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SOME LIMIT THEOREMS FOR SUPER-BROWNIAN MOTION
AND SEMILINEAR DIFFERENTIAL EQUATIONS

By TzonG-Yow LEg!

University of Maryland

The empirical measure, a generalization of occupation times, of a
super-Brownian motion is studied. In our case the empirical measure tends
almost surely to Lebesgue measure as time ¢ — ». Asymptotic probabilities
of deviation from this central behavior by various orders (large, not very
large and normal deviations) are estimated. Extension to similar superpro-
cesses, that is, Dawson-Watanabe processes, is discussed. Our analytic
approach also produces new results for semilinear PDE’s.

Introduction. We study a class of measure-valued processes known as
the Dawson-Watanabe processes -or superprocesses. The example of super-
Brownian motion is treated carefully; extension is then discussed in the
concluding remarks.

Our super-Brownian motion is a stochastic process taking values in nonneg-
ative Radon measures w,(dx) on R? d > 5. Let P and E denote the probabil-
ity distribution and expectation, respectively. The distribution is uniquely
characterized by the Laplace transform of its transition function,

E{exp[—[a(x)w,(dx)]} = exp[—fg(t,x) dx],

where a(x) denotes a nonnegative continuous function with compact support
and g(¢, x) is the unique solution of the parabolic PDE (A equals the Laplacian
operator),

ag(t,x

—gL——-)—=Ag—g2, t>0, x € R?
Jat

8(0,x) = a(x).

This formula at ¢ = 0 indicates that initially w,(dx) equals Lebesgue measure.

The super-Brownian motion P can be constructed [see, e.g., Dawson (1977)]
as the (weak) limit of a system of many Brownian (generated by A) particles of
small mass moving independently of one another and dying or duplicating,
with probability 1/2, after each small fixed interval of time. More precisely, if
we have one particle of mass ¢ < 1 at each site of the fine lattice {&!/%x:
x € 7% initially and each particle dying or duplicating after a time interval of
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980 T.-Y. LEE

length ¢, then the distribution converges to P as ¢ | 0. The process can also be
constructed without passage to the limit [see, e.g., Dynkin (1989)].
Let D,/(dx) denote the empirical (random) measure such that

D/(B) = t'lftws(B) ds for bounded subsets B of R?.
0

For dimension d > 5 we estimate the asymptotic (as T — «) probabilities that
the empirical measure D, (dx) deviates from Lebesgue measure by the order
of T7%,0 < b < 1/2. Our results are: Theorem 1.1 for b = 0 (large deviations),
Theorem 2.1 for b € (0,1/2) (not very large deviations) and Theorem 2.2 for
b = 1/2 (normal deviations), as follows.

THEOREM 1.1. Let d > 5 and the functions V,,V,,...,V, be nonnegative
Hélder continuous with disjoint compact supports and define

D, = ([Vl(x)DT(d&),...,[V,l(x)DT(dx)),
= {f € C*(R?): fhas compact support},

(Ay)(x)®
N

y = ([Vl(x)y(x) dx, ..., [V(x)y(x) dx), y>0,y—1€C2

Then a neighborhood O of ([V(x)dx,..., [V,(x)dx) exists such that if U C O
is open and C C O is closed, then

liminf 7-! log P{(D; € U} > — inf I(y),
T—>o

yeU

limsup 77! log P{D, € C} < — inf I(y).

yel

T —

Here inf I(y) is taken as +.

YEP

CoNJECTURE. The open set O can be chosen as (0, )",

THEOREM 2.1. Suppose d > 5, b €(0,1/2). Let V,,V,,...,V, be as in
Theorem 1.1 and define

I'((d/2) -1
GV - (((;—d)/z))fm'x “ YV () dy for ViRY > R,
;= deGw(x)GVj(x)dx, q=(a),1si,j<n.
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Then (i) and (ii) hold:
(i) liminf 7°*~* log P{DT - (fVl(x) dx,. .., an(x) dx) = T—bU}
o q_lo'
> — inf ————  forall open U C R",
oclU 4

where T~U = {T°0: 0 € U} and q~! is the inverse matrix,

(ii) li;rvlsup T2~ log P{DT - (fVl(x) dx, ... ,an(x) dx) S T‘bC}
o-q o
< — inf — for all closed C c R",

a oeC

where T~°C = {T%0: 6 = C).

