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ASYMPTOTIC EXPANSIONS FOR MARTINGALES'

By PER AsLAK MYKLAND
University of Chicago

The paper contains a “smoothed” one-step triangular array asymptotic-
expansion for discrete-time martingales. An important element of the proof
is a second-order description of Skorokhod embedding of discrete martin-
gales in continuous ones. An application to Markov processes is given, along
with a bootstrapping example.

1. Introduction. The use of Edgeworth expansions in statistical infer-
ence has a long history, going back to Edgeworth (1883, 1905), Cramér (1937)
and Cornish and Fisher (1937). This approach has recently received renewed
attention, both because of new breakthroughs in research on expansions [see,
e.g., Bhattacharya and Rao (1976, 1986), Bhattacharya and Ghosh (1978),
Barndorff-Nielsen and Cox (1984), McCullagh (1984a, b) and Abramovitch and
Singh (1985)], and also because of its relevance to bootstrapping [see, e.g.,
Singh (1981), Hall (1986, 1988), Beran (1987, 1988) and Efron (1987)]. Though
traditionally confined to inference situations with independent observations,
asymptotic expansions have recently been developed also for inference in
dependent variable models. Research has been conducted using assumptions of
weak dependence [Goetze and Hipp (1983), Bose €1986, 1987, 1988) and
Jensen (1986)], Markov dependence [Malinovskii (1987) and Jensen (1989)],
ARMA structure [Taniguchi (1984) and Tanaka (1986)] and martingale struc-
ture [Mykland (1992)]. The approach of Barndorff-Nielsen and Cox (1984) and
McCullagh (1984a) also lends itself to studying dependent variables.

The purpose of this paper is to develop an Edgeworth expansion for general
scalar martingales, thus extending our previous work on the subject [Mykland
(1989, 1992)]. Our reason for focusing on martingales is that they seem
particularly well suited to inference, in particular in parametric models, in
time series and in survival analysis. Good illustrations of this are Klimko and
Nelson (1978), Hall and Heyde (1980), Chapter 6, Tjgstheim (1986), Andersen
and Gill (1982), Andersen and Borgan (1985) and Wong (1986).

Apart from the expansion theorem itself (Section 2), the paper gives two
applications of the result: the bootstrapping of an AR(1) process (Section 3)
and expansions for Markov sums (Section 4).
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The proofs are all in Section 5. A main methodology is a second-order
description of Skorokhod embedding of a discrete-time martingale in a contin-
uous one; see (5.1) and Lemma 1 (in Section 5). A consequence of this
characterization is that distance from normality is best described by a linear
combination of observed and predictable square variation (with weights of 1/3
and 2 /3, respectively)—see (2.16). :

2. Expansions for discrete-time martingales. We shall be dealing
with a triangular array (™), t =0,1,2,...,Ty), N =1,2,...,0f zero-mean
martingales, say

(2.1) I = XV 4 XN 4 4 X,

where the X{Vs are martingale differences. For many purposes it is also
useful to studentize the martingale, so that we study the asymptotic behavior
of IV /+/oy , where oy is some (typically random) normalizing factor.

The expansion result is for the distribution function

(N)
—r < x

(2.2) Fy(x) =P oy SHow> 0).

The expansion is of the form
+ o +o0 1
(23) [ g(x)dFy(x) = [ g(x)d®(B'x) + ryJ(g) +o(ry),

and holds uniformly over large classes of twice differentiable functions g. For
exact statements we refer to Theorem 1.

The rate of the expansion, ry, need not be the same as N~/ though this
~ will often be the case. The rate is determined by conditions (2.6)-(2.14) below.
The expansion term, J(g), also need not have the standard form. It is defined
below, in (2.15) and (2.18)—(2.19).

