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FUNCTIONAL LAWS OF THE ITERATED LOGARITHM FOR LOCAL
EMPIRICAL PROCESSES INDEXED BY SETS

BY PAuL DEHEUVELS! AND DAVID M. MASON2

Université Paris VI and University of Delaware

We introduce the notion of a multivariate local (and tail) empirical pro-
cess indexed by sets and establish a number of functional laws of the iterated
logarithm for such processes. This leads to a unified methodology to study
the almost sure behavior of various statistics which are local functionals of
the empirical distribution. Such statistics include density estimators and
the Bahadur—Kiefer representation.

1. Introduction and outline of results. Let Uy, U,,... be independent
random variables uniformly distributed on [0, 1]¢ with d > 1. Let B be the class
of Borel subsets of [0,1]¢. Denote by A(-) the Lebesgue measure in R?, and
Ao(-) the restriction of A(-) to [0, 1]¢. Consider the uniform empirical measure
indexed by B, defined by

n
1.1) MB =SS 1U B, BeB, fon>1,
n i=1

with 1 denoting the indicator function. For any given subclass D of B, introduce
the uniform empirical process indexed by D, defined by

(1.2) on(D) =n'2{)\,(D) - \D)}, DeD.

We now consider the special class D defined as follows. Let t € [0, 1]¢ be fixed
and let C be a class of Borel subsets of [, b]? for some a < b with b —a = 1. Let
a=(a,...,a) e R set D = {t + C: C € C} and assume further that:

(C.1) t+C C [0,1]¢ for all C € C and, for all ~ > 0 sufficiently small,
t+h'%a,b]? C [0,1]7.

(C.2) Cis countably generated (see Section 2 for definition).

(C.3) C—ais a A\g-Donsker class (see Section 2 for definition).

(C.4) For every 3 <hy <hy <1, h1C C hyC C C.

We note for future reference that, for every C € C,

(1.3) limd,(hC,C) =0,
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1620 P. DEHEUVELS AND D. M. MASON

where d), denotes the pseudometric defined on C by d)\(A,B) = A\(A A B), with
AAB=(A—-B)U(B - A) denoting the symmetric difference between A and B.

(C.5) For every finite subset {C},...,Cy} C C with each A(C;) > 0, the class
C can be enlarged, if necessary, to include a finite set of disjoint {D;,...,Dy} C
C with each A(D;) > 0 such that for each C; there exists a subset J C {1 ., N}
for which Uj¢ sD; = C;.

We postpone until Section 2 a discussion of the meaning and implications of
these assumptions.

Also, we choose a sequence of positive constants {k(n), n > 1}, let log" u =
log(max(u,e)) and let log, u = log*(log" u). We assume that this sequence satis-
fies assumptions among the following, listed below.

(K.1) 0<k(n)<n, k(n) 1 coand n™tk(n) | 0 as n 1 oo.
(K.2) (logyn)~1k(n) — co as n — oo.
(K.3) (logyn)~*k(n) — ¢ € (0,00) as n — oo.

By the local empirical process at t indexed by C, we shall mean the process

-1/2 1/d
0,(C) = en< k(")) (c : ﬂn_)) _ (k<n>) . (t+ (k(n)) C)
n n n

(1.4) .
= (k(n) VZ{ZI(U ct+ ((n)) C)—k(n))\(C)}, Cec.

i=1

The limiting properties of the local empirical process have been investigated
at length in the special case when d = 1, t = 0 and with C being the class of all
intervals of the form [0, s] for 0 < s < 1. When t = 0, this process is usually called
the tail empirical process. We begin by briefly reviewing the main strong laws
which have been obtained in this case. Set &,(s) = ©,([0,s], 0,k(n)/n), n,(s) =
A ([0,n"1E(n)s]) for 0 < s < 1 and denote by B(0,1) the space of bounded
functions on [0, 1]. Introduce the function A defined by

xlogx —x+1, forx >0,
(1.5) h(x)=<{ 1, for x = 0,
00, forx < 0.

We have the following results.

THEOREM A [Mason (1988)]. Under (K.1) and (K.2), the sequence of func-
tions {(2logy n)~Y2¢,, n > 1} is almost surely relatively compact in B(0, 1) with
respect to the uniform metric, with limit set S composed of all absolutely con-
tinuous functions f on [0,1] wzth f(0) = 0, and having Lebesgue derivative f
satisfying

1
(1.6) / F@?Pde <1.
0
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THEOREM B [Deheuvels and Mason (1990)]. Under (K.1) and (K.3), the
sequence of functions {(logon)~'nn,, n > 1} is almost surely relatively compact
in B(0,1) with respect to the uniform metric, with limit set composed of all
absolutely continuous functions f on [0, 1] with f(0) = 0, and having Lebesgue
derivative f satisfying

1
(1.7 / ch(c7f(s)) ds < 1.
0

Results such as those given in Theorems A and B proved to be very useful to
describe the limiting behavior of tail statistics, that is, statistics based on the
upper (respectively lower) extreme values of a univariate sample. We refer to
Deheuvels and Mason (1991), and the references therein, for examples of such
applications.

The first purpose of this paper is to provide a unified approach to the study
of the almost sure behavior of multivariate tail or local statistics (such local
statistics include as examples the multivariate density estimators which we
consider in Section 3).

Toward this end, we first establish in the more general setting of local em-
pirical processes indexed by subsets of R? a greatly extended version of the
functional law of the iterated logarithm stated in Theorem A. We introduce the
class B(C) of all bounded functions defined on C and endow this space with the
topology of uniform convergence on C. We have the following theorem.