THEOREM 2.2. For d > 5 the moment generating function of T'/? D, —
(JVx)dx,..., [V.(x)dx)] has the limit

i .ml/2 —
lim E{exp[a T (DT (fVl(x)dx,...,an(x)dx))]}
= exp(a - ga), ac R
In particular, this gives the following central limit theorem:
T1/2(DT - ( JVi(x) dx, ..., [Vi(x) dx)) — 4. Gaussian with mean 0

and covariance matrix 2q as T' — .

For d > 3 the central limit theorem was established in Iscoe (1986). For the
neighboring model of critical branching Brownian motions, various results
were proved for the occupation time in Cox and Griffeath (1985). Our method
is different from these papers. For systems of infinite (nonbranching) Brown-
ian motions or Markov chains, the counterpart of Theorem 1.1 was given in
Lee (1988, 1989). A general large deviation principle with less explicit rate
function was given in Donsker and Varadhan (1987). The branching mecha-
nism presents difficulty resulting from the nonlinearity of governing PDE’s.
Iscoe and Lee (1991) contains a counterpart of Theorem 1.1 for dimension
d = 3, 4. Its proof requires different types of asymptotic evaluation for PDE’s.
The results for d = 3,4 in Cox and Griffeath (1985) and Iscoe and Lee (1991)
show fat large deviation tail probabilities.

While probability theory provides motivation and ideas to our investigation,
we also rely on analytic techniques of PDE’s. In fact we prove some PDE
results which have independent interest and are more than sufficient to prove
our probability theorems. Two such results are stated following some neces-
sary notation.
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Define
A = {Hélder continuous functions with compact support in R?}.

For V € A we consider the semilinear Poisson equation,

2
pl and p > 1, .

(1) Au(x,V) + |uff + V(x) =0 inR% d >

and its parabolic counterpart,

( du(t,x,V)
at

u(0,x,V) =0.

A function u(x) is called proper if |u(x)| < c¢(1 + |x])>=¢ for some ¢ > 0 and
u(t, x) is called proper if sup, . ,lu(¢, x)| is proper. Throughout this paper we
consider proper classical solutions to (1) and (2).

2
= Au + [uf’ + V(x), in(0,0) X R, d > pfl,p> 1,

THEOREM 1.2. Letd > 2p/(p — 1), p > 1 and define
L:{y>0,y-1€C2 - [0,x),

Ip(y) = (p—l/(p—l) —p_p/(p_l))ﬂAy(x)Ip/(p_l)y(x)_l/(p_l) dx.

Then o positive continuous function ¢ = c(1 + |x)2~DP ¢ > 0, exists such
that if V€ A and |V| < ¢, then (2) has a unique proper solution u(t, x). The
limit function u(x,V) =lim,_, u(t,x,V) exists pointwise and is a proper
solution to (1). Moreover, the solutions satisfy

d/2

lim u(x, V)|36|d_2

lim t‘lfu(t,x,V) dx = m‘-_—l) Jm

t—> o

[[lu(x,V)lp + V(x)] dx

sup [[V(x)ygx) dx — Ip(y)],

¥y>0,y—1eC2

where all quantities are finite.

ReMARK 1. Equation (1) can have more than one proper solution. For the
case of V = 0 with critical exponent p = (d + 2)/(d — 2), that is, d = 2(p +
1)/(p — 1); see, for example, Ding and Ni (1985) for 4 one-parameter family of
explicit solutions.

"REMARK 2. The Holder continuity of V ensures that u(# x;V) [respec-
tively, u(x, V)] are classical solutions to (2) [respectively, (1)]; see, for example,
Gilbarg and Trudinger (1983). Theorem 1.2 actually holds for a broader class
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of functions V if nonclassical solutions are accepted; we will not strive for
generality in this direction.

