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The kth-order joint distribution for an ergodic finite-alphabet process can
be estimated from a sample path of length r by sliding a window of length %
along the sample path and counting frequencies of k-blocks. In this paper the
problem of consistent estimation when & = k(n) grows as a function of  is ad-
dressed. It is shown that the variational distance between the true k(n)-block
distribution and the empirical k(n)-block distribution goes to 0 almost surely
for the class of weak Bernoulli processes, provided k(n) < (logn)/(H +¢),
where H is the entropy of the process. The weak Bernoulli class includes
the i.i.d. processes, the aperiodic Markov chains and functions thereof and
the aperiodic renewal processes. A similar result is also shown to hold
for functions of irreducible Markov chains. This work sharpens prior re-
sults obtained for more general classes of processes by Ornstein and Weiss
and by Ornstein and Shields, which used the d-distance rather than the
variational distance.

1. Introduction. The kth-order joint distribution for an ergodic finite-
alphabet process can be estimated from a sample path of length n by sliding a
window of length & along the sample path and counting frequencies of k-blocks.
If £ is fixed the procedure is consistent in that the resulting empirical £-block
distribution will almost surely converge to the true distribution of &-blocks as
n — oo, a fact guaranteed by the ergodic theorem. The consistency of such esti-
mates is important when using training sequences, that is, finite sample paths,
to design engineering systems. The empirical .-block distribution for a train-
ing sequence is used as the basis for design, after which the system is run on
other, independently drawn sample paths. There are some situations, such as
data compression, where it is good to make the block length as long as possible.
Thus it would be desirable to have consistency results for the case when the
block length function k& = k(n) grows as rapidly as possible, as a function of
sample path length n. This is the problem addressed in this paper. (Rigorous
definitions and terminology will be given in Section 2.)

A sequence {k(n)} will be said to be admissible for a given ergodic process
u if the variational distance between the true distribution and the empirical
distribution of k(n)-blocks converges almost surely to 0 as n — oo. Every ergodic
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process had an admissible sequence such that lim, k(n) = 0o, by the ergodic
theorem. It is also not hard to see that for any sequence k(n) — oo there is an
ergodic measure for which {£(n)} is not admissible.

The problem addressed in this paper is whether it is possible to make a uni-
versal choice of {k(n)}, provided we restrict to some “nice” class of processes,
such as i.i.d. processes or Markov chains. Here is where entropy enters the
picture, for if & is large, then, with high probability, the probability of a 2-block
will be roughly 2=*H; thus if k(n) > (1 +¢)logn)/H, then we have no hopes that
the empirical £-block distribution will be close to the true distribution. Con-
sistent estimation also may not be possible for the choice £(n) ~ (logn)/H. For
example, in the unbiased coin-tossing case when H = 1, the choice k(n) ~ logn
is not admissible, for it is easy to see that, with high probability, an approximate
(1 — e~1) fraction of the k-blocks will fail to appear in a given sample path of
length n.

In this paper we consider the case when

logn

H b
where pu is an ergodic process of entropy H. Our principal results may be (in-
formally) stated as follows:

(1) kn)~ (1 —¢)

1. If p is i.i.d., then the variational distance between the true distribution
and the empirical distribution of k(n)-blocks converges to 0 almost surely,
provided (1) holds.

2. The preceding result also holds for irreducible Markov chains, for func-
tions of irreducible Markov chains, for ¥-mixing processes and for weak
Bernoulli processes.

The y-mixing and weak Bernoulli concepts are generalizations of the property
that past and distant future become asymptotically independent.

Our first motivation for this paper was the training sequence problem de-
scribed in the opening paragraph. A second motivation was a desire to obtain
a more classical version of the positive result obtained by Ornstein and Weiss,
who used the d-distance rather than the variational distance [Ornstein and
Weiss (1990)]. They showed that if the process is finitely determined, then
the d-distance between the empirical k(n)-block distribution and the true k(n)-
block distribution goes to 0, almost surely, provided k(n) ~ (logn)/H. The
finitely determined processes are just the “almost aperiodic Markov” processes
in that thay are precisely the d-limits of aperiodic multistep Markov chains.
The d-distance is bounded above by the variational distance; thus our re-
sults are a sharpening of the Ornstein—-Weiss result for the case when
k < (1 —e)logn)/H and the process satisfies strong enough forms of asymp-
totic independence. Furthermore, it can be shown that our results imply their

d-results even for the case k(n) ~ (logn)/H.

