 3.3 and ¢, y — ® as N — «, we have for N sufficiently
large: 21, y > &, y. Thus, the rlght hand side of last inequality is

<Cé n(20 v — §1,N)_1'

By Proposition 3.3, this term is bounded, so we are done. O
4. The exponential limit law.

4.A. Preparations: Some simple minorants. Recall that £, n is the record
value of the random medium ¢, and that ®}, is the branching process starting
with ¢(y) = 1.

LEMMA 4.1. Given ¢y, the normalized total populations
Dy (2, Inlén)exp[ — (€1, n — K)t]
and
Dy (¢, Inlén)exp[ — (€, n — x + k/N)t]

have minorants which converge in distribution to an exponentially distributed
variable W with mean 1, as t - « and N — o (simultaneously).

Proor. To find the minorant, we first drop all the initial particles except
the one in the record point y, 5 of the random medium. Second, during the
evolution, remove all particles which j Jjump to another site. For the minorant in
the first case in the lemma, remove also each particle that makes a diffusion
jump to its own site; for the second case, leave such particles.

The remaining particles form a birth and death process, for simplicity
denoted by By = {By(¢); ¢ > 0}, with birth rate & := ¢; y and death rate «/:= «
or = k — k/N, respectively. Here we may assume that &>  since £ —>
(with probability 1) and «/— k as N — «. For the generating functions

[E{gtsN(t)|§N} =:f(t,0), t>0,0<6<1,
of the process B,, we have ‘
(<(1=.0) + (40 - Hexp| — (4= )1])
£(2,0) = (£(1—6) + (46 — £)exp[— (£ - £)t])

[see for instance, Athreya and Ney (1972), page 109]. In order to get from this
formula the Laplace transforms corresponding to the normalized birth and
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death process By(t)exp[—(£ — Z)t], we have to set 6 = exp(—r exp[— (£ —
Z)t]), r > 0. But since £> , for N - » and ¢ — «, simultaneously,

(1 —0)exp[(£—&)t] > r.
Then
f(¢t,0) > (0+1)/(r+1).

However, 1/(r + 1) is the Laplace transform of the standard exponential
distribution, which completes the proof. O

Roughly speaking, since £ > d, the birth and death processes B, used as
minorants behave like Yule processes with splitting rate 4.

4.B. The exponential limit law in the case of the simplest speed region. We
will use the previous result to deal with the exponential limit law in the case of
a particular relation in which ¢ and N converge to infinity.

LeEmMA 4.2. Let t and N simultaneously tend to infinity but in such a way
that t < N. Then, given ¢y, all three expressions

O (¢, Tlew)expl—Ay nt],  DUN(E, Tyléw)expl —Ay, i,
Dy (¢, y1, nlén)exp[ -2, ],

converge in distribution to W.

Proor. The expectation of

(4.3) D (¢, Inlén)exp[ — (£, v — ©)t]
is related to

(4.4) E{®n (2, Iy)léntexp[ — A, yt]
by the factor .

(4.5) exp[(Ay, v — é1,n + #)2],

converging to 1 by Proposition 3.3 and the assumption ¢ < N. But by Lemma
3.7, the expression (4.4) goes to 1, hence the expectation of (4.3) approaches 1,
also. It is straightforward to define our branching processes and their mino-
rants in Lemma 4.1 on a common probability space in such a way that

Oy (¢, Inlén) = By (2)

with B, taken from the proof of Lemma 4.1. Therefore, combining this with
the facts above, the expectation of the difference between (4.3) and its first
minorant in Lemma 4.1 tends to 0. Consequently, (4.3) itself converges in
distribution to W. Using again the correction factor (4.5), we arrive at the first .
convergence relation claimed.
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By standard coupling arguments, the two other expressions in the lemma
can be understood as minorants of the first one. But by Lemma 3.7 these have
the full expectation, and we are done. O

Note that the Lemmas 4.2 and 3.7 yield the exponential limit law in the
situation ¢ < N.

4.C. Proof of Theorem 1. We may exclude the case ¢ < N. Fix ¢,. First of
all, we construct a coupling between @3 and @1~ such that

(Dl{/( > IngN) = (I)}}\l/l’N(' > IleN),

by simply coupling the initial configurations such that this relation holds. In
order to analyze the right-hand side, we study first the processes at some times
sy = o(N) and use this to deal with ¢ > sy.