THEOREM 1.1. Under (K.1), (K.2) and (C.1), (C.2), (C.3), (C.4) and (C.5), the
set of functions {(2log, n)~1/20,(C), C € C} is almost surely relatively compact
in B(C), with limit set equal to

(1.8) S(C):= {feB((C): f(C) = / ¢(s) dX(s) with / $2(s)dA(s) < 1}‘
c R¢

In Section 2 we discuss the regularity conditions that we must impose upon C
for the validity of Theorem 1.1, and then we provide a proof of this theorem. Our
methods are entirely based on the general theory of empirical processes and do
not make use of strong invariance principles. We present applications of these
results in Section 3. In particular, we establish laws of the iterated logarithm
for the pointwise strong consistency of nonparametric density estimators which
improve upon the results of Hall (1981).

The second purpose of this paper is to investigate extensions of Theorem 1.1
obtained by considering the limiting behavior of the empirical process in the
neighborhood of more than one fixed point. We now present the corresponding
results.

Let t; = 0 = (0,...,0) and set ky(n) = n for n > 1. Assume that t,,...,ty
€ [0,1]¢ are fixed and distinct. Consider N sequences of positive constants
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{kj(n), n >1},j=1,...,N,and N +1 classes C; of Borel subsets of [a;, bj]d with
bj—aj=1for j=0,...,N. Set

wy, /(C) = (2log, n)~1/20, <C7 6, k,-(n))

n

| 1 A 1/d
(1.9) _ (2 kjr(ln) 1082 n) o (tj + (kjr(ln)) C) )

forCeCj, j=0,...,N.

Our second main result may be now stated as follows.

THEOREM 1.2. Assume that C, satisfies (C.2) and (C.3), that, for each j =
1,...,N, the sequence k(n) = k;(n) satisfies assumptions (K.1) and (K.2) and
that, foreachj=1,...,N,C=C;and t = t; satisfy conditions (C.1), (C.2), (C.3),
(C.4) and (C.5). Then the sequence {(wy, o, .. S Wn,N), n > 1} is almost surely
relatively compact in S(Cy) x - - - x S(Cy) with limit set equal to

N
{(wo,...,wN) e [Is@: wic) = /c ¢i(s)dX(s), j=0,...,N,

Jj=0

J

The description of the limiting behavior of w, o(C) = (2log, n)~1/2a,(C), C €
Co, which follows from Theorem 1.2 is a special case of the results of Kuelbs
and Dudley (1980). The first functional law of this type for w, o(-), d = 1 and
Co = {[0,s], 0 <s < 1} is due to Finkelstein (1971).

We will prove Theorem 1.2 in Section 2. Among the applications of this the-
orem given in Section 3, we will obtain a simple derivation of the pointwise
Bahadur-Kiefer representation of the empirical process [Bahadur (1967) and
Kiefer (1970)], extending the methodology of Deheuvels and Mason (1992).

In view of Theorem B, the limiting behavior of ©,(-) under assumptions
(K.1) and (K.3) is much different. A complete study of this case is presented in
Deheuvels and Mason (1994).

(1.10) N
y do(s)dA(s) = 0, ;Ad $A(s)dX(s) < 1}.

)

2. Strassen-type functional LILs for local empirical processes.

2.1. Preliminary results and notation. We inherit the notation of Section 1
and assume that the random variables Uy, Us, . .. are defined on the same prob-
ability space (2, F, P). We recall that C is a class of Borel subsets of [a, b]¢ for
some a < b with b — @ = 1, and satisfying
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(C1) t+C C [0,1]¢ for all C € C and, for all A > 0 sufficiently small,
t +h'a,b]? C [0, 1]4.

(C.2) Cis countably generated; that is, there exists a countable subclass G of
C such that, for any D € C, there exists a sequence {D,, n > 1} of G satisfying,
for all x € R?,

2.1) nlinclx) 1(x € D,)) = 1(x € D).

In the sequel we will say that a class G of this type is a countable generating
subclass of C.

(C.3) C — ais a \p-Donsker class.

Following Dudley (1978), Kuelbs and Dudley [(1980), page 406] and Gaenssler
[(1983), pages 46, 65 and 113], a class D is said to be a \j-Donsker class if
the normalized empirical measures {a,(D), D € D} as defined in (1.2) con-
verge in law [in the sense of Dudley (1978), Section 1] to a Gaussian measure
{GA(D), D € D}. We refer to Theorem B, page 113 in Gaenssler (1982), and
to Giné and Zinn (1986), Talagrand (1988) and Alexander (1987) for further
details concerning Donsker classes.

(C.4) For every 3 <h; <hy <1, h,CC hyCCC.

(C.5) For every finite subset {C},...,Cy} C C with each A(C;) > 0, the class
C can be enlarged, if necessary, to include a finite set of disjoint {Dy,...,Dy} C
C with each A(D;) > 0 such that for each C; there exists a subsetJ C {1,...,N}
for which UjesD; = C;.

We start by recalling some useful facts concerning the implications of the
assumptions (C.1)—(C.5). Denote by By(C) the linear space of all bounded real-
valued set functions, defined on C and uniformly continuous with respect to
the pseudometric d. Notice that C — M(C) belongs to By(C), since for any two
measurable sets C; and C,,

(2.2) [AC1) — MC3)| < di\(Cq,C)).

Denote by B;(C) the linear space composed of all real-valued set functions ¢,
defined on C and of the form

k
(2.3) $(C) = $1(0) + Y _a;1(x; € C),
i=1

witha; € R, x; € R?, 1 <i <k, k €N, and ¢; € By(C). Recalling (1.4), we see
that ©, € B1(C) for each n > 1. Observe that By(C) C B;(C). Endow these two
linear spaces with the supremum norm defined by

(2.4) l¢llc = sup |$(C)|.
; cec

For each C € C, let n¢: B1(C) — R be defined by 7nc(¢) = ¢(C). Denote by
A := o({m¢: C € C}) the o-algebra generated in B;(C) by {r¢: C € C}, and by By
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the o-algebra generated by the open balls with respect to || - ||c. The following
useful result holds.