A third motivation for this paper was the result about waiting times obtained
by Wyner and Ziv (1989). They showed that if W,(x,y) is the waiting time un-
til the first n terms of x appear in the sequence y, then, for ergodic Markov
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chains, (1/n)log W,(x,y) converges in probability to H, provided x and y are
independently chosen sample paths. The results of this paper can be used to
prove stronger versions of their theorem. These applications along with various
counterexamples are presented in a separate paper [Shields (1993)].

Definitions and precise statements will be given in the next section. Proofs
will be given in Section 3. Application of our results to the Ornstein—Weiss
d-estimation problem will be discussed in Section 4.

2. Definitions and statements of results. For our purposes a process
is a shift-invariant Borel probability measure p on the space A> of sequences
x = {xn}, drawn from a finite alphabet A. The shift T' = T4 is defined by (T4x),, =
Xn+1, X € A, the sequence a,,, @41, - - -, @, Will be denoted by a”, the set of such
a? will be denoted by AZ,, A” will denote A}, and [a],] will denote the cylinder
set defined by o, that is,

[ap] = {x€A®: x; =a;,;m <i<n}.

The field generated by the cylinder sets [a?,], for fixed m < n, will be denoted
by F7. The complement of the set B will be denoted by B°.
The process u defines a measure p; on A* by the formula

uk(a'{) = u([ak]) =P({x: xi=a;,1 <i<k}).

We call . the true (or theoretical) distribution of k-blocks. When & is understood
we sometimes write u instead of u;. Note that a processisi.i.d. if and only if each
1z 1s the product measure defined by p;. A process p with alphabet A is called
a function of a Markov chain, or a finite-state process or hidden Markov chain,
if there is a Markov chain v with alphabet B and a function f: B — A such that
p=voF~! where F: B® — A is defined by y = F(x), where y, = f(x,), n > 1.

The entropy of a process p will be denoted by H,, or by H, if . is understood,
and is defined by the limit

. Hn — n n
H=lim=",  Hy=-)_un(a})logum(a}),

n
ay

where here and elsewhere in this paper base 2 logarithms will be used. (See
Billingsley (1965), for a discussion of the entropy concept.) To avoid uninter-
esting cases, we make the following assumption throughout this paper, unless
stated otherwise.

AssUMPTION. Our processes are ergodic and have positive entropy.
Let x7 € A™ and let £ < n. For each a’{ € A* define

f(ak|}) =|{i e (L,n —k+1]: x**1 =at}|,
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that is, the number of occurrences of a* in x? . The empirical k-block distribution
is the measure fi;(-|x}) on A* defined by

f(al | )

~ k _
Py | =) = n—k+1’

ot c A*.

In cases where x7 is understood we use the simpler notation .
The variational distance between two measures p and ¢ on A* is defined by

lp—ql= Y_: |p(a%) —q(a¥)].

A nondecreasing sequence k(n) < n will be said to be admissible for the ergodic
measure p if

Hm (7 (-|21) — | = 0, as.
Our first two results can now be stated.

THEOREM 1. If p is ergodic with positive entropy and k(n) > (logn)/(H — ¢),
then k(n) is not admissible for .

THEOREM 2. If pisi.i.d. and k(n) < (logn)/(H + ¢), then k(n) is admissible
for p.

Our extension to the Markov and related cases will be expressed in terms of
an asymptotic independence property known as 1-mixing. A process is y-mixing
if there is a sequence 1(g)|1 such that, for all m,n > 1,

w(C N D) < YHCuD), Cer, De FET

g+m+1°

It is easy to see that aperiodic Markov chains, as well as functions thereof, are
1-mixing.

THEOREM 3. If p is ¢-mixing and k(n) < (logn)/(H + ¢), then k(n) is admis-
sible for p.

A modification of our techniques will enable us to extend Theorem 3 to certain
nonmixing processes, such as ergodic Markov chains and functions of ergodic
Markov chains; we state this as the following corollary.

CoROLLARY 1. If pu is a function of an irreducible Markov chain and
k(n) < (logn)/(H + ¢), then k(n) is admissible for .

The concept of admissibility does not specify the speed with which |fij(:| x})—
Lem)| goes to 0. With only a bit more effort our method will yield a speed of con-
vergence result, at least for functions of Markov chains. Sharper results are
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possible but we will prove only what is needed for the application to waiting-
time problems given in Shields (1993). To state this corollary, we define the set

By n(®) = (s [ (12) — el > 6.

COROLLARY 2. If u is a function of an irreducible Markov chain and
k(n) < (logn)/(H + ¢), then (B, »(1/k(n)?)) is summable in n, for each € > 0.