Choose a sequence {sy; N > 1} which increases to infinity in such a way
that s /N — 0 as N — . Trivially,

DN (s, Inléy) = PN (sy, ¥1, wlén) = An.
For ¢t > s, we use the previous steps, the Markov property and the branching
property to decompose and write
. Ay
(4.6) Dy (8, Iyléy) = 2 'ONN(t — sy, Inlén),
i=1

where "<I>1yvl»N(' |¢ ) are independent copies of ®31.7(-[£y). This inequality can
be written as

(4.7 D (2, Inléy )exp[ A, yt] = WySy
with
Wy :=Ay exP[_)H,NSN] = q)lj\lfl’N(sN’yl,ngN)exp[_/\I,NSN]
and
Ay
Sy =Ax" Y ( 'DXN(t — sy, Inléy)exp[— Ay y(t — SN)])‘
i=1
First note that by Lemma 4.2,
(4.8) Wy converges in distribution to W.

To show that S, — 1 in distribution, we first observe that Ay, — ©as N — «
with probability 1. With Lemma 4.2 in mind, we may follow ¢ along a sequence
ty such that ¢y — sy —» ©as N — «. Let X, ; denote the ith term of the sum
in, Sy and let g, be its Laplacé transform. Now the Laplace transform of S,
at r is given by (qn(r/Ay))4~. To analyze this expression use the Taylor
expansion and write

gn(r) =1 —rlay—rRy(r)], r=20,
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with (by Lemma 3.7)

(4.9) ay = [E{XN,ilfN} =1 asN - o
and
(4.10) 0 <Ry(r) <27'E{X} &y}, r=>0.

According to Lemma 3.9, the latter expression is bounded as N — . There-
fore the Laplace transform of S, equals

(1 -rlay — (r/AN)Ry(r/AN)]/AN)"

and from (4.9) and (4.10), we then get convergence to e " as N — . In other
words,

(4.11) Sy — 1 in distribution as N — co.

Combining (4.8) and (4.11), we see that W, S, converges in distribution to
W. Because of Lemma 3.7, the expectations of both sides of (4.7) have the same
limit. Hence, the left-hand side of (4.7) converges in law to W. Again with

Lemma 3.7, we arrive at (1.1).
Once more by coupling and Lemma 3.7, the minorants in the assertions

(1.2) and (1.3) have the same limits in distribution. This completes the proof.
0O

5. The path of a typical particle.

5.A. The asymptotics of a refined minorant. In this subsection we shall
deal with a sharper minorant than those in Lemma 4.1, and study its growth
and localization properties.

To define the minorant, we omit all the particles which do not start at time
0 at y, . Moreover, during the evolution, we drop all those particles which
make a diffusion jump from yg 5 to a different y; y, where 1 <K, L <N.
The result is a version of a multitype Markov branching process v, = {vy(2);
¢t > 0} with states in (Z_ )", where the type of a particle is K if the particle is
located at yx . Note that opposed to earlier notation, vy(¢, K) denotes the
number of particles present at time ¢ at site yx y (and not at K). We set

nN(t, K) = IE{VN(t, K)I‘EN}’ t > O, K S IN'

Then the expectation vector ny(¢) == [ny(¢,1),..., ny(¢ N)] satisfies the fol-
lowing linear equation:

where M (- |£y) == My is a symmetric N X N-matrix defined by
(g n—Kk+x/N, fK=1L,

My(K,L) = («k/N, ifl=K<LorK>L=1,
0, .otherwise.

r
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Let I, y > -+ =1lyy denote the eigenvalues of My(:|¢y) and
0y N»-- -, 0y n the corresponding eigenvectors. At least up to a certain order,
I, n has the same asymptotics as A, », which is shown in the lemma below.

LEmma 5.2. With probability 1, the largest eigenvalue 1, y of My(-1&y)
satisfies as N — o,

Iy =& 8-« +k/N+pk?/Nlog N +0(1/Nlog N).

Proor. First of all, we may restrict to k > 0. By explicit calculation, one
finds that the characteristic equation M, — IId,| = 0 (where Id, is the
identity matrix) can be written as

N N
IT[My(K,K) —1] = («/N)* ¥ T1 [Mpy(L,L)-1]=0.
K=1 M-2 L*1,M

In order to manipulate this equation, we want to exclude (with probability
1) that I = M (K, K) for some K # 1. We will get this via proof by contradic-
tion. If with positive probability | = My(K, K) for some K # 1, then the
equation above reduces to

IT [My(L,L) - I] =o.
L+1,K

Hence My(L, L) = Mpy(K, K), that is, ¢, y = £éx y for some L # K. But
since the exponential distribution function is continuous, the latter event
occurs only with probability 0, so we have a contradiction.