Fact 1. Under (C.2), we have

(2.5) By C A.

Moreover, if G is a countable generating subclass of C, then, for any ¢ € B(C)
and e > 0,

26) {feBOx:l¢-Fflc<e}= () {f €BO):|¢pD)-fD) <&}

DeG

In addition, for each n > 1, the set-function which maps C € C to \,(a + C)
[resp.©,(C)] is (F, A)-measurable, and each sample path of {\,(a +C), C € C}
(resp. {©,(C), C € C}) is uniquely determined by its values on G.

PrROOF. See, for example, Lemma 20, page 108 of Gaenssler (1982). O

For any A € B, consider forn > 1,
n
an(A) = n2 (M0, (A) — MA) =n~12> " {1(U; € A) - XA},
i=1
and, fore > 0andn > 1, set
2.7 6n(e) = sup {|an(A) — an(B)|: A,B € C—a, d\(A,B) <¢}.
In view of (1.3), setforh >0, >0, CeB,andn > 1,

_ 1y : Yd@y _ -1 1/d
2.8) en(C,h)-\/n_h;{l(U,et+h C) h/\(C)}_\/;_Lan(t+h C)

and
(2.9)  wnle, h) = sup {|©,(C,h) — ©,(D,h)|: C,D € C, dA(C,D) < e}

Fact 2. Assumptions (C.2) and (C.3) jointly imply that, for all € > 0 and
v >0,

(2.10) lif% { lim sup P (6,(e) > 'y)} =0
€ n — oo
and
(2.11) C is totally bounded with respect to'd .

ProoF. See, for example, Dudley (1978), and Theorem B, page 113 of
Gaenssler (1982). Note here that (C.2) implies, by Fact 1, that §,(e) is
F-measurable. O
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Fact 3. We have the following inequalities, for any bounded C,C’',D,D’ € B:

(2.12) d\(CND,C’'NnD’') <d\(C,C")+d\(D,D’,
(2.13) d\(C—D,C' —D') <d\(C,C")+d\(D,D").

Proor. We have

(CND)A(C'ND’) C(CAC")U(DAD')
and

(C -D)A(C' —D") C (CAC")U(DAD",
which obviously imply (2.12) and (2.13) . O

2.2. The oscillation modulus of the local empirical process. In this section
we will obtain a uniform upper bound for the oscillation of ©,(C) with respect to
the pseudometric d,. This result, stated in Lemma 2.4 in the sequel, will turn
out to be an essential tool in the proofs of our main theorems. We will frequently
use the following fact.

FacTt 4. Let Uy, U,,... bei.i.d. uniform [0,1]¢ random variables. Then, for
1 < m < n, the conditional distribution of

m
Y 1(Uiet+h'¥C), Cec,
i=1
giventhat Uy,..., Uy, € t+hY%a,bl* and Uy, ,1,...,U, & t+h'/%[a, b]?, is equal
to the distribution of
m
Y 1U;eC-a), CeC.
i=1

Proor. Straightforward. O

LEMMA 2.1. Whenever the sequence {k(n),n > 1} is such that 0 < k(n) < n,
k(n) — co and n~1k(n) — 0 as n — oo and C satisfies (2.10), then, for all n > 0,

(2.14) lim { lim supP(w,, (5, @—)-) > n) } =0.
el0 n— oo n

Proor. For any n > 0 and ¢ > 0, set 6(¢,n) = limsup,, _, ., P(0.() > n/4).
For any 0 < ¢ < 1/2, let z(¢) be defined by P(|Z| > z(¢)) = ¢, where Z is a
standard normal random variable. We note, by (2.10), that, for each n > 0,

(2.15) lim d(c,7) = 0.
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Since P(|Z| > z) = (1 +0(1)),/(2/m)z~! exp(—122) as z — oo, an easy calculation
shows that

(2.16) lifr& ez(e) = 0.
We will establish that, for all 0 < ¢ < 1/2 such that n — ez(e) > /2,
(2.17) lim supP(wn (e,n"'k(n)) > 77) < b(g,m) +¢,

which, when combined with (2.15) and (2.16), implies (2.14).

Let
1/d
N, =#{U1,...,Un ct+ (-k_(:—)) [a,b]d}.

Now N, follows a binomial Bin(n,k(n)/n) distribution which : atisfies, under

(K.1) [observe that this assumption entails n(k(n)/n)(1—k(n)/n) = {1+0o(1)}k(n)

— 00 as n — oo],

N,, — k(n)
Vk(n)

where “—,” denotes convergence in distribution.
We have the following easy bound:

P(wn (e, n_lk(n)) > 77)

(2.19) < Z P(w,, (E,n_lk(n)) >n, N, = m)
m: |m — k(n)| < 2(e)VER)

+P(INy — k(n)| > 2(e)V/ k(n)).