THEOREM 2.3. Let G be as in Theorem 1.2, 56> 0,d >2p/(p — 1), p > 1
and V € A. Then

T~ [u(T, %, T*V) dz ~ T [V(x) dz + TIGVIE as T - =,
that is,

lim pr[ fu(T x,T7%V)dx — T~ fV(x) dx] = IGVI5,

T —

where || ||, denotes the L? norm in the Lebesgue measure.

The remainder of this paper consists of two sections: Section 1 consists of
the proofs of Theorems 1.1 and 1.2, and Section 2 consists of the proofs of
Theorems 2.1, 2.2 and 2.3. Some concluding remarks follow Section 2.

2. Large deviations. We establish a sequence of Lemmas (1.3-1.10) to
prove Theorems 1.1 and 1.2. Let us define

2
t>0,x € RY,

H(t,x) = (47t) "% exp _4t ,

Hw(t,x) = ftfH(t -s,x —y)w(s,y)dyds
0

for bounded functions w: (0, ) X R?>R,

r((d/2) -1
(4?77

(3)
G(x) = wa(t,x) dt = c lx[*7¢, wherec, =
0

GV(x) = [G(x - )V(y) dy

for bounded functions V: R? > R.

Lemma 1.3. Ifd > 2p/(p — 1), p > 1, then afunctzon o =c(l + |x)E- P,
¢ > 0, exists such that

Go < ¢/P/2.

ProOF. Simple computation based on the fact (1 + |x[)2~9? € LY(R?) veri-
fies this lemma. O
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LEMMA 1.4. Letd > 2p/(p — 1), p > 1, and ¢ be as in Lemma 1.3.
If Ve A and |V| < ¢, then (2) has a unique.proper solution u(t, x,V). The
limit function

u(x,V) = lim u(¢,x,V)
t—o o
exists pointwise and is a proper solution to (1).

Proor. We begin with the existence of a solution. From Lemma 1.3,
u(t, x) = 2G o(x) satisfies the differential inequality

a
(E - A)ﬁ =20 > (2Go)’ + ¢ = [al + ¢ = @l + V(x).
It is readily checked that u(¢, x) = —(G¢)(x) satisfies
a .
(5 - A)L_t = —¢ < |ulf + V(x).

That is, u(¢, x) is a super solution and u(t, x) is a subsolution to (2). A
standard argument of monotone iteration [cf. Ladde, Laksmikantham and
Vatsala (1985)] gives the existence. In addition,

() if Ve A and |V] < ¢, then 2(Ge)Xx) = u(x; V) > —(GeXx)
for t > 0, x € R

To prove the convergence as ¢ — « we assert that
VI <o =|u(ty, x,V) —u(ty, x, V)|
<u(ty,x,0) —u(ty,x,¢), ty=t =0,xecR

Since u(t, x, ¢)T u(x, ¢) as ¢, this assertion implies that u(x,v) =
lim, ,, u(¢, x,V) exists. Using an integral version of (2) and the dominated
convergence theorem, one can see that the limit function u(x, V) satisfies an
integral version of (1). From (4) and the Hélder continuity of V it can be
proved [see, e.g., Gilbarg and Trudinger (1983)] that u(x,V) is twice continu-
ously differentiable and satisfies (1). The assertion is proved as follows:

VI<o=|u(t,x,V)| <u(t,x,¢), t=0,xcR?
= du(t,x,¢) —u(t,x,V)] /3t =0, ¢=0,xecR?
< u(t,x,¢) —u(t,x,V) isincreasingin ¢
o u(ty,x,V) —u(ty,x,V) <u(ty,x,9) —u(t;, x,¢),
ty>t 20,5 R

By similar arguments we see that u(t, x, ¢) + u(¢, x, V) is increasing in ¢, that
is, _[u(tz, X, V) - u(tl’ X, V)] < u(tz, X, gD) - u(tl’ X, (P), t2 > tl > O, X € Rd-
The assertion, thus the lemma, is proved. 0"
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LEmMA 1.5. IfV e Aand |V| < ¢, ¢ as in Lemma 1.3, then the differential
equation »
(5) (& +p(sgnu(x; V)| u(x; V)P =0 inRY,
f>0 and f(x) > 1 asx — o,

has a unique solution, written as f(x, u(-,V)).