The expansion does, in general, not hold when g is an indicator function of
an interval. Ours is a ““smoothed’’ expansion. There is no Cramér-type condi-
tion, and in return the expansion does not hold in a pointwise topology.
Similar results for i.i.d. variables have been developed by Goetze and Hipp
(1978). It is not clear what a Cramér-type condition would look like: The
literature on martingale Berry-Esseen bounds [see, e.g., Bolthausen (1982)
and Haeusler (1988)] bears witness to that. Already with the weak dependence
conditions of Goetze and Hipp (1983)—which are, on the whole, much stronger
than the conditions of this paper—the Cramér condition is quite complex.

We now turn to the conditions needed for the result. These will be imposed
on oy and on variation measures associated with martingales, the optional
and predictable kth-order variations, denoted respectively by [I), ..., (V)]
and (I, ..., I} They are defined by

¢
(2.4) (I, 1], = ¥ (X®)"
k times it



802 P. A, MYKLAND

and, whenever it is defined,

t
(2.5) A, 1™y, = ¥ E((X) 17D,
A AL
k times '

where (% ™) is the “history” or “filtration”’; cf. Brémaud (1981), Chapter
1.1.

The basic assumptions on oy and the variation measures are integrability
and central limit conditions. In addition to ry, we need the nonrandom
sequence cy,cx> being Op(l(TI;’v )). One can without loss of generality let

¢y = 1, by assimilating it into I%). We now state the conditions.

Integrability condition for the fourth-order variation.

(2.6) E[I™, 1) [ [N = O(ckrd).

Integrability conditions for the square variation. There are constants b2, k
and k so that @ > k£ > b® >k > 0 and so that, for (™), 1), being either
[l(N) l(N)]T or <l(N) (N >TN

b N ’ ’

[V () (W @

CN 9

is uniformly integrable,

I being the indicator function, and so that

(l(N), l(N))TN

n Zk) =1-o(ry)

(2.8) P(Te >

(it is shown in Consequence 1 in Section 5 that the condition on [V, [N Nry
is equivalent to the condition on (™, M), provided the above assumption
on [IV, 1) [V (D], holds).

Integrability conditions for on. There are measurable sets D} and con-

stants b2 and & (8 > 0) so that

1
(2.9) supE[—

and so that
(2.10) P(D%) =1—-o(ry).
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The central limit condition. There are Borel-measurable functions ¢,, ¥,
and ¢, so that, whenever

M N Y
2.11 l(N), [N
( ) r]\_r]_(< >TN _ b2 ,rA_Il(O-_N _ bi)
Cn CnN

Z
S (Z,¢6,,€6p€4)
as N — o through a subset of the integers, then

(2.12) E(¢,)Z) = b2, (Z) as.,
(2.13) E(£,12) = b%,(Z2) as.,
and

(2.14) E(£.12) =30, (Z) as.

This rounds off our list of conditions.

The central limit condition gives us the quantities needed to define the
expansion term: For all functions g for which this is defined, set

(2.15) J(g) = SE[B*0(Z)g"(BZ) — v+ (Z)BZg'(BZ)],

where

(2‘16) lp = %lpo + %lpp
* and where $ is the asymptotic standard deviation of 1§00/ o, that is,
(2.17) B =bbyl.

Our conditions imply those for the martingale CLT [see, e.g., Hall and
Heyde (1980), page 58, Theorem 3.2 and Corollary 3.1), so Z is standard
normal. In general, we do not know anything about the distributions of ¢, &,
and £, and they need not be the same for different subsequences. In practice,
(Z,¢,,€,, &) is often Gaussian, but this need not be so; cf. Section 2.3 in
Mykland (1992). Also, the &’s can be degenerate: ¢, if oy is nonrandom; &, if
the X,’s are independent.

We are now in a position to state the expansion theorem.

TueoreM 1. Suppose that the triangular array 1oy cryy N = 1,2,
and the normalizing factor oy satisfy the integrability and central limit
conditions above, with ry = o(1). Then (2.3) holds, the convergence being
uniform on sets € on functions g which are twice differentiable, with g, g’
and g" uniformly bounded, and with {g", g € €} being equicontinuous a.e.
Lebesgue. .
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There is a certain structural similarity between our expansion theorem and
the martingale central limit theorem. In both cases, the results state that one
level of asymptotics gives you the next level for free: The main condition for
the CLT is a law of large numbers for either [I?), I™], /ey or
A 1My /ey the main condition for the expansion is a CLT for either of
the same quantities.