(2.18) —4 N(0,1) asn — oo,

We see that
P(wn(e,n‘lk(n)) >, N, = m)

- (7)1 Kooy
B m - n n
1/d
. P<wn(e,n—lk<n>) sufviets (B2) Vbt i=1m,

1/d
Ui¢t+(M> [a,b]d,i=m+1,...,n>.

n

(2.20)

This, in turn, by the distributional identity given inAFact 4, and making use
of the fact that A\(CAD) < ¢ and [m — k(n)| < z(¢)vk(n) together imply |MC) —
AD)| x |m — k(n)| < ez(e)v/k(n), is less than or equal to

() (- 22)" " (42) {0y - ).
m n n m
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Observe that, for all large n, we have /k(n)/m > 1/2 uniformly over |m—k(n)|
< z(e)v'k(n). Hence, by our choice of ¢, our bound is, uniformly over |m — k(n)| <
z(e)vk(n), less than or equal to

P(Nn = m)P(om(E) > ?7/4),
which entails (2.17). The proof of Lemma 2.1 is now complete. O

Let s1,s9, ... be a sequence of i.i.d. random signs, independent of Uy, Us, ...
and such that P(s, = 1) = P(s, = —1) = 1/2. Let, for any C € C,

(2.21) Su(C) =) s 1(U; € t+0).
i=1

Now, (C.3) implies that for all > 0 [see Theorem 2.14 of Giné and Zinn (1984)]

. . (C) = S,(D
(2.22) EIII(} { llﬂs;pP(sup{ls(C)T()I: d,(C,D) < 5‘} > n) } =0.

Foranye > 0and C € C, let
An(C,€) = sup{|Sp(C) — S,(D)|: D € C, d»(C,D) < &}.

Assertion (2.22) along with the symmetric distribution of S,(-) allows us
to follow exactly the steps used to prove Lemma 3.5 of Kuelbs and Dudley
(1980) to produce the following inequality. For every ¢ > O there is an integer
M = M(e) > 0 such that, forevery 2 =1,2,...,\,;and A > 0,5 > 0,

(2.23)  P(Aw(C,e) > 22b) < exp(—X%+ X2¢(M,k, ), b,¢)),
where
1 2)\M) 17a2kM}

S _]‘_ 2 1/2
(2.24) ¢(M,k,)\,b,s)._2{ S (UTRM) Y 4 exp( 5= ) =

This inequality, in turn, yields, for alln > M, A > 0 and b > 0,

,Ha

where we make use of the fact that A,(C,e) < Apy(C,e) + M, with k = |n/M|
and |« ] denoting the integer part of u.
Forany C e Cand 2 > 0, set

(2.25)  P(An(C,e) > 2)b+M) < exp(—)\2 + /\2¢<M e /\,b,s)),

(226)  Tu(C,h) = {1(Ui e t+hVC) ~1(U; e t+hVC) |,
i=1

where U}, U, ... is a sequence of i.i.d. uniform [0, 1]¢ random variables, inde-
pendent of Uy, Us,, . ... Furthermore, set

(227)  Du(C,h,e) = sup{|T,(C,h) — To(D,h)|: D € C, dA(C,D) < &}.
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LEMMA 2.2. Assume that (C.1)-(C.4), (K.1) and (K.2) hold, that is, that

(2.28)4) k@®)T;
(2.28)(i) n~lk(n) |;
(2.28)(iii) (logyn)~k(n) —» 00 asn 1 co.

Then there exists a constant K < 480 such that, for all 0 < e < 1 and C € C,

(2.29) lim sup 2n (G )/, £/2)

n— oo VEk(n)logyn

<Ke a.s.

PrOOF. Setn,=|p],r=0,1,...,forsome 1 < p < 2. By (2.28)(i), (2.28)(ii),
(C.4) and (1.3), in combination with the inequality M((AC)AD) < M(RC)AC) +
MCAD), we obtain that, for some 1 < p < 2 depending on ¢ > 0,

n ) ’ 2 n y r T
max D, (C,k(n)/n,e/2) < max 2D, (C, k(n,)/n,,¢) .

n<n<ng. \/k(n) 10g2n - np<n<nq \/k(n,-) 10g2 n,

Next, by a general version of Lévy’s inequality [see Lemma 3.1 of Kuelbs and
Dudley (1980)], for any z > 0 and € > 0,

D, (C k() /) 82€>

P max
nr<n<np,y \/k(n,-)logé ny

(2.30) D (C, k)
ny)/Nny, €
<P P LT ) s 8ze | =1 2P(r).
= ( /@) logy n, ZE) )
Set, forr=1,2,...,
. 1/d
N,=#{U1,...,U,,Met+<k(:’)) [a,b]d}
and

. 1/d
NL:#{ ;,...,U,'Met+<k(r:")) [a,b]d}.

r

Notice that N, and N ; are independent binomial Bin (n,,1, k(n,)/n,) random
variables. Set, for any A > 0 and C € C,

To(C,h) = Y si{1(Us €t +h¥9C) — 1(U] e t + hV9C) |,
i=1

where s1, 89, ... is an i.i.d. sequence of random signs as above, independent of
Uy,U,,...and Uy, Uy, . ... Since

{T(C,h),C € C} =4 Tw(C, h),C € C},
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with “=;” denoting equality in distribution, we get immediately that
{D,(C,h,e), C e C} =4 {Dn(C,h,e), C € C},

where
(2.31) Dy(C,h,e) := sup { |Tn(C,h) = To(D,h)|: D € C, d5(C,D) < 5},

Now set, for {i1,...,im,j1,. .-, jm } C {1,...,n,41},

P'(e) := P(Enr+1 (C, k:lr),c*)

r

> 8ze+/k(n;)log, n,

(2.32)

A(ily'“aimajla"'yjm'))a

where Ay, ... ,im, J1,.- ., Jm ) is the event that

1/d
U et+ (k(n’)

la,b]¢ forie {iy,...,im},

1/d
U ¢t (k(nr)> [a,b]d fori e {1,“,,nr+1}—{il,-..,im}a
1/d
<k<nr)) la,b1% forje {ji,...,jm},
1/d
Ui ¢ t+ (k(:r)> la,b1 forje{1,...,n, 1} = {j1,- s J},

from which it follows that
B’(s)=P<sup{ Zs,k{ (Uy €C) -1(U, € D)}
Zsjp{ UVJPEC (IJJPGD)}‘

> 8ze+/k(n,;)logyn,: D € C, d,(C,D) < e})

< P(An(C,¢e) > 4ze\/k(n,) log, n,)
+ P(An/(C,€) > 4ze\/k(n,) logy n,) =: P(r,m) + P(r,m').