ProoF. We shall call the operator A + W(x) subcritical if A + W + g(x) <
0 for some continuous ¢(x) > 0, ¢ # 0. Let K be

K= { W(x): W is a bounded function on R and

lim [ sup Mdy]=0}.

d—2
Ate | cpadlyl>Alx — yl

We take the following result from Zhao (1990).

PROPOSITION.  If the operator A + W is subcritical and W € K, then there
exists a strictly positive function f(x) - 1 as x - « satisfying (A + W)f=10
in R,

From the estimate (4) and the assumption d > 2p/(p — 1) it is readily
checked that p(sgn u(x, V)|ul? ~! e K for all |[V| < ¢. By the proPosition, we
only need to prove that the operator A + p(sgn u(x, V)|u(x, V)P~ is subcriti-
cal for all |V| < ¢. To show this we write down the equation satisfied by
U(x) = u(xa (P) - u(x,V),

w(x )l —lu@x VI e(x) - V(=)
u(x,¢) —u(x,V) u(x, @) —u(x,V)
The facts that U > 0 and
|u(x’ ®) |1J - u(x,V) |p
u(x,¢) —u(x,V)
prove the desired subcriticality property, ending the proof. O

U=0.

> p(sgn u(x,V))lu(x,V)|p_1

LeEMMA 1.6. Supposed >2p/(p — 1), p>1land VEA, |V|<¢, ¢ asin
Lemma 1.3. Then

t—o0

lim ¢! fu(t, 2, V) dx = [[lu(x V) + V(x)] dx
(6) ’ 42 l ' s

We denote this functional by J(V): {V: V€ A and |V| < ¢} = R.
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Proor. Equations (1) and (2) have the integral formulations

(7) u(x,V) = G(lu(-, V)" + V)(x), xeR™L

(8) u(t,x,V) =H(lu(-,- ,V)I +V)(t,x), t=0,xeR%
From (8) we get

lim ¢ fu(t,%,V) dv = lim t‘lf()tf[|u(s,y,V)|p + V(y)] dyds

t—> o0

= lim [[lu(t,y,V)F + V()] dy,

where according to Cesaro’s theorem the last equality holds if the limit in the
right-hand side exists. It follows from Lemma 1.4 and the dominated conver-
gence theorem [use (4)] that the last limit indeed exists and is equal to
[llu(y, V)IP + V(y)ldy. The last equality of the present lemma is readily
checked from (7). O

Lemma 1.7. Let V,,V,,...,V, be as in Theorem 1.1 and define

n
A(al,aQ,...,an)=J(ZaiVi), la;|l <a@;,,1<i<n.
i=1

Then the functional A is strictly convex, continuously differentiable and
(VAXO0) = (JV(x) dx, [V(x) dx, ..., [V,(x)dx), where O is the origin in R".

Proor. To prove strict convexity, let V# W and «,8 > 0 with a + 8 =1
and calculate as follows:

ad(V) + BJ(W) — J(aV + W)

= [alu(x,V)I + plu(x, W) ~|u(x,aV + pW)[" dx
= f{a|u(x,V)|p + Blu(x, W)[" —|au(x,V) + ,Bu(x,W)|p} dx

+f{|au(x,V) + Bu(x,W)|p —|u(x,aV + BW)|p} dx.

The first term in the right-hand side is positive because the function
u — |ulP is strictly convex and because «, 8 > 0, and V # W, thus u(-,V) #
u(-,W). It is clear from a comparison argument that the functional V —
u(x,V) is convex for each fixed «x, that is,

au(x,V) + Bu(x,W) > u(x,aV+ BW).