Subject to some minimum niceness on the part of ¢ and ¢,,, integration by
parts yields that

1l  +=
(2.18) J(8) = 5[ a(x) d(M(Bx)d(B %)),
where
(2.19) Mx) =9¢'(x) = d(x)x + Py (x)x.

If we denote 0,(ry) to describe the kind of convergence used in the theorem
[cf. Mykland (1992), Remark 2.3], the result in Theorem 1 is that

(2.20) Fy(x) = ®(B ') + ryzA(B x)¢(B ) + 0y(7y),

which is a more standard way of stating an expansion.

When it comes to verifying the conditions of Theorem 1 in practice, it is
worth noting that [I™), (M), — (™M) M), is a martingale. Under condi-
tions which follow easily from Theorem 3.2 and Corollary 3.1 of Hall and
Heyde [(1980), page 58] the joint limiting distribution of ([{™), [ ey
AN AN p ) /ryey and I8/ /ey can be described, whence ¥, — ¥, can be
obtained. In fact,

(2.21) (¥ — ¥, )(2) =2b73 Al,im ry e 21N I J N

“lim” meaning limit in probability.
If we are dealing with a nontriangular array, weaker conditions for this to
occur can be stated.

PROPOSITION 2. Let I{N) be the same for all N. Assume that the integrabil-
ity conditions for the fourth-order and square variations are satisfied, and that
the right-hand side of (2.21) is well defined and nonrandom. Then , is well
defined if and only if ¥, also is, and, if so, (2.21) holds.

The formula (2.21) is related to a third-order cumulant. Indeed, if the X’s
are independent, ¢, is 0, and (, — ¥,)/3 is the only term in ¢ which remains.

3. A bootstrapping example. Being also valid for triangular arrays, the
martingale expansion lends itself to the study of the second-order properties of
bootstrapping. As a very simple example, we shall discuss the AR(1) process.
We shall see that, in the 0,(N~'/2) sense, the second-order correctness of the
bootstrap holds under very Weak assumptions. Conditions for the second-order
correctness in the o( N~ 1/2) sense have been obtained by Bose (1988), and are
considerably stronger. -
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What is needed is a triangular array result for the distribution function

(3.1) Fy(x;0,Q) =P0,Q(3;11/2(5N— 0) Sx),

where the process is given by

Ner1 = 0m, + €404, 0<t<N-1,
Mo = Xo»

the &’s being i.i.d. with d1str1but10n Q. BN is the conditional least squares
estimator, Oy = LN 'n,, m,/EN3n2, and sy = (1 — 8%)/N. The result is as
follows.

(3.2)

ProPoSITION 3. Suppose that the nonrandom sequences 65 and Qy satisfy
E, e=0
QN ’

(3.3) Eg &% = k3 + O(N™V?),
(3.4) Eg&® = k3 + o(1),
(3.5) Eg,* = 0(1)
and
(3.6) Oy =0+ O(N~?),
where 0| < 1. Suppose that x is fixed across N. Then
Fy(x;0y5,@Qy)
= O(x) + N~'%¢(x) lK—é(l—_ez');/—z(l - x%)
(3.7) 1-9
+ (1_—02)1/3 + 0y( N71/2).

A bootstrap estimate of the distribution function Fy(x;0,Q) is
Fyy(x; 6y, Qy), where @, is the empirical of the residuals, centered to have
mean 0. The following corollary is then obvious.

COROLLARY 4. Suppose that Ege* < », and that 10| < 1. Then
(3.8)  Fy(x;0y,Qy) = Fy(x;6,Q) + 0y(N~1/2)  in probability.