By (2.30), (2.31), (2.32) and (2.33), it follows that

(2.33)

P(r) < > {PGr,m) + Pr,m")}P(N, = m)P(N, = m')
(2.34) k(n,) <m,m’ < 3k(n,)

+2P(N, > 3k(n,) or N, < k(n,)) =: P1(r) + Py(r).
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Consider first Py(r) and recall that N, is Bin(n, . 1, k(n,) /n;). By Inequality 1,
page 440 in Shorack and Wellner (1986), whenever Y is Bin(n, p), we have

2
(2.35) P(IY —np| > 7v/n) < 2exp (—;—p’ﬁ(p%))’

for all y > 0 and 0 < p < 1/2, with ¢(u) = 2u~2{(1 + u)log(1 + u) — u}.
Set in (2.35) n = n,,1, p = k(n,)/n, and, recalling that p=n,.1/n, €(1,2),

7 =0 k) min { (8 = (1y41/n), (111 /) - 1)} =n ke Xp - .

We see that

2 _ 2 —
7 _ -1 k(n,) and v p-1

2p 2p PV P

Hence we have

(p—1)2
2p

(2.36) Py(r) <4 exp (— k(n,)zp<p—;—1)) =: 4exp( — c1k(n,)).

By (2.28)(iii) we see that for all r sufficiently large, k(n,) > (3 /c1)logyn, >
2logr, which, in turn, implies by (2.36) that Py(r) < 4r—2. Hence we have
(2.37) > Py(r) < co.

r

Next, let M = M(¢) be as in (2.25). Since /k(n,) log, n, — oo, we have, for all
r sufficiently large and k(n,) < m < 3k(n,),

P(r,m) = P(An(C,¢) > d2e1/k(n,) log, 1, )
< P(An(C,e) > 2z6+/k(n,) log, n, + M).

By choosing X = A\, = \/z log, n,, k = m/M and b = b, = \/zk(n,) in (2.24), we
see that, for all r sufficiently large and k(n) < m < 3k(n,),

m 1 v51 2M [logyh, | 51
. 7 e <5 ——— — -5,
(2.39) ¢(M,M,/\,,b e) 2{2 log2n,+ exp( . ACH) ) p, }
which by (2.28)(iii) is less than 26/z for all large r. Now choose z = 30. By

combining (2.25), (2.38) and (2.39), we obtain that, for all r sufficiently large
and k(n,) < m < 3k(n,),

, | "
(2.40) Plrm) < exp <A< 1+¢<M’M”\”br,a)>>

< exp ((26 — z)log, n,) = exp(—4log, n,) < r3.

(2.38)
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By (2.34) and (2.40), P1(r) < 2r—2 for all large r, from which we get

> Py(r) < oo.

Therefore, on account of (2.30), (2.34) and (2.37), we conclude from the Borel—
Cantelli lemma that (2.29) holds with K = 16z = 480. This completes the proof
of the lemma. O

We will make use of the symmetrization procedure given in Lemma 2.1
of Ledoux and Talagrand (1990) [see also Lemma 3.16 of Kuelbs and Dudley
(1976)], which we state in a more general form as follows.

LEMMA 2.3. Let X be a Hausdorff topological vector space and let B denote
the corresponding o-algebra of Borel sets. Let || - || be a B-measurable semi-norm
on X Let {Z,,n > 1} and {Z),,n > 1} be identically distributed independent
sequences of X-valued random variables such that the sequence {Z, —-Z), n > 1}
is almost surely bounded (resp. convergent to 0) and {Z,,,n > 1} is bounded (resp.
convergent to 0) in probability. Then {Z,,n > 1} is almost surely bounded (resp.
convergent to 0). Moreover, if, for some numbers M and A,

(2.41) limsup||Z, —Z,| <M as.
and T

(2.42) limsupP(||Z,|| > A) <1,
then T

(2.43) lifl»solip 1Z.| <2M+A as.

PrROOF. Assume that (2.43) does not hold. Then there exists almost surely
a sequence 1 < n(l) < n(2) < ---, depending on {Z,} only, and an € > 0 such
that

lim inf||Z,p| > 2M +A + <.
k — 00

On the other hand, (2.42), in combination with the fact that {Z] } is independent
of {n(k)}, implies

limian(Hz;(k)” <A) >0,

so that we may extract from {n(k),k > 1} a subsequence {m(k),k > 1} such
that

limsup || Z,,pl| <A as.
k — 00
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Thus we have
l%minf“Zm(k) —Znwl>M+e as,
a contradiction. The proofs of the other statements are similar and will be
omitted. O
Let ©,(C, k) be as in (2.8) and set, for C€ C, ¢ > 0,h > 0and n > 1,
(2.44) W,(C,h,e)=sup{|©,(C,h) — ©,(D,h)|: D € C, d\(C,D) < e}.

LEMMA 2.4. Assume that (C.1)~(C.4), (K.1) and (K.2) hold, that is,

1) k() T;
(i) n~lk(n) |;
(iii) (logyn)~k(n) — ccasn T oco.

Then there exists an ¢ > 0 such that, for each 0 < & < gy,

W (C k(n) %)
(2.45) limsup{ sup —~2r 22/ 4 < oK. qs.
n—»oop Celq): \/log2n '

Proor. We will apply Lemma 2.3 to the sequences

k(n) 1/d
WZ{( s (2)""6) -k

k(n) 1/d
\/W Z{ ( <T) C> —k(n))\n(C)}.