Therefore the second term in the right-hand side of (9) is nonnegative if we
assume u(x, aV + BW) > 0 for x € R?. Next, we remove this assumption. For
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|V| < ¢ consider the nonnegative function w(t, x, V),
w(t,x,V)=u(t,x,V) —u(t,x, —¢),
which satisfies
dw(t,x,V _
—(—BT_l = (A - plu(t, x, -o)f 1)w + h(w(t,x, V), t,x) + (V+ o),
in £>0, «xeR?
w(0,x) =0, xeR?,
where A(w,t,x) = |w + ult,x, —)P — lu(t, x, —)F + plut, x, —e)P " "w is
strictly convex in w for each fixed ¢ and x. Note that A(0,¢,x) = 0 and
u(t,x,—¢) <0 for t>0, x € R Recall from Lemma 1.5 the function
f(x,u(-, —@)). It can be shown via Cesaro’s theorem and the dominated
convergence theorem that

.

1
J(V) = lim ?fu(t,x,V) dx

t—o0

1i 1 d li 1 V)d
= 11mm —t'/u(th’_q)) x+tl_l)r:°—t—/w(t,x’ ) ol

t—o0

=J(—-¢) + /[h(w(oo,' V), 0,x) + V(x) +‘P(x)] fx,u(, —¢)) dx,

where w(w, x,V) = lim, _,,, w(¢, x,V) and A(w,», x) = lim, ,, A(w,t,x). It is
sufficient to repeat the previous argument using this presentation of the
functional J and the fact that w(w, x,V) > 0 for x € R?, V| < ¢.
To prove regularity it suffices to show that dA/da;, 1 <i < n exist and are
continuous functions. We shall work on JdA /da,; the same method applies to
0Aj/da;, 2 <i < n. Let us define

a=(ay,...,a,), a=(ay,...,a,), e, =(1,0,...,0),
n
u(x,a) = u(x, ZaiVi),

f(e,x) =f(s,x,a) =¢ u(x,a+ce) —u(x,a)],
|u(x,a +ce)| —|u(x,a)l’
B(e,x) = B(e,x,a) = u(x,a+¢ee;) —u(x,a)
p(sgn u(x,a))|u(x,a)f ", ife =0.
The function f(e, x) = f(¢, x, a) satisfies the linear elliptic PDE,
[A+ B(e,x)] f(e,x) + Vi(x) =0.
We elaim that the Feynman-Kac representation holds:

f(e, x) = Mx{[:Vl(Xt)exp [()‘ﬁ(s, X,) dsdt},

, ife#0
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where M, X, denote the expectation and trajectory respectively of the Brown-
ian motion (generated by A) starting from x. By this representation, the
convexity of the function u — |ul?, and the monotonicity of f(e, x,a) in a we
notice that

0<f(e,x,a) <f(0,x,a+ce;) <f(0,x,a) < .
The dominated convergence theorem then implies that

u . © t p—1
E(x,a) = lim (e, x) =Mx{f0 Vl(X,)exp/Op(sgnu)|u(Xs,a)| dsdt}

and that (du /da,Xx, a) is continuous in a. The Feynman-Kac representation
can be verified by letting ¢ tend to « in the corresponding representation of the
function

f(e,t,x) =e u(t,x,a+ce) —u(t x,a).
The proof also uses simple comparisons and the dominated convergence

theorem.
Next we define

g(e) =g(s,a) = '[A(a + ce;) — A(a)].
The function g(e) is increasing in & and

g(e) = fs‘1[|u(x,a +ee)| —|u(x,a) |p] dx + fVl(x) dx

= [B(z,%) (2, %) dx + [Vy(x) dx.
Again we invoke the dominated convergence theorem to get
A . p—1 0U
E(.«a.) = lim g(e) = [p(sgnu)|u(x,a)| E(x,a) dx + [Vy() dx.