4. Application to Markov chains. Let 7, 71;,...,7m,,... be a Harris
ergodic Markov chain [cf. Nummelin (1984), Chapter 6.3, page 114], with
initial distribution A and stationary distribution 7. Let f be a function
satisfying that, for all ¢,

(4.1) E( f("h+1)"’7t) =0 as,
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so that
N
(4.2) In= 2 f(n,)
t=0

is a martingale. Now suppose that

(4.3) E, f(no)* < .

Let sp be the hitting time for the set B. Suppose that, for all measurable B,
w(B) > 0,

(4.4) E_sp <o,
(4.5) E,sp < o,
(46) EW:ZB1 f(m)* <,
(4.7) E, f(no)* ¥ f(n)? <
and -

(4.8) EZO | f(n)| < o.

In usual Markov terminology, this is to say that A must be 1- and |f|-regu-
lar, = must be 1- and fZregular, and fZ%x)m(dx) must be fZ2regular
[Nummelin (1984), Definition 5.4, page 79].

If A = 7 and f is bounded, this reduces to = having to be ergodic of degree
2 [Nummelin (1984), Chapters 5.4 and 6.4]. If A = 7 and 7 is geometrically

“ergodic [Nummelin (1984), Chapter 5.5, then it is enough if E_|f(n)|**® < »
for any & > 0. Many processes are geometrically ergodic; see Chan (1990) and
Tong (1990) for a wealth of examples. Intermediate types of ergodicity require
intermediate moment conditions.

With these conditions, we get the following result.

PROPOSITION 5. Let conditions (4.1)-(4.8) above be satisfied. Let oy satisfy
the integrability condition of Section 2 [(2.9) and (2.10)], and assume that ¢,
exists. Then the conditions of Theorem 1 are satisfied, and

(4.9) b2 =E,_ f(n)?

(4.10) Uo(2) =26 °E, f(n,) ¥ [ f(n)* - B, f(n)?]
t=0

and

(4.11) 0(2) =B, f(n) ¥ [ F(n)* - B, f(m)7].
=1
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5. Proofs. We shall throughout this section assume that ¢y = 1. This is
without loss of generality.

Proor oF THEOREM 1. The strategy of the proof is as follows. Continuous
martingales [{N, 0 < ¢ < T, are created, satisfying /() = 1™ for all integers
i. The theorem is then proved by verifying the conditions of Theorem 2.2 of
Mykland (1992), which deals with asymptotic expansions for continuous mar-
tingales. To do this, one needs to verify integrability and central limit condi-
tions for (I™, ™) )5 . These can be derived from the similar conditions on
[, 1], and (1N, 1N )7, by controlling the behavior of the (martingale)
remainder term

(5.1) mN =<Z_(N), Z(N)>~ — LI N, = 2D DY

Specifically, (1{V) is created by using Theorem 1 of Heath (1977), which is a
form of Skorokhod embedding. It is clear from the statement and proof of that
theorem that (I{’) has a filtration (%)) satisfying %,V ¢ %,V and also
that var(I{™V)| #X) = var(l,|.7,).

To control the martingale from (5.1), we need the two following lemmas.
The first is the technical core of the result, and it will be shown immediately
following this proof. Establishing the second lemma is an elementary exercise
in inequalities.

LeEmMMaA 1 (Second-order properties of Skorokhod embedding). Under the
assumptions of Theorem 1,

(5.2) E(mf))" = 0(r%),

(r,;lm(T’:’V ), Z(TIZ, )) is tight, and whenever it converges in law to, say, (m,1), then

E(m|l) =0 a.s.

LEMMA 2. Let a, and @'y be random variables, and let the constant b? be
given. Let

(5.3) E(ay — dy)’ = 0(r2).