Observe that Z, and Z/, as defined above are B(C)-valued random variables. For
any € > 0 and ¢ € B(C), set

(2.46) ]l = sup{|¢(C) — $D)|: C € C, D € C, dx(C,D) < &}.

In view of Fact 1, (C.1), (C.2) and (C.4) imply that || - || is a measurable semi-
norm on B(C). We see from (2.26), (2.27) and (2.46) that

D, (C,k(n)/n, €)
(2.47) limsup |Z, — Z,||c = hm sup{ sup ———————" .
n—»oop | d oop { CE% Vkn)log, n }

Making use of Fact 1, and then of Lemma 2.2, we see that if G is a countable
generating subclass of C, then, with probability 1,

Du(C km/n ¢) = lim sup { sup Dn(C, )/, ) }

limsup{ sup ———*
n—»oop{ce% v/ k(n)logy n } nooo | cec +/k(n)loggn

D, (C,k(n)/n,¢)

= sup < limsu < Ke.
cec { e /R logyn }

(2.48)
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Thus, by combining (2.47) and (2.48), we obtain
(2.49) limsup||Z, — Z,|. <Ke as.

n — oo

On the other hand, we see from (2.8) and (2.9) that
wn (e, k(n)/n)

VEM)logy n’

Let A > 0 and n > 0 be arbitrary. In view of (2.50), Lemma 2.1 implies that, by
choosing, independently of A, an () > 0 sufficiently small, we obtain that, for
all 0 < e <e(N),

limsupP(||Z,| > A) = lim supP(wn (5, @) > Av/k(n)log, n)

n— n— oo
(2.51)
< limsupP<wn (e, I_e_(ﬁ) > n) <1
n— oo n
In view of (2.49), (2.51) and Lemma 2.4, it follows that, for each 0<e < ¢ := &(n),

{ W,.(C,k(n)/n,e/2)

(2.50) 1Zy ]l =

(2.52) limsup

n—oo

sup

cec V1ogy n

Since A > 0is arbitrary, we obtain readily (2.45) by applying (2.52) to a sequence
A, | 0. This completes the proof of Lemma 2.4. O

} =limsup |Z,]. <2Ke+A as.
n — oo

2.3. Proofof the theorems. We start by proving a special case of Theorem 1.1
obtained by considering the joint limiting behavior of {(2log, n)~1/20,(C;), 1 <
i < M}, where M > 1 and Cy,...,Cy € C are fixed, with X\(C;) > 0 for i =
1,...,M. This result is given in Lemma 2.9 below. Before stating this lemma,
we need the following preliminary results. We assume from now on that the
assumptions of Theorem 1.1 hold.

Choose Dy, ...,Dy as in (C.5). Let

v 20,(D)) v kM
Ne A = —=)
259 X)) = =7 (Zz/jk(n)logzn) ""‘(t*( n ) ’)

and set X, = (X,(1),...,X,(N)) € R¥. We will describe the limiting behavior of
X, in Lemmas 2.7 and 2.8 in the sequel. For the proof of these two lemmas, we
will need two technical results stated in Lemmas 2.5 and 2.6 below. Introduce

the following notation.
Let {II(2), ¢t > 0} denote a right-continuous Poisson process with E(II(?)) = ¢.

Let, forj=1,...,N,

- J Jj—1
(2.54) Y,(j) = (2uk(n)log, n) Q{H(k(n)zui> —H(k(n)z u,) —k(n)z/j}
i=1 i=1

and set Y, = (Y,(1),...,Y,(\N)) € RV,
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LEMMA 2.5. Whenever n > 5 and
k(n) & 1
—_ - < —
P

we have, for any Borel subset A of RV,

(2.55) P(X, € A) <2P(Y, € A).

ProoF. Making use of the fact that the distribution of Y, = (¥,(1),...,
Y,.(N)), given that II(n) = n, is equal to the distribution of X, the proof is
similar to that of Lemmas 2.1 and 3.1 in Deheuvels and Mason (1992a) and
will be therefore omitted. O

LEMMA 2.6. Let N > 1 be fixed and let L = L(n) and n > 1 be positive

integers. Let (Ry, ...,Ry) follow a multinomial distribution of the form
L N L- Eﬂlrj
PRy=ry,...,Ry=1N) = PrlmprN(l— P') )
rlo (L= SNyt N ; !

for integersry > 0,...,ry > 0and Ejl‘ilrj < L. Further, let

m:@uj and rj=Lpj+6,/2npjlogon for j=1,...,N,

and assume that n/L(n) and §; = §j », forj=1,...,N, are bounded away from 0

and oo as n — oo. Then, for any € > 0, there exists a constant C > 0 such that,
ultimately as n — oo, we have

N
(2.56) P(Ry =r1,...,Ry =ry) > Ck(n)™"/?exp (—(1 - e)%{ > 5}’} log, n) :
J=1

Proor. It follows from Stirling’s formula and straightforward expansions.
We omit the details. O

LEMMA 2.7. Assume that (C.1)-(C.5), (K.1)and (K.2) hold. Then the sequence
{X,, n > 1} is almost surely relatively compact in RN, with limit set included in

N .
(2.57) Ly := {X:(xl,...,x]v):zsz < 1}
. ’ j=1

ProOOF. The proofis decomposed into the following sequence of steps.
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Step 1. Fix a v € (0,1) and introduce the sequence n(m) = [(1 + y)™].
Consider the sets defined, for n(m — 1) <n <n(m)and m =0,1,..., by

n_k(nm)\"*
78_(;1—)- n(m) ) Dj _'anj'

(2.58) Di(n) = <

Let accordingly, forj=1,...,Nandn > 1,

o n 1/2 E(n) 1/d )
(2.59) Xn(J) = <21/Jk(nTg2n) (o7 <t + (T) Dj(n)

and X/, = (X (1),...,X,(N)).
We will show that, for any ¢ > 0, there exists a vy > 0 such that, for all 0 <

Y S Yo,
) . . / .
(2.60) lim sup {  max, X () —Xn(J)l} <e as.

n —oo

First, observe that, for all m large enough and n(m — 1) < n < n(m),

n
2.61 1-4y<——<1,
(2.61) TS o S
which by k(n) 1 0 and n~'k(n) | 0 gives, for all large enough m and n(m — 1) <
n < n(m),

logy n(m) <N

(2.62) (1 —k(n(m)) Tog,n = nGm)
2

k(n(m)) < k(n) < k(n(m)).