The continuity of this partial derivative can be seen from the following
estimates (b = (b,...,b,)):

oA b oA
E( ) — E(a)

<[

_1 0u
(sgnu(x,b))|u(x,b)[’ E(x,b)

dx

p—1 U
~sgnu(x,a)|u(x,a)[""" S —(x,a)
1

<pf

sgn u(x,b)|u(x, b))

| du
—sgnu(x,a)|u(x,a)l l—aa (x,b) dx
1

ou b u d
E(x, ) - E(x,a) X .

+p flu(x,a)f
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It is a consequence of the continuity of u(x, a) and (du /da,)x, a) in a and the
dominated convergence theorem that
=0,

dA
3—1(b) - —(a)

lim
b—a

that is, dA /da is continuous. We omit the simple computation of (VA)0). O

LEmMAa 1.8. Letd > 2p/(p — 1) and p > 1. Thern (10) and (11) hold:

sup [fy(x)V(x) dx — J(V)] < I,(v)
(10) VeA,lVi<e

forally >0,y — 1€ CZ,

[ [7v(a) dx = 10| = 97)

forallVe Aand |V| < ¢.

(1]-) y>0 y— IEC2

PROOF. Recall from Lemma 1.6 and (1) that
J(V) = [[lu(x, V) + V(x)] dx = [ - Au(x,V) dx.
Computation shows that
Jr(x)V(x) dx — J(V)
| = [{y®)[-1u@x V) - Au] - (-Au)} dx
= [{(v(x) = D[ -Au(x, V)] = y(2)lu(x, V) [} dx

= f{[—Ay(x)]u(x,V) - y(x)|u(x,V)|p} dx by integration by parts.

The simple fact

a>0,beR= sup[bu —alul?] = [p~ /P~ — p=p/r=D]

(]_2) uelR
. Iblp/(P_l)a—l/(p—l)

completes the proof of (10) and shows that J(V) is greeiter than or equal to the

left-hand side of (11).
It remains to show that J(V)’is no greater than the left-hand side of (11).

Note that the supremum in (12) is attained when u is such that

b = ap(sgn u)lul?~".
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Thus the “maximizer” y(x) should satisfy

—Ay(x) = p(sgnu(x, V) u(x, V) 'y(x) inRe,

that is, y(x) = f(x, u(+,V)); see Lemma 1.5.
This y(x), however, does not satisfy y — 1 € C2. Choose a radial function
n € C2: R% - [0, 1] such that n(x) = 1 for |x| < 1 and set '

yu(x) = 1+ [F(x,u(, V) = 1n( =),

Note that y, > 0 and y, — 1 € C2. Elementary computation shows that
tim | [r(2)V(®) ds = 1,(n)| = IV,
The proof is complete. O

LEmMA 1.9. Supposep =2,d =5 and V|, V,,...,V, > 0 belong to A, and
Y V. < ¢, where ¢ is as in Lemma 1.3. Then there exist analytic functions
F(t,z,,...,2,) in n complex variables |z, |z,l,...,lz,] <1 indexed by t > 0
such that

F(t,ay,aq9,...,a,) =fu(t,x, ZaiVi)dx for0<t, —1<aq...,a, <1.

Proor. Define F, (¢, x, 24, ..., 2,)) recursively by
Fo(t,x,24,...,2,) =0
F(t,x,21,...,2,)
n
= j:H(t -5, —y)[Fn(s,y,zl,...,zn)2 + izgziVi(y) dy ds,
t>0, x € R, lz4l, 125, . .., |2, < 1,

where H is the heat kernel as in (3).
The following three properties are readily checked:

() F(t x,z2q,...,2,)is analytic in |],...,|z,] <1 for each n,t, x.
(i) sup, . olF(t, x, 24, ..., 2,)| <ult,x,LV;,) € L'R).
(i) lim,, ., F,(¢ x,a4,...,a,) = u(t, x,Xa;V).