Consequently, with probability 1 each eigenvalue ! of M (- [£y) satisfies the
equation

N
(53) l—¢é& y+rk—k/N=(k/N)? Y (I-€yn+r—r/N)"
M=2

As a function in [ with [ > ¢, y — k + k/N, the right-hand side of (5.3) is
positive, continuous and converges to 0 as [ — . But the linear function on
the left-hand side is positive if and only if [ > ¢, y + k — k/N. Therefore the
largest root I, 5 of (5.3) satisfies

en=lLin—&é& ntKk—k/N>0, N> 1.
Then from (5.3) we get
N -1
snN/k = kN1 Z (f1,N ~éu,NteN)
M=2
If we argue now similarly as in the conclusions from (8.5), we arrive at
#nN/k ~kp/log N as N - =,

This completes the proof. O
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LemMA 5.4. With probability 1, the eigenvector o y corresponding to l; y
is localized at the index of the maximal value, namely at 1:

o,n(1) /oy, x> 1 asN - .

Proor. Again we may restrict to « > 0. The defining equation -for the
eigenpair [, y, oy 5 implies for 1 <K < N,

kN~lo (1) + [ég y — k + k/Nloy y(K) =1, yo n(K),
that is,
oy n(K) =«N7ro y(1)[é 8 — €x v +2N] -

with g, taken from the proof of Lemma 5.2. Since ., is positive, all
components of the vector o; y have the same sign. Without loss of generality
in this proof we may normalize by o 5(1) = 1. Then

0 <oy, n(K) <kN' & n— §K,N]_1’

and therefore
N
Y o n(K)—>0 as N - o,
K=2
by Lemma 2.2. Thus even
N
Y ofn(K) >0 asN -
K=2
holds, that is, llo; yll » 1 as N — . This completes the proof. O

LemMmaA 5.5. With probability 1, we have
E{vn (2, 1)léx} ~ exp[ly yt] ast » oand N - «,

where 1,  is the largest eigenvalue of My(-|éy).

Proor. For convenience, we may assume here that the eigenvectors

01, N5 -5 0y, y corresponding to /; ;> -+ >[Iy y are orthonormal. By the
spectral representation and 7 (0, K) = § (K),

N

ny(t,1) = Z exP[lM,NtK‘TM,N,nN(O)>UM,N(1)
M-1 A
(5.6) N
= X exp[ly ntlog, n(1).
' M=1

For the first term of the sum, by Lemma 5.4 we get as N — «

exp[l; ntlof (1) ~ exp[l; nt].
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The remaining sum can be estimated above by
N
=< exp[lz’Nt] P Ullzl,N(l) =< exP[lz,Nt]nN(O’ 1)
(5.7) M=2
= eXp[lz,Nt] = eXP[lLNt]eXP[‘(ll,N - lz,N)t]’

where we used (5.6) for the second inequality.

Since the right side of (5.3) is decreasing in /, the second largest root I,  of
(5.3) is smaller than ¢, y — k + k/N (whereas [, y is larger than &; y ~ k +
k/N). Therefore,

ll,N_lz,szl,N—fz,N=771 >0 a.s.

Hence, the right-hand side of (5.7) is o(expl[/, yt]) and the proof is complete.
O

5.B. Proof of Theorem 2. We start with a general remark on how to prove
properties of the typical path.

In order to verify that the typical particle has a property Y, y, by definition
we have to count the number 7, (¢|¢5) of those particles alive at time ¢ which
inherit that property Y, , and show that, for given &,

(5.8) Tn(tén)/Pa (2, Inléy) =5 1
as t > «© and N — . Note that automatically 7,(¢léy) < PN (¢, Iyléy). The
ratio 7y (tl¢y)/ Py (¢, Iyléy) may be written as
_ eXp()‘l,Nt) . (Dll\/(t’ IleN) - "'N(tlgN)
Dy (2, Inléy) exp(Ay, yt)

In view of Theorem 1, it suffices in order to prove (5.8) to show that the
expectation of the last ratio converges to 0. But in the light of Lemma 3.7, this
holds provided that

(5.9) li% infexp( —A; yt)E{ry(2)léEn} = 1.
t, —> 00

Now we are in a position to carry out the proof of Theorem 2. In order to
show that under any velocity a typical particle starts and ends in the record
point, we set

Tn(tén) = PRN(t, y1, NéEN)-
Its (conditional) expectation m (2,5, yly; n, €x) satisfies equation (2.6) witn
initial condition m(0) =8, . By the spectral representation of that solution
of (2.6), we therefore have

N
. B _g
b exp[/\M,Nt]wil,N(yl,N)”“)M,N” = exP[)H,Nt]w%,N(y1,N)"w1,N” .
M=1
But by Lemma 3.2(a), the latter expression is asymptotically equivalent to
exp[A; yt]as N — = and (5.9) follows. This proves (1.7).