Then the statement (S) “there are constants k, b and k, © >k > b% >k > 0,
such that

(5.4) rﬁlaNI(% >ay—b*> l_e) is uniformly integrable ‘
and
65 P(kzay-b*=k)=1-o(ry)/

is equivalent to the same statement for o'y ( for some choice of k, k).
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The second lemma has the following implications:

CONSEQUENCE 1. Let ay = [I™,1™], and d'y = (I™, 1™ ), Now
2

Ty
E(ay—dy)’=E X X? - E(XA ;)

i=1
Ty
(5.6) = Y E(Var(X?|.%,_,))(by the martingale property)
i1

< E[IM), ()] AR l(N)]TN

=0(rg),
hence the equivalence between the integrability conditions on [/, 1]
and (I™,{™ ) in the presence of the integrability condition on
[ D [N (N,
) ’ b N'

CONSEQUENCE 2. Let ay = [I™, 1], or = AN Ny and let

By exactly the same reasoning as in Consequence 1, a’y now satisfies the
statement (S) of Lemma 2.

CONSEQUENCE 3. Let oy be as in Consequence 2, and let ay =
(M, M) . Since E(m$))? = O(rf), ay satisfies the statement (S) of
Lemma 2.

If we combine this last fact with the result in Lemma 1 that E(mll) = 0,
our Theorem 1 follows from Theorem 2.2 of Mykland (1992).

Proor oF LEmmA 1. First, use It6’s formula [see Jacod and Shiryaev
(1987), Theorem 1.4.57, page 57] to differentiate (1N — I{"))? for ¢ > i. This
yields

(I = 1) = (20, 1), =(100,17),)

(5.8) _y fi+1 (10— 109 dI e,
Hence l

{11 - 1) - (e, - @) 7]
(5.9) - 4E{ [ - 1) & z<N>>J§;<N>}

- 2m{(1 - 1) | Z),



EXPANSIONS FOR MARTINGALES 809

again by Itd’s formula. Note that integrability follows from right to left, using,
if necessary, that a continuous martingale can be stopped for any value of its
quadratic variation. As

Am®* < 9 (T, Ty, — AL, 1],)°

(5.10)
+8(A[ID, 1D], — AW, l(N)>i)27

it follows that

i—1
Em®™ <3 ¥ E{(l - 1))
j=0

5.11 il
o +3 T (%7 - B(x71 7))
=
< &E[Z(N) l(N) l(N) l(N)]‘.

By the integrability condition (2.6) on [[‘™), 1), ) [, (5.2) follows.
We now turn to the behavior of m(¥ )l(N ). (5. 8) y1elds that

B{[(10 = 1) = (100,10) ., = (10,109) ) (13 - 1¢)| 7 )
(5.12) = E{2fi+1(i(sN> — 1) I, Z(N>>S|7i }

- s((1 - 1)) 7 ),

which is well defined since E|XM)|® < «, and with integrability following from
right to left as in (5.9). On the other hand,

(5.13)  E[[x - E(xV| 7 )| xMNF | - BE(x8Y1Z).

Putting the two previous expressions together shows that m{™I(™ is an
(&,)-martingale.

From (5.2), ry m(N ) is a tight sequence, and the remarks following the
statement of Theorem 1 show that 1% is tight, whence the pair is tlght We
shall show that for all convergent- in-law subsequences, (IF), ry'm$)) —
(I, m), E(m|l) =0 as.

Assume in the following that

(5.14) (I 1@y < E.

This can be done without loss of generality since we can replace (N’ and m(™
by 170, and m{Y),  where

(5.15) ty = inffi: (I, I™Y, | > F)

or = Ty if the above set is empty. This is a stopping time by Chapter X-1a of
Jacod (1979). All our conditions on (" are satisfied for /(" , and the limits
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for I and m(Y’ are as for I)) and m(}), since

P(ty < Ty) = P((IM, 1)1, > k)
- 0.

Also in the following, we shall consider {*’ and m™’ to be embedded in
continuous time martingales with right-continuous sample paths, which jump
at integer times and are otherwise constant. We shall still use the notation (V)
and m™, Now set

(5.16)

inf{s: (1M, 1) > ¢}
5.17 An(t) = set is
( ) ' ~(2) { Ty, if the above set is empty.