By the first two properties the family {/F,(¢, x, 2y, ..., 2,) dx; n > 0} of ana-
lytic functions is normal. Property (iii) then implies that the function

F(t,z;,...,z,) = lim |F/(¢t, x,2,...,2,)dx
1 n n—o z
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exists and by the dominated convergence theorem,

F(t,ay,...,a,) liman(t,x,al,...,an)dx

n—oo

flim F(t,x,a...,0a,) dx=fu(t,x,ZaiVi) dx. O

LEmMA 1.10. Let E, w,(dx) be as in the introduction and u(t,x,V) be the
solution to (2) with p =2, d > 5. Then for all Ve A and |V| < ¢, ¢ as in
Lemma 1.3, we have

E{expfoth(x)ws(dx) ds} —exp [u(t,x,V)dx, t=0.

Proor. Let V _(x) and V_(x) be the positive and negative components of
Vi(x):

V.(x) = max{V(x), 0},
V_(x) = —min{V(x),0}.

Note that V,,V_€ A and V(x) = V_(x) — V_(x). It is known [cf. Iscoe (1986)]
that if @, b < 0, then

E{expfo"f[am(x) + bV_(x)] w,(dx) ds} = exp[u(t, x,aV,+ bV_)] dx.

By Lemma 1.9, an analytic extension of this function exists in a complex
domain containing |a| < 1, [b| < 1. The present lemma follows from properties
of the Laplace transform of probability measures on [0, ©)? [cf. Widder (1946)
. and Hormander (1966)]. O

Proor oF THEOREM 1.2. This follows immediately from Lemmas 1.4, 1.6
and 1.8. O

Proor oF THEOREM 1.1. From Lemmas 1.10, 1.6 and 1.7 we have

Tlim T 'log E{expTa-D;} = A(a) fora=(ay,...,a,),
-@,<a;<a;,1<i<nandthat O={(VAXa): —@,<a;<@;,1 <i<n}is
an open neighborhood of (VA)0) which is (/Vi(x) dx, ..., [V,(x) dx). With this
limit of a cumulant generating function, a general large deviation result [cf.
Ellis (1985) and Géarter (1977)] ensures two estimates:

li%ninf T 'logP{D;eU}>—inf sup [o-a-A(a)],

—a;<a;<a,
l<i<n
limsup T 'log P{D;€C} < — inf sup [o-a— A(a)].
T—o osC _g,<a,<a,

1<i<n
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Comparing with the desired two estimates it suffices to prove
(13) inf I(y)= sup [o-a-A(a)] foroe€O,
y=0c

—a,<a;<a;
l<i<n

where v is as in Theorem 1.1. Note that I = I,
The left-hand side of (13) is no smaller than the right-hand side due to (10)
and the fact that

sup []y(x)V(x) dx — J(V)
|V|<<p
> sup [o-a—J(Za, V)] = sup [o-a— A(a)].

la,|l<a; la;l<a;
l<i<n l<i<n

To prove the other direction of this inequality, we note from (11) for V = ¥Xa,V,,
a € R” that

sup {a~a—[ inf I(y)]}zf\(a),
0;>0,1<i<n yiy=0

where v is as in Theorem 1.1 and A denotes the smallest convex extension of
A (A(a) = A(a) for |a,| < @;, 1 <i < n). It is easy to check that the expression
in the bracket [ ] is a lower semicontinuous convex function of ¢, o; > 0,
1 <i <n. An elementary property of Legendre’s transform now concludes
that the left-hand side of (13) is no greater than the right-hand side, ending
the proof. O

2. Not very large deviations, normal deviations and concluding
remarks. Theorems 2.1, 2.2 and 2.3 are consequences of a number of
lemmas in Section 1 and the following:

LEmMA 2.4. Suppose Ve A, b,s > 0 and that G is as in Theorem 2.1.
Then

lim || T*u(Ts,  ,T~*V) - GV|, = 0,

T -

thus
lim |Tu(Ts, -, T~°V) |, = IGVI,.