MEAN FIELD BRANCHING RWRE 2161

To verify (1.8), let 7,(¢|é5) denote the number of those particles alive at
time ¢ whose path at time a? is in y, 5, where 0 < @ < 1. By the Markov and
branching property, similarly to (4.6) we get

E{rn(2)lén) = [E{q)ll\l(at’yl,N)léN}[E{cDIJ\,]l’N(t - at, IN)|§N}~

But then (5.9) will follow with the help of Lemma 3.7. First, reformulate this
lemma in terms of the typical path Z,(¢) according to our Definition 1.6: With
probability 1,

P{ZN(at) = yl,ngN} _)t,N—H’O 1 fOI‘ all a € (0, 1).
Setting L, y = [¢ da 1{Zy(at) = y; 5} we get, by dominated convergence,

1
E{L, nléx) =f0 daP{Zy(at) =y, ylén) =i nowl as.

We conclude that for each ¢ > 0,
P{l Z Lt,N > 1 - EléN} _)t,N—N)O 1 a.S.,

which is nothing else than (1.8). (In other words, the fraction of time the
typical particle spends in y, » tends stochastically to 1.)

Turning to (1.9), we substitute By(¢) for 7, (¢/¢y) from the proof of Lemma
4.1. Then

Ery(t)lén} = E{Bn(2)lén) = exp[(£ - &)t],
where the birth rate # is given by ¢, y. Hence,
(5.10) exp(— Ay, wt)E{ry (1)lén) = exp[— (A, y — &1, 8 + 2)2].

Now we use the second case of the definition of the death rate »/, namely
#Z= k — k/N. Then by Proposition 3.3 under the assumption ¢ << N log N, for
the expression (5.10) we get the desired limit 1. This already demonstrates the
validity of (1.9) via (5.8).

To prove (1.10), we substitute 7,(¢|£5) by vy (2, 1), where vy is the mino-
rant from Section 5.A. Then (1.10) follows from Lemmas 5.2 and 5.5.

Before we turn to the proof of (1.11), note that due to Proposition 3.3 and
Lemma 5.2, we know that at times ¢ = N log N, our processes and the
minorants are asymptotically equivalent. We are therefore left with the task of
analyzing a typical path of the family of multitype processes v, which have a
simpler structure than our original processes ®5. In other words, taking into
account the result (1.7) as well, we may in (1.5) replace ®x(¢, Iyl¢én) by
vy (t, 1).

In order to prove (1.11), we shall show that the probability of the event that
no jump occurs will converge to exp[ —cpk?]. To evaluate this probability, we
apply (1.5), then use the replacement explained above, to give us the quantity
which is asymptotically equivalent to the desired probability, namely:

(5.11) [E{yg(t, 1) vn(t, 1)|§N},

where »v3(¢,1) is the number of paths without jumps. Next we introduce an
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additional time point s = o(N log N) tending to infinity. Using the Markov
property and (1.7) we may restrict our attention to those paths which are at 1
at both times s and ¢. The next observation is that v% is a version of the birth
and death process B from the proof of Lemma 4.1 with death rate /=« —
k/N and birth rate £ = §1 ~- Hence, both v% and v, are branching processes
Therefore the integrand in (5.11) can be replaced by

[v3(s,1)] 'TAG VY (¢ — 5, 1)exp[ — (£, y — k — + k/N)(¢ — 5)]
[vn(s,1)] TGV iy (t — s, 1)exp[ —1; y(t — 5)]

. vy(s,1)
vy(s,1)

(where the index i refers to independent copies). We shall treat these three
factors separately. By our assumption ¢ ~ ¢N log N combined with the Lemma
5.2, the last factor is asymptotically equivalent to exp[—cp«?], which gives
already the desired limiting probability. By (1.9) and s = o(N log N), the
second factor tends to 1 in distribution. We are left to show that the first factor
converges to 1 in distribution as well.

We will deal with the numerator and denominator separately and use a
similar approach as in Section 4.C (proof of the exponential limit law), starting
“with the formula (4.8). In particular, we have to use vy(s,1) — o,

Evy(t —s,1)exp[ =1, y(t —s)] = 1,

and that Ev} (¢ — s, Dexpl[— 2!, y(¢ — s)] remains bounded as ¢ ~ ¢cN log N —
o, Here we used Lemmas 5.5, 5.2 and 3.9 in connection with the coupling
vy < PI1N,

This completes the proof of Theorem 2. O

exp[—(ly y— & v+ K —x/N)(t~— s)]
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