A weaker property than 1-mixing is the weak Bernoulli property, a concept
introduced in Friedman and Ornstein (1970) as part of the proof that aperiodic
Markov chains are isomorphic to i.i.d. processes in the sense of ergodic theory.
A process is weak Bernoulli if

@  Jm 3 (@™ at)) n [B7]) - n([ed) u(B7])| =0,

uniformly in n and m.

THEOREM 4. If p is weak Bernoulli and k(n) < (logn)/(H + €), then k(n) is
admissible for p.

It is easy to see that y-mixing implies weak Bernoulli, so Theorem 4 includes
Theorem 3. We have chosen to establish the 1-mixing result separately, how-
ever, for two reasons. First, the y¥-mixing proof is simpler and shows clearly
the basic ideas that are used to establish the weak Bernoulli result. Second,
only simple modifications of the 1-mixing proof are required for the rate result,
Corollary 2.

Further notation and definitions will be introduced as needed. Proofs will be
given in Section 3, and connections with the Ornstein-Weiss d-versions will be
discussed in Section 4.

3. Proofs of results. The set

3) Tk, ¢) = {x{’; 9-kH) < (k) < 2——k(H-—e)}

will play an important role in several of our proofs. The entropy theorem (also
known as the Shannon-McMillan—Breiman theorem) guarantees that for every
€ > 0 and for almost all x there is a K = K(x, ) such that xf € T(k,c)fork > K.
In particular, (T'(%, )) — 1 for any € > 0. Furthermore, the lower bound on the
probability yields the following upper bound on cardinality:

4) |T(k,s)| < QkH+e)
We think of T'(%, €) as the “typical” k-blocks.

THEOREM 1. If pis ergodic with positive entropy and k(n) > (logn)/(H — &),
then k(n) is not admissible for p.
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PROOF. Assume k > (logn)/(H — ) and note that there are no more than
2HH=2) gistinct k-blocks in x7?. The theorem follows from the fact that when £ is
large we have no hopes of seeing all the typical £-blocks. The precise proof goes
as follows. Define

Up(x}) = {a®: xi*~1 = o* for some i € [1,n — k + 11}.

We think of U(x}) as the empirical universe of k-blocks determined by x7.
Note that

Tin (a’ic |x7) =0, ot g (=1),
and hence

®) 17— t] 2 (1))

Our assumption n < 2¥#~9 implies that |14 (x})| < 28H-9) 50 that, since each
member of T(e/2) has measure at most 27##-¢/2) the following holds:

" (Uk (xrlz) nT, (6 /2)) < QkH-)g—kH—e/2) _ g—ke/2,

Since u(T}(c/2)) goes to 1, we therefore know that u((Uy(x?))) also goes to 1,
which implies the theorem, since (5) holds. Note that we actually proved that
| Zk(n)(-|x}) — f1r(ny] does not even go to 0 in probability. O

Now we turn to the positive admissibility results. The key to these is the
following lemma, which is essentially just a combination of a large deviations
bound of Hoeffding (1965) and Sanov (1957) and an inequality of Pinsker (1960).
We sketch a proof which is based on Lemmas 2.2 and 2.6 and Exercise 3.17 of
Csiszar and Kérner (1981).

LEMMA 1. There is a positive constant c such that for any finite set A and
i.i.d. process y with alphabet A the following holds:

(6) u({x,ll: |/-71 - Ml, > E}) < (n + 1)“'2—”062'

ProoF. The first key to the lemma is the following reexpression of the
measure of x7:

@) (@) = I (u@)” @D _ g-n(H+D@lu)
a€A

where

H = - fi(a)logii(a),
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is the entropy of the empirical 1-block distribution and

Difal) = 3 Fi@log ne

is the so-called divergence of [i; relative to y1;. Let 7i(:|x}) be the product measure
of A" defined by the first-order empirical distribution 7i(:|x}) and use this in
place of x in the product formula (7) to obtain

®) A7 | #}) =27,

The second key to the lemma is to note that both (7) and (8) depend only on
the empirical 1-block distribution and not on anything else about x7. Let us say
that «7 is equivalent to y} if fi1(-|x}) = fi1(-|y}) and denote the equivalence class
of x7 by £(x7). Both 1 and [i(:|x}) are then constant on £(x}). Furthermore, since
fi(-|x%) is a probability measure and because of (8), we must have

a(e@) 1#1) = [ <1,
sothat|E(x])| < 21 We can combine this with (7) to obtain the following bound:

9) /_L(g(xrlz)) < 2—nD(ﬁ1||I-¢1).
The third key to the lemma is the observation that
(10) There are at most (n + 1)/ equivalence classes.