Proor. First assume |V| < ¢, ¢ as in Lemma 1.3. It is readily checked by a
comparison argument that if T > 1, then
(14)  |TPu(t,x,T7°V)| <u(t, x,¢) <u(x,0),  t>0,xeR%
We use the integral equation (8) of u(¢, x, T~°V) to get

10 < Tbu(Ts,x,T~*V) — HV(Ts,x) = T°H(|u(", - ,T"’V)lp)(Ts,x)

< T2 DH(|u(-, 9)[")(Ts, x) < T*@-DG(Ju(-,¢)[")(x).
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The desired result now follows from the simple facts that G(|u(:,¢)P)
LP(R?) and HV(Ts, - ) converges in L? to GV as T — o,

For general V notice that |¢V| < ¢ for sufficiently small ¢ > 0. Regard T~°V
as (T %~ 1)eV. It suffices to repeat the same argument. O

Proor oF THEOREM 2.3. Integrating (8) shows
0<T" [u(T,x,T*V)dx - Tt [V(y) dy
T P
=T! 3, TV dyd
[ [lu(r.y,77V)[ dyds
= [Nlu(Ts, -, T*V) I, ds
0

— 1 o, v s
0

This equality, together with lemma 2.4 and the uniform (in the time parame-
ter) bound (14) proves the theorem by the dominated convergence theorem. O

Proor orF THEOREMS 2.1 AND 2.2. By Lemma 1.10 and Theorem 2.3 with
p = 2 we have for V= Y?_,a,V, that

i=1

T26-1 log E{expa . Tl_b(DT - (fVl(x) dx,..., an(x) dx)}

= TZb[T‘lfu(T,x,T'bV) dx — T'bfV(x) dx]

> |GVI3=a-qa, acR", asT — .

The case b = 1/2 proves Theorem 2.2. The case b € (0, 1/2) proves Theorem

2.1 via the general large deviation result as used in the proof of Theorem 1.1.
The rate function is

g 10

'q_
sup[o'a—a'qa]=—4-, oc R™. O

acsR”

Concluding remarks. Our method is applicable to many other measure
processes. For example consider, instead of Brownian motion, a transient

Markov chain on a countable state space X (transition probability matrix = )
and make two assumptions.

AssuMPTION 1. A positive constant ¢ exists such that for all x,y € X,

0>

00" 2 [ee]
zwx,y( » w;'@) <o ¥ A
y k=0 k=0

where 0 is a fixed element of X.
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AssumpTiON 2. A function a: X — (0, ) exists such that ¥, . ya(x) = »
and

L a(x)m, = a(y).

xeX

Assumption 1 is a counterpart of Lemma 1.3; a(x) is a counterpart of
Lebesgue measure. Denote by P the resulting measure process w, on X with
wo(x) = a(x), x € X from a construction similar to that of the introduction.
Let E be the associated expectation and B, B,, ..., B, be n distinct elements
of X. Then

{exp[ Z a; wt(B )]} = exp[— L g(t,x)a(x)|,

xeX
where n €N, a; > 0 and g(t, x) satisfies the equation

M [ Y (7, —Sxy)g(t,y)] —g(t,x)z, t>0,x€X,
ot ok

g(0, B;) = a;, g(0,x) =0 ifx ¢ {B,,B,,...,B,},
where 6., =1 ifandonlyif x=y.
Theorems 1.1, 2.1 and 2.2 are expected to hold with the new definition of the
functional I and matrix (g, ;):
I: {y:y — a has a finite support} — [0, ],

I(v)= X a(x){[ZY(y)(Wyx - ﬁyx)] /47(96)},
Yy

xeX

q;; = )y a(x)( )» 7";]}'3)!)( > W(k))
xeX k=0

With some modifications one can extend the PDE results to systems of

semilinear differential equations such as

Auy + |u,lP + Vy(x) + Z dy (x)(u; —u,) =0 inR?,
j=1
lu,lP € LY(R?), 1<k<m

and its parabolic counterpart, where d, ;(x) > 0. First order terms b,(x) - Vu,,
with appropriate b,(x), can also be included in the equations.

While Theorem 1.1 can be strengthened in many ways, the conjecture that
O can be (0, »)"” remains unsolved. To prove this conjecture requires more or
less that Theorem 1.2 hold without the condition |V| < ¢ (allowing the four
quantities to be simultaneously + ).
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