Thus, by (2.58), (2.61) and (2.62), for all large m and n(m — 1) < n < n(m), we
have Di(n) = p.Dj, with
(2.63) 1-Y<p, <1

By (1.3) applied to {D;, 1 <j < N}, it follows that, for any ¢ > 0, we may choose
v = v(e) > 0 so small that for all m large enough

» 1
. D;, D! S min(1,=
(2 64) n(m—gl<ar}z{§n(m){lrgnja§XNd/\( 7 J(n))} < 2mln<1,K)’

where K is as in (2.45). We now apply Lemma 2.4, which, when combined with

(2.64), suffices for (2.60).
Step 2. Let,forj=1,...,N,m > 1and n(m — 1) <n < n(m),

. n 1/2 k(n(m)) 1/d
X ()= (Zujk(n(m)) log2‘n(m)) Gn (t+( n(m) ) D;

_(__K@logyn )1/2 o ( E(n) ) .
- (k(n(m))log2n(m) X)) < X, (),

(2.65)
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and X! = (X//(1),...,X}/(N)). Observe from (2.59) that
(2.66) X)) = Xy (D) = Xnmy (),
and that, for n(m — 1) < n < n(m),

Xy ) — X (J)

(2.67) _ n(m) —n /2 k(n(m)) \ V¢ -
- <2ujk(n(m))log2n(m)) Gnm) = t+( n(m) ) i)

Let 6 =(61,...,6n5), m = (n1,...,ny) and introduce the events

Crh(6+m)= { ﬂ IX'())| > 6; + nj for some n(m — 1) <n < n(m)},

1<j<N
Dy (6) = { N X > 5,} = { N XamW)| > 5,-} by (2.66).
1<j<N 1<j<N

We will prove that if §; >0 and 7, >0 or §; =n; = 0 forj = 1,..., N, then there
exists an mg such that, for all m > my,

(2.68) P(Cr(6+m) < 2P (D,,(6)).
Toward a proof of (2.68), set

E.(6+m) = { N XDl =&+ m}
(2.69) s

Fm,n(n>={ N X = X7 )| <n,~}.

1<j<N
In the remainder of our proof, we assume, without loss of generality, that
min(y,...,6y) >0 and 5 :=min(p,...,nv) > 0.

First, we notice that, for n(m — 1) < n < n(m), thg events {E (6 +m), n(m —1) <
g < n} are independent of F,, ,(n). Denoting by E the complement of the event
E. It follows that

n(m) r-1
P(Cn(6+m)) = Z P (E,((S +n)N ﬂ E,(6+ n)) ,
r=nim-1+1 g=nim—-1+1

and hence, that
P(Fp, n(m)P(Cr(6 +m)

in
n(m —1)<n<n(m)
n(m) r—1

(2.70) < Z P(E,(a +n)NFp ()N ﬂ E (6 + n))

r=n(m-1)+1 g=n(m-1)+1

< P(Dn(8)).
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Next, we observe by (2.67) and the Chebyshev inequality that, uniformly over
n(m — 1) < n < n(m), we have, as m — oo,

N
g7 -2 11 N T N(n(m) _ n) N
PEnaln) <72 E (Kim@ = %0F) < gz Toggnten — ©

Hence there exists an m( such that, for m > my, inf,on — 1)< n < nm) PFm,n(0)
> %, which, by (2.70), entails (2.68).

Step 3. Denote by | - | the Euclidean norm in R". For each subset E of RY
and € > 0, let E¢ = {x € RV: |x - v| < ¢ for some v € E}.

Fix any 0 < € < 1. We first prove that there exists a constant K;(¢) such that,
for all large n,

Pn(e):=P(Xl ¢ ]L]EV/3 for some n(m — 1) < n < n(m))
< P(IX|2 > 1 + ¢ for some n(m — 1) < n < n(m))

< Kl(e)exp(— (1 + Z) log, n(m)).

(2.71)

Let @ = [16N/¢]. Observe that if
B+xh=1l+ve<2,

theny for |61| < 2/Q’ T |6N| < 2/Qy

N
(2.72) (x1+61)2+~--+(xN+6N)2 > 1+E-—4Z|(5i| > 1+§.
i=1
Assume that [X”|2 > 1+¢, and set, forj=1,...,N,
\/_1_+_6 % — Xj, 1fmj = 0,
X =X'/L’(J)<—|-X—7/—|—>, m; = [Q|xJ|J and b = e
n J

—x;, otherwise.