This is because each empirical 1-block probability has the form g /n, where q is
an integer in the range 0 < q < n.
Now, to complete the proof, define
B(n,e) = {x}: |1 — pa| > €}
and partition this into disjoint sets of the form B(n, ) N £(x}). Then combine (9)
and (10) to obtain the bound
p(B(n,e)) < (n+ DAI2=0-,

where

D, = min{D(@y ||p1): |1 — pa| > €}

It is not hard to see that the worst case occurs when the alphabet is binary and
a calculus argument [see Csiszar and Kérner (1981), Exercise 3.17] then yields
the bound

1 . 2
D, > m,#l—ﬂll )

proving the lemma. O
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The preceding lemma is enough to obtain the admissibility theorem we want
for the case of unbiased coin tossing; the following extended form will be needed
in order to obtain admissibility results for other i.i.d. processes and for more
general processes.

LEMMA 2. There is a positive constant C such that for any ¢ in the range
0 < € < 0.25, for any finite set A, for any n > 0, for any i.i.d. process p with finite
alphabet A and for any B C A such that (B) > 1 — e and |B| > 2, the following
holds:

p({ah: |B1 = pa| > 5e}) <(n+ 1)IBlg-nCe®,

ProOF. Define
0, ifx, € B,
1, otherwise,

Yn =yalx) = {

so that {y,} is a binary i.i.d. process with prob(y, = 1) < €. Let

C,= {x’{: iyi > 2an}

1

and apply Lemma 1 to obtain
(11) p(Cr) < (n +1)22—ente",

Foreachm <nand1<ij<is <-:--<in <n,letA(,,...,i,)denote the set
of all x} such that

xi¢B, iE{il,iz,...,im}
and
xiEB, i¢{i1,i2,...,im}.

The sets A(iy, . . ., in) are disjoint for different {i1,is,...,in} and have union A™.
Furthermore, the sets {A(iy, . ..,i,): m > 2¢n} have union C, so that (11) yields
the bound

(12) Z H(A(ih cee ,im)) <(n+ 1)22—cn452.

{i1,..im}: m>2en

Fix a set {i1,...,im} with m < 2en, put s = n —m and for x} € AGy,...,in)
define ¥ = X(x"}) to be the sequence of length s obtained by deleting x; ,x;,, ..., x;,
from x%. Let p1, g be the conditional distribution on B defined by x; and let up
be the corresponding product measure on B° defined by p1, 5. We then have

p({21 € Alir, o sim): | — i > 5¢})

(13) < u(A(il, . ,im))u3<{a—csl e B | (%) — ml| > 35}).
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Since

b
l#l - ul,BI = Z [,u((B)) — ,u(b)] Z,u(b)

beB b¢B

1
(5~ 1)u®+ 1 - B = 2(1 - uB) <2,

we can apply Lemma 1 and continue (13) to obtain

p({x} € AGy,...,im): |, — pa| > Be})
< W(AGy,. .., im)) us ({% € B®: |m1([&5) — pa, B| > €})
< p(AG, ..., im))(s + DIBIZT5
< u(AG,. . . ,im))(n + 1)IBlg—n1=2e)ce?,

The sum of the u(A(y,...,in)) for which m < 2en cannot exceed 1. This,
combined with (12) and our assumption that e < 0.25, then establishes
the lemma. O

To apply the preceding lemma to obtain our positive admissibility results,
we shall need to convert from the distribution of overlapping &-blocks to that of
nonoverlapping k-blocks. To assist in this task, we develop some notation and
terminology. Given & < n/2, define integers ¢ = ¢t(n,k) and u € [0,k) such that
n =tk + k + u. For each r € [1,%] define

Frak | <) = |{j € 1,80 I = k),

that is, we partition x} into blocks of length &, starting at x,, and count the
number of blocks that agree witha!, ignoring the ﬁnal k-block ifr < u (sothatwe
always divide by the same amount to obtain relative frequencies). The r-shifted
nonoverlapping empirical k-block distribution fij, = [i},(-|x}) is the distribution
on A* defined by

k| hn
i (ah) = e 15D),

The overlapping-block measure 1, is (almost) an average of the measures /i,
where “almost” is needed to account for end effects; hence, the following
result holds.

LEMMA 3. Given § > 0, there is a v > 0 such that if k/n < vy and |x(-|x}
—ux| > 7, then there is an r € [1,k] such that |[i,(:|x}) — pp| > 6/2.

We are now ready to prove our first positive theorem. We give this proof in
detail and then show how the ideas can be modified to yield our other theorems.

THEOREM 2. If pisi.id. and k(n) < (logn)/(H + ¢€), then k(n) is admissible
for p.
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ProOOF. Let 6 be a given positive number. We will show that

(14) Zu({xi‘r |y — tbim| > 6}) < 00,
n

which immediately implies the theorem. The idea of the proofis to use Lemma 3
toreplace overlapping blocks by nonoverlapping blocks and then apply Lemma 2
with A replaced by A* and B replaced by a suitably chosen set T' = T'(k,¢’) of
typical sequences. Since we can control the number of typical sequences, we can
guarantee that the polynomial factor in the key bound (6), which now essentially

has the form (1+n /k)2M—5’) ,is dominated by the exponential factor. The rigorous
proof is given in the following paragraphs.

From Lemma 3 we can assume n is large enough so that, for £ = k(n) and
n=tk+k+u,0<u <k, the following holds:

a® e [ml) uk|>6}cU{x" B4 (C121) - ] = 8/2).
Fix such an n and for 1 < r < k define
=Ly

Since p is a product measure we have
(16) > ud) < u(ﬂ [%(r)] ) H,u %;(r).
xr—l ]
1
Thus, if we let A = A* and define the measure u* on At by the formula
t o~
D=11r0), <4

then the following holds:

an  p({als [mC1eD) - ml 2 6/2}) < (i (25 - ] > 6/2).

Moreover, we can assume that n is large enough so that, for £ = k(n), the set
T(k,e/2) of typical sequences, defined by (3), satisfies u(T'(k,£/2)) > 1 — §/10.
Since T'(k,e/2) C A* = A we can replace p by u* and obtain

(18) p* (T(k,e/2)) > 1 - 6/10.

Now we can apply Lemma 2 with A replaced by Z, n by ¢, B by T(k,c/2) and
€ by 6/10, together with the typical sequence bound (4),

,T(k 8/2), 2k(H+e/2)
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to obtain the bound
w({oh 35 — wi] > 8/2)) < (4 DR gm0t 0,

We can combine this with (17) and (15) to obtain the bound

(19) ({3 [Py — paem| > 8}) < kln)e + 129 -1087/100,
Let us put
H+e/2
= C82 _
a=C6/100 and v= e

so that v < 1. We can then use the bound k(n) < (logn)/(H +¢) and rewrite the
right-hand side of (19) in the form

logn
H+e

This bound is summable in n, since t ~ n/k(n) and v < 1, WhiCl"l establishes
(14) and thereby completes the proof of Theorem 2. O

(20) t+1)V2

REMARK 1. A somewhat sharper form of Lemma 2 can be obtained by re-
placing the variational bound |fi; — 1| by the divergence D(fi ||p1), which yields
the bound

p({x3: D(fa||p) > €}) < (n + 1)Al2-nee,

This, in turn, leads to slightly stronger forms of our later results.

REMARK 2. It was pointed out to us by Tamas Méri that a stronger version
of Theorem 2 for unbiased coin tossing was obtained by Flajolet, Kirschenhofer
and Tichy (1988), who used the distance sup,s 2%|fix(a%) — 27*| in place of the
variational distance. For this metric a necessary and sufficient condition for
admissibility is that £(n) = logn — loglogn — v(n), where vy(n) — oo.

REMARK 3. Results about the asymptotic distribution of £(n)-blocks fori.i.d.
processes, for the case k(n) ~ (clogn)/H with ¢ > 1, were obtained by Erdés
and Rényi (1970).

To extend our results to the ¢-mixing case, we need a slight extension of
Lemma 3, formulated so as to allow gaps between the blocks. Fix a positive
integer g. For £ < (n — g)/2 define ¢ = t(n, k, g) such that

(21) n=tk+g)+k+g)+u, 0<u<k+g.
For each r € [1,k + g] define

fe(ah 12]) = [{ € [Le]: L0 T0G10™ 7 = at}]
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The r-shifted nonoverlapping empirical k-block distribution with gap g is the
distribution 7, , = i (-|x}) on A* defined by

HCAE)

ﬁz,g (al;) = t
Lemma 3 easily extends to the following result.

LEMMA 4. Given 6 >0 and g, there is a v > 0 and a K > 0 such that if
k/n < v,k > K and |ix(-|x}) — px| > 6, then there is an r € [1,k +g] such that
74, (1) — ] > 6/2.

THEOREM 3. If p is v-mixing and k(n) < (logn)/(H +¢), then k(n) is admis-
sible for p.

Proor. Our proof of Theorem 2 will be modified to allow gaps of a fixed
length g, independent of %, between blocks. This will contribute an exponen-
tial factor to the key bound, (19), a factor that is dominated by the other
exponential factor, provided g is large enough. The details are given in the
following paragraphs.