As with (5.15), Ay(#) is a family of stopping times. Define /() = I, and

similarly for m{™.
Note that, for ¢ < (I™, M) |

(5.18) t <(I, (M) <t + KIM 1M, as,

and that, by Jensen’s inequality

P(sup | A1, 1) 0| > ¢
t

5.19
( ) < constant X E[{®) [N [N (D]

- 0.

Using Theorem VI.2.15 (pages 306 and 307) and the discussion in Chapter
VI1.3b.2 (pages 316 and 317) of Jacod and Shiryaev (1987), it follows that
(I )y, converges in law to ¢ A b2 in the space D(R™) (with the Sko-
rokhod topology). Jacod and Shiryaev, Theorem VI.4.13, page 322, then yields
that [ is tight (with respect to the same weak convergence). Since

P(sup|Xi(N)| > e)
13

(5.20) < constant X E[I®) [N [N [Ny
- 0,
Jacod and Shiryaev [(1987), Proposition VI.3.26, page 315] ylelds that any limit
[, must be sample path continuous. As (5.14) yields that [V ¥ ([ [y, g
a uniformly integrable family of random variables, Jacod and Shiryaev (1987),
Proposition IX.1.12, page 484, gives that /2 — (¢ A b?) must be a martingale. It
follows that 7, is a Wiener process up to time b2 and, _thereafter, constant.
Hence /™) converges in law in D(R*) to such a process /,.

As for m{™), on the other hand, we can only assert compactness in terms of
convergence of finite-dimensional distributions. Let /%, be a limit point under
stich convergence. By uniform 1ntegrab1hty, m, is a martingale, and so is [ M.
Using the representation theorem for functlonals of a Wiener process [see, e.g.,
Theorem 11.16 (page 347) of Jacod (1979)], it follows that %, is independent
of [,, whence E(ml|l) = E(hz, iz, =0as. O
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Proor ofF ProprosiTiON 2. Assume (5.14). As in Theorem 1, this is without
loss of generality. Using Theorem II.2 (page 273) of Rebolledo (1980), it is clear

that the martingale {{"’, given by

. i i+1
(5.21) [N =N /Ty for — <t < ,
Ty Ty

converges weakly to a Wiener process l:t in D(0, 1)) (with the Skorokhod
topology).
On the other hand, set

(5.22) o) = [f(N), f(N)] — <f(N), l’(N)>
t

t’
and note that
E(wﬁN))Q < E[I10) [ [N @],

= O(rf,),

whence (ry'w{™),_, ., is compact as far as convergence of finite-dimensional
distributions (fidi) is concerned.

Furthermore, (5.14), (5.23) and the Jensen and Hélder inequalities yield
that

(5.23)

(5.24) E[(F, ™), | = 0(ry),

whence (ry*{(I™, @™),),_,, is also compact in terms of fidi convergence.
Since

- 3 1+1
(5.25) <l(N), w(N)>t = (1IN @) JAY, 4 for T—N <t< Ty’

the assumption of the proposition yields that any fidi limit point of
r NI, 0™y, must be nonrandom.

Hence, using the representation property for functionals of a Wiener pro-
cess [see Theorem 11.16 (page 347) of Jacod (1979)], together with the fact
that /, is a Wiener process, it follows that for any fidi limit , of (™), E(w1|ll)
is a linear function of l Since (l w)1 = limy _,, ry I 1N 1N the
result follows. O

Proor orF ProposiTiON 3. To indicate the dependence on N, we refer to
quantities generated under Qy, 0y by superscript (N). [-lly,, is the
LP-norm for this probability space.