Q

Since |6|<2/Q for j = 1,...,N, it follows from (2.72) that m := (my,...,my)
varies in the set

2
(2.73) SN(€)={MIE{O,...,2Q}N: Z (ij_ 1) 21+§},

1<j<N:m;>2

Therefore, letting E,, be as in (2.69), we have the inclusions of events

(xtp>1+e}C | En(m/Q)

M € Sy(e)

< {0, o)

meSy(e) L1<j<Nim;>2

(2.74)
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Set M; = max(0,m; — 1) for j=1,...,N. We obtain from (2.68) and (2.74) that
P(X}/|2>1+¢ for some n(m —1) < n < n(m))

< ¥ P(Cm(%fg—))

Me SN(E)

(2.75) <2 ¥ P( (Ql ztg,)>

M € Sy(e)

<2 ¥ P( N {|X,;Qm,<j)lz%}>.

M € Sy(e) 1<i<N:M;>1

By Lemma 2.5 in combination with the fact that the Y,,)(j) are independent
forj=1,...,N, we have

(0 {02
1<j<N:M;>1
<2 H (IYn(m)(J)I >

1<j<N:M;>1 Q>

By Shorack and Wellner [(1986), (14), page 441, and inequality 1, page 485],
we obtain from (2.54) the upper bound, for M; > 1,

M; M; 2 2logyn
(2.77) <|Y M > 2 ) < 2exp (—(logz n)(a) (1 - 5 k) ))

By (K.1) and (K.2), the expression above is, for all large n, 1 <j < N and all
1< M; <Q,less than

1+¢/4 M;\?
2 exp <—<1 +E/2)(log2n)<—é-> .
Let Ky(e) := #Sn(e). Recalling (2.71), (2.73), (2.75), (2.76) and (2.77), we obtain,
in turn, that, for all large n,

N N2
P, (c) < 2N+2 Z exp (_(ii—ig>(log2n(m))z (%) >

(2.78) m € Sy(e) Jj=1
< 2N*2K () exp (— (1 + Z) log, n(m)) .

(2.76)

By choosing K;(¢) = 2V *2K(¢), we obtain (2.71) by combining (2.75) and (2.78).
Step 4. We observe from (2.71) that for any € > 0, ¥,,Pn(¢) < o0, so that,
by the Borel-Cantelli lemma,

(2.79) P(X/|*>>1+eio0)=0.
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Observe from (2.65) that, whenever (2.62) holds, we have (1 — )X/ |2 < |X/|2,
Thus, by (2.79), we obtain

(2.80) P(jx;f > 1te i.o.) Y
1-~

Since € > 0 and v > 0 may be chosen arbitrarily small in (2.60) and (2.80), we
complete the proof of Lemma 2.7 by the triangle inequality. O

LEMMA 2.8. Assumethat (C.1)-(C.5), (K.1) and (K.2) hold. Then the sequence

{Xn,n > 1} is almost surely relatively compact in RN | with limit set containing

N
(2.81) Ly := {x =(x1,...,%XN): Zx? < 1}.
Jj=1

Proor. The proofis decomposed into the following sequence of steps.

Step 1. Let v > 0 be the fixed and set n(m) = |[(1+y)"]| form =0,1,....
Consider, forj=1,...,N,

o n(m) 1/2 k(ntm)) \ V¢
(2.82)  Zn(j)= <2ujk(n(m)) logzn(m)> an(m_l)(t+( n(m) ) D,
and
oo n(m) 1/2 E(nm) \ V¢
Zn()) = (2ujk(n(m))log2n(m)) O"“’"’(“( n(m) ) D,
1/2 1/d
2.83 _ n(m — 1) ) (k(n(m))) ‘
283 (21/jk(n(m)) ogynemy) -0\ (T ) P
Xy — (M=) 2 )
= Anm)\J _( n(m) ) m\J /-

Observe that the Z/ (j) are independent for m = 1,2, ..., with

nim)—n(im —1) )1/2
2v;k (n(m)) logy n(m)

k ( ) 1/d
X Op(m)=n(m — 1) (t + < E:L(nrz )> Dj) .

By repeating the arguments of ‘'steps 3 and 4 of the proof of Lemma 2.6, we
obtain readily that, forj=1,...,N,

%ma(
(2.84)

(2.85) limsup|Z, (/)] <1 as.

m — 00
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Let Z! = (Z/(1),...,Z!(N)). Since n(m — 1)/n(m) — 1/vy as m — oo, (2.83) and
(2.85) imply that, for any € > 0, there exists almost surely a y; = y1(¢) > 0 such
that, for any v > 71, we have for all m sufficiently large

(2.86) |Xn(m) - Z;,Ill <e.

Step 2. Let @ > 1, (mq,...,my) € {1,...,Q} be fixed, (e1,...,en) €
{-1,1}" and consider

m1—1 mi

(2.87) P/ ;=P<e1Z;,'l(1)6 ( 0 0 :|,-.-;eNZ;r/z(N)€ (mNQ—l,%])

In this step we will show that, whenever

N o\ 2
(2.88) Z('@’) <1,

j=1
we may choose v > 0 so large that

(2.89) > Py =oo.

m

Since @ > 1 may be chosen arbitrarily large in (2.87) and ¢ > 0 arbitrarily
small in (2.86), the Borel-Cantelli lemma, in combination with (2.88), (2.89)
and the observation that the Z”, are independent, will then readily imply the
conclusion of the lemma.

Toward proving (2.89), we will make use of Lemma 2.5. Note from (2.84) that,
forj=1,...,N, the values of

nim) —n(m — 1)

oy R nm))

1/2
B; = (20 (n(m) loga nim)) * Z1n(j) +

are integers. Therefore, the number of possible distinct values of ¢;Z}, (/) in the
interval (m; — 1/Q,m;/Q] is for all large m greater than k(n(m))/2. In view of
(2.84), (2.87) and (2.54), it follows from Lemma 2.6, taken with n = n(m), ¢; =
ej(m;/Q) and L = n(m) — n(m — 1), that, for any ¢ > 0 and all large m,

" n(m) Normi\?
(2.90) P, > Cexp