Let 6 > 0 and use the y-mixing property to choose g so large that ¢(g) <

2C8*/200 wwhere C is the constant of Lemma 2. From Lemma 4 we can assume
that n is so large that

k+g
@2)  {of |m(lah) — me| 26} € (ot [BR, o (1%7) — | > 6/2}.

r=1
For n = t(k + g) + k + g + u, where 0 < u < k + g, we modify our prior notation,
setting

~ +(j—D(k+g)+k—1 .
%) =2 s, Je L], re(lLk+gl

The 1-mixing property gives the inequality

t

(23) M (h [ij(r)]> < [w@)] T] n@E®).

Jj=1 Jj=1

Asinthe proof of Theorem 2, we setA = A* and let u* be the product measure on
At defined by p, so that (23), combined with y(g) < 265°/2%0 leads to the bound

24) ({0120 — me| > 8/2}) < 20820 (o g - pi] 2 8/2}).
As before, we can assume that u(T(k,£/2)) >1—6/10 and apply Lemma 2,
combined with (22) and (24), to obtain the bound

p({x%: |Brm) — by > 6})

(25) S 2tC52/200 [k(n) +g] (t + 1)2“”)(”‘.5/2)2—“362/100.
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Finally, we set

_ C_52 and = H+e/2
*= 3200 T He
and obtain the bound
- logn v
(26) p({1: | Brm) — ey > 6}) < Hia(ﬁ 2,

which, as before, is summable in n. This completes the proof of Theorem 3. O

The preceding theorem applies to aperiodic Markov chains and to functions
of such chains, since these are 1-mixing. The following corollary extends our
admissibility results to periodic Markov chains and functions thereof.

CoOROLLARY 1. If nis a function of an irreducible Markov chain and k(n) <
(logn)/(H + €), then k(n) is admissible for p.

Proor. We need only consider the periodic case. We give the proof only for
the Markov case; the extension to functions of Markov chains is straightfor-
ward. Let u be an irreducible Markov chain with period d > 1 and partition A
into Cq,C,,...,Cy such that

Prob(X,.1 € Cs41 | X, € C5) =1, 1<s<d,

where addition is mod d. Define the function c¢: A — [1,d] by putting c(a) = s if
a € C;. Also let 4 denote the measure 1 conditioned on X; € C,.

Let g be a gap length, which we can assume is divisible by d and small
relative to k = k(n). We can also assume that % is divisible by d, for we can
always increase or decrease k£ by no more than d to achieve this, which has no
effect on the asymptotics. For r € [1,% + g] the nonoverlapping block measure
1, ¢(-|%1) satisfies the following:

My, g(@%) =0 unlessc(ay) = clx,).
Since 14, is an average of the 4, it follows that, if £ /g is large enough, then the
following will hold:

k+g
{x'f: ,ﬁk - ,ukl > 6} - U {x'fi ,ﬁi,g _ uﬁf(’”'”

r=1

> 6/2}.

The measure u® is, however, an aperiodic Markov measure with state space
C(s) x C(s +1) x --- x C(s +d — 1), so our previous theory applies to each set
{=1: |, — ,ugf("’»| > 6/2} separately; thus we can conclude that

p({xt: | — | 2 63)

is summable in n, which proves the corollary. O
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We next show how the argument of Theorem 3 can be refined to yield a rate
result, at least for the Markov case. For this result, we use the notation

Bin(®) = {5 A (x7) — | > 6},

COROLLARY 2. If u is a function of an irreducible Markov chain and
k(n) < (logn)/(H +¢), then /L(Bk(n),n(l/k(n)2)) is summable in n, for each € > 0.

Proor. We consider only the aperiodic Markov case; the extension to the
more general case can be achieved by using the technique of the preceding
corollary. Thus we assume that p is an aperiodic Markov chain. In this case the
1-function can be taken to have the following stronger form:

27 wg) =2, A<1,

where L and ) are constants that depend on u. The corollary is obtained by
allowing the gap length g to be a function of & = k(n), namely, g = v%. We also
define 6, = 1/k? and apply the argument of the theorem. Formula (25) is then
replaced by the following bound, in which % = k(n):

(28) “({x'f |k — 1| > 1/k%}) < 2‘L"ﬁ[k + VE] (¢ + 1) M g-tC 100K,

We can then proceed as before, using the additional information (27) to show

that this is summable in n, which establishes the corollary. O

The 1-mixing admissibility result, Theorem 3, will now be extended to the

weak Bernoulli case. A key step in the y-mixing proof was the observation,
Lemma 4, that if the nonoverlapping k-block distribution is not close to the
true distribution, then the r-shifted distribution cannot be close to the true
distribution for at least one r < k +g. In fact, the r-shifted distribution cannot
be close to the true distribution for a positive fraction of the indices r < k +g.
This sharper form is easy to prove; we state it as follows in the form we will use
for the weak Bernoulli case.

LEMMA 5. Given § > 0, there is a positive v < 1/2 such that for all g there
is a K = K(g,v) such that if k > K, if k/n < v and if |ux(-|x}) — p| > 6, then
|ﬂ;+g(-|x’1‘) — px| > 6/2 for at least 2y(k + g) indices r € [1,k +g].

The second key step in the -mixing proof was the product bound, (23), which
was a simple consequence of the ¢-mixing condition. It is not necessary that
such a bound hold for all x7 and all the nonoverlapping (k + g)-blocks, but only
that it eventually almost surely holds for a large fraction of the nonoverlapping
(k + g)-blocks. To help make this idea precise, some notation and terminology
will be introduced.

Fix a positive number v and positive integers k, g and n such thatn = ¢k + g)
+k+g+r,wheret >0and 0<r<k+g. Foreachj e [1,fl andr € [1,k +g], let

~ 0 _ -1 k+g)+R—1
%i(r) = %, (i 1)kg)
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A set J =J; C [1,#] will be called a splitting set for x?, associated with the
shift r, if

(29) n ( ﬂ [ij(r)]) <1 +79) H p(%(r).
JE€J JjeJ
(To keep the notation from getting out of hand, we have suppressed the depen-
dence of these definitions on %, g and ~.)
Our key lemma for the weak Bernoulli case asserts that, eventually almost
surely, most shifts r of x} will have a large splitting set JJ,..

LEMMA 6. Ifuisweak Bernoulliand 0 < v < 1/2,then thereisagapg = g(v),
there are integers k() and t(v) and there are sets G, = G,(vy) C A", n > 1, such
that the following hold:

(a) x} € Gy, eventually almost surely.

(b) If k > k(y), if t > t(y), if ttk +g) < n < (¢t + 1)k + &) and if x} € G, then
there is a set R = R(x}) C [1,k + gl of cardinality at least (1 — y)(k +g) such that
associated with each r € R(x}) there is a splitting set J, = J.(x}) of cardinality
at least (1 — y)t.

ProoOF. First we use the weak Bernoulli property, (2), to choose g = g(v) so
large that, for any n,

- " pEZE-n)n(=h) | _ o
pl e ] N [*7])|1 - . | < -
o (-0 )~ S I n | < 4
For g fixed the functions :

p(xZg—n) 1
p([xZ5_,] 0 [#7])
form a martingale with respect to the o-algebras 7, generated by the cylinders
[x? ;_,], and therefore f, converges almost surely to some f.

Fatou’s lemma implies that [ |1 — f(x)|du < +*/4, so there is an M such
that if

fn(x) =

Cy={x |1-fulx)| <+?/2,Vn > M},

then u(Cy) > 1 — 42/2. The ergodic theorem implies that

1 N-1 ) 72
lim — Z Zc,(T'x) > 1 - 5 as,

Nooo N .
i=0

where Z,, denotes the indicator function of the set Cj. In particular, if

~

ln—l 72
=d5 = i -
G, = {x. ~ ;ICM(T )>1-7 }



ENTROPY AND EMPIRICAL DISTRIBUTIONS 975

then x € Gy, eventually almost surely. Thus, if we let G,, be the projection of G,
onto A", then property (a) holds.

Let us put £(y) = M and let #(y) be any number larger than 2 /Y2 Fixk > k(y),
t>ty)and tk +g) < n < (¢ + 1)k +g) and fix x € G,,. The definition of G, and
the assumption that ¢ > 2/42 imply that

1 t(k+g)
i—1

k+;

o

1 1¢ i 1)(ktg)—
= ’ P ? ZICM (Tr+(J 1)(k+g) lx) >1— 72’
i1

~
I
-

so there is a subset R = R(x) C [1,k +g] of cardinality at least (1 — y)(k + g)
such that

t
% ZICM (TrH-Db-1p) 5 1,
J=1

But if this holds for a given r € [1, %2 +g], the definition of Cj; implies that there
existm =m, > (1 — y)tindices 1 <j; <j; < -+ <jn < tsuch that,

r+(j—1)k+g)—g r+(j—1)(k+g)+N—1
1 Xr+(j—1)k+g)—g—N r+(i—1)(k+g)

r+(j—1)k+g)—g r+(—D(k+g)+N -1
'“( [xr+(i—1)(k+g)—g—N] n [xr+(j— Dik+g) ])

(30) <+,

forj e J, ={j1,...,jm} and for all N > M.

Letj = j; < jis1 = I be two successive members of J, and recall that we
assumed that 2 > k(y) = M. The inequality (30), together with the assumption
that v < 1/2, implies that

IA

r+(j—1)(k+g)+k—1
L+ (xr+(i— 1(k+g) ) B - 1ikeg)—g)

A +y)p (-’AEJ (r )) o (x;L+(l—1)(k+g)—g) .

N(x7+(j-1)(k+g)—g)

Inductive application of this bound starting with j = j; produces the desired
inequality, (29), thereby completing the proof of Lemma 6. O

We are now ready to prove our basic weak Bernoulli result.

THEOREM 4. If ju is weak Bernoulli and k(n) < (logn)/(H + ¢), then k(n) is
admissible for p.

Proor. Fixé > 0and choose a positive y < 1/2 sothat Lemma 4 holds. Then
choose integers g = g(v), k(y) and ¢(v) and sets G, = G,(y) C A*,n > 1, such that
conditions (a) and (b) of Lemma 6 hold. Fix ¢ > ¢(y) and ¢#(k+g) < n < (t+1)(k+g),
where k(y) < k = k(n) < (logn)/(H +¢). :
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For eachr € [1,k +g] and J C [1,¢], let D,(r,J) be the set of all x] such that
J is a splitting set for x7 associated with r. If x} € G,(v), then Lemma 6 implies
that there are at least (1 — y)(k +g) indices r € [1,k + g] which have splitting
sets of cardinality at least (1 — )¢, while, if |f(-|x}) — pz| > 6, then Lemma 4
implies that |1z, ,(|x]) — pe| > 6/2 for atleast 2¢(k +g) indices r € [1,k+g]. Thus

k+g
{2 e —m) 283G U {3 |3, — | > 6/2} 0 Dutr, o).
r=1  JCI1,8]
[ >(1—~)¢
The argument used to establish (25), with inequality (23) replaced by (29),
produces the upper bound

(31) 272071987(1 4 ) [R(n) + 8] (¢ + 1)2 /P 9—t1-7)C8% /100

for p({x}: |frm) — trmy| > 6} N Ga(7)), for sufficiently large ¢, where the extra
factor, 2-271%¢7 bounds the number of subsets J C [1,¢] for which |J| > (1 —7)¢.
If v is small enough, then, as before, (31) will be summable in n. Since x} € G,,
eventually almost surely, this establishes Theorem 4. O

4. The Ornstein-Weiss problem. We now show how our results are
connected to the Ornstein-Weiss d-estimation problem [Ornstein and Weiss
(1990)]. The d-distance is defined as follows. First, the distance between two
n-sequences is defined by

1 n
dn(a}, b) = > dla;,by),

i=1

where d(a, b)is 0 or 1, depending on whethera = b or a # b. Next, let J, (1, V) be
the set of all measures A on A” x A" that have x and v as marginals and define
the d,-distance by

7 _ : n .n
dn(p,v) = Aelgrll,,l(r/i,u)EA (dn (xl,yl)),
where E) denotes expected value with respect to ). If 4 and v are stationary
processes with alphabet A, then

d_(,u, V)= hrlzn Jn(ﬂn, Vn),

a limit which can be shown to exist. The processes that are d-limits of the
mixing multistep Markov chains are called the “almost Markov” processes.
(Other names, which arise from other characterizations of these processes,
are also used, such as finitely determined, very weak Bernoulli and almost
block independent.)

Let us say that a sequence {k(n)} is d-admissible for the ergodic process y if

lim dn By, Hn) = 0 a8
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Ornstein and Weiss have shown that, if 4 is a finitely determined process and
k(n) < (logn)/H, then {k(n)} is d-admissible for ;. [see also Ornstein and Shields
(1993) for an extension of these results]. Since we always have

dn(p,) < D |u(al) - v(a})],

n
ay

our results include theirs for the case when p is aperiodic Markov and 2(n) <
(logn)/(H + ¢). It is trivial to show, however, that the class of processes for
which a given sequence {k(n)} satisfying k(n) < (logn)/(H +¢) is d-admissible
is closed in the d-metric; hence our results include theirs for the general finitely
determined case, at least when k(n) < (logn)/(H + ¢). With a little effort it can
be shown that a finitely determined process can always be approximated in d
by multistep mixing Markov chains of smaller entropy; hence Ornstein—Weiss
results can be derived from ours, even in the case k(n) < (logn)/H.

In summary, our proofs are not as elegant as the Ornstein—Weiss proofs, but
we have been able to show, at least in part, how their results are connected to ap-
proximation in variational distance, and hence that they are closely connected
to classical statistical questions.
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