Assume that |0y < 1 — &, for some &, > 0 (this will eventually happen).
Also assume (with no loss of generality) that we are dealing with a subse-
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quence so that, as N — o,

(5.26) EM(eM)' > «,,
(5.27) VN (E™ (M) = k5) > a,
(5.28) VN (6y — 6) > .
Set

t—1
2 2 2 2
Mt(N) = ngN) — ngN) + (1 - 01%) E ngN) — tE(N)(s(N))
s=0

t—1
(5.29) =y [nﬁlf)f g2 — E(N)(g(zv)f]
s=0

t—1
2
= ¥ [20Me®) + o)~ BV,
s=0
This is a martingale, which will be useful below. Also, set, for & = 2, 3:

(5.30) pp = Ku(1—8%) 7",

From (5.29) and (5.30), we have that
1! (N)? 2\ " Iar—1/2n84(N)
VN N 2 2" = py =(1_0N) N™V MY
s=0

(5.1 (1 08) N 1)

+(1 - 0%) NV EM(e®)® - )
PN ) (- ) e
We will bound and find a limit for the l.h.s. with the help of this decomposi-
tlOg‘egin by observing that since
BN} = g3 EMn® 1 B(s0)2,
we have that ’

(5.32) EMp®7* < g2x2 4 (1 — g2) ' E(¢@)?,
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Since x,, is fixed and |0y < 1 — &, we get that if 0 <& < 1,

N 1 )
[ 2o
N,1+6
M(N)
<k +|NV2(6y — 0)| + k
1( N ly145 N ?

5.3
(65.33) (where k, and k, are constants)

<k ”(5( ) ||N <1+a)/2N Z S ”N (1+8)/2

+ sl lvsavnre + | NV2(0y - 0)] + &y

by Burkholder’s inequality. By the ‘“telescope’ principle used in (5.29),
N-1 ,
(1 - 012\1) )y ” "(sN) ||N,(1+6)/2
s=0
= ” 775\17\])2”N,(1 +8)2 T xg

(5.34) + 206yl [ llv.a+a/2 s§0 IS v, 1452

+ N(e®)? w102
(1 + 02N + (1 - 0%)" 1)x§
#l@=03)7 (14 (1 03) )N EM (™),

by (5.32) and Liapunov’s inequality. That inequality, together with (5.33) and
(5.34), now yields that

N 1 .
\/—( (N) — P2

(5.35)

N,1+6
< k4(E<N>(e<N>)“ +|NV2(8y = 0)] + k5).

Hence the integrability condition on the square variation is satisfied, with

k=0,F%k =,
k;},

If we set
where k¥, k% > 0, then the integrability condltlon on oy = sy(XZY
also satlsﬁed

N)_(N
>kl or 277( )g+)1

(5.36) Dy = {‘—Zn“‘”

(N) )2 is
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Furthermore,
4 4 2
EMpNY = 94 EMNnN)" 4 694 EPMn(M) EM)(gN)
+ 40y 2o EM(e@)® 4 BAD(g@D)*

whence, by a telescoping sum,

2

(5.37)

N-1 .
(1-6%) ¥ EMpdD
s=0
N-1
= EMpQ* — x4 4 692 EM(eM)? T R@p@V)?
s=0
(5.38) + N4Oyx EM(eM)® 4 NEM()?

N-1
< 1202 EM(¢@)? ¥ DNy
N s
s=0

+ N80yx, EN(eM)? + N2EM(e™)*  [by (5.37) again]
< Nconstant(E(N)(z-:(N))4 + 1),

by (5.32) and since |0y| <1 — k,. Hence the integrability condition for the
fourth-order variation is satisfied.
It remains to find the ¢’s. Using the techniques from (5.29) (telescoping
sum, representation as martingale) and also the uniform integrability,
1 N-1 ,
(5.39) < L 1 >,
N s=0
in probability, for £ = 2, 3,4, where, in particular, p, and p; are as given by
(5.30). By Corollary 3.1 in Hall and Heyde (1980) and by (5.29), it then follows
that
N-1 (N)
! (N)(N) My !

N-1
Gaoy (7w 5 T g () - B(e))
- (VK2P2Z, U,V)

in law, where (Z, U, V) is trivariate normal with mean 0 and with

(5.41) Cov(Z,U) = 26 /izp3 ,
(5.42) Cov(Z,V) = (kaps) ™ *ksps.

In view of (5.31), we can take
5.43 U.(2) = 20(1 — 62) %2 + 2k e + 260(1 - 62) ',
D 2

(5.44) bo(2) = ¥p(2) = (k3p2) ™ *rypg2
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and
(5.45) Ue(2) = c,llp(z).
This proves the result. O

Proor orF ProrosiTION 5. Refer to the notation of Nummelin (1984)
Assume that m, = 1; the proof is similar in the general case.

First note that, since oy /N can be taken to be bounded away from 0 on D3
without loss of generality (use Chebyshev’s inequality),

E,\(g((lN+71, - lﬂ,)/x/z’;) - g(lN/\/a))ID?C,I(Ta<N)
= NV E((Iy.r, — Ir, — Ly)

(5.46)
xg'(Ly/b*VN )1, < ny) + o( N7/2)

= O(N_I/Z),

since E\((Ix,7 — In)r, < Nyl Fn) = 0 and by combining Corollary 3.2 (page
64) in Hall and Heyde (1980) with Theorem 4.3.6 (page 123) in Revuz (1975).
This is provided we can show that E Myir, = lpllp <Ny and E,|lp| are
bounded. The latter is finite in view of (4 8) and Proposition 5.13 (page 80) in
Nummelin (1984). The former is finite because

N+T,
E\| XY f(m)|(T,<N)
i=N+1
N+k

= ZPA(T k)E/\{ Y f(m)||T. =k}

k=1 i=N+1
(5.47) N—1 N

= )\(Ta=k)Ev E f(nl)

k=1 N+1-k

IA

N-1
Y. P(T, =k)k X constant X E_|f|
E=1

<
by (4.3), (4.5) and Nummelin (1984), Proposition 5.13.
Since P(T, > N) < N"'E,T, = o(N~'/?) for the same reason, it follows
from (5.46) that it is enough to show the expansion for Iy, — I7)/\oy.
That boils down to verifying the integrability and CLT conditions for [ N under

the initial distribution ».
To proceed, we need two slight modifications of the results in Nummelin

(1984).

“LemMa 3. Theorem 6.12, first part, of Nummelin (1984) holds provided
(nn) is ergodic, E_If(n)] < «, and the initial measure and m are 1- and

If l-regular.
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The proof of this is an obvious extension of Nummelin’s proof.

LEMMA 4. Let h be a function satisfying the conditions of Nummelin’s
Theorem 7.6. Then

N Z
(5.48) N-Y2 Y h(m,) S N(0, s2).
i=0

The sequence is uniformly integrable under m, and s; = mh® + 2whPG,, ; ,h.

Proor. We shall show that

N 2
(5.49) E,,[N—Vz ) h(m)] = 7.
i=0
One can similarly show that
Nmg 2
(5.50) E,[(Nmo)‘”“‘ )y h(m)] > oi,
i=0

where m, and o? refer to Nummelin’s notation. Clearly, s? = 2. Since,
furthermore, Nummelin’s Theorem 7.6 states that N~/2LN  h(#,) is asymp-
totically normal with mean 0 and variance o7, our Lemma 4 holds.

It remains to show (5.49). Write
2 1 N
=7fi+2— ,
™ f N — O u v

v=

(5.51) E,,[N‘V2 % h(n;)
i=0

where u, = 7fY!_, Pif. Equation (5.49) now follows from Lemma 3 and the
Toeplitz lemma [see, e.g., Hall and Heyde (1980), page 31]. O

Since v < 7 and dv/dw is essentially bounded, the integrability condition
on [l,1,1,1]y follows automatically from our assumptions. For the same
reason, the integrability condition on [/,/]y follows from Lemma 4. The
existence and form of ¢, follows from setting £ = of + b(f? — 7 f?2) in Lemma
2, and using the Cramér-Wold device. The existence and form of ¢, then
follows from Proposition 2 and Theorem 4.3.6 (page 123) of Revuz (1975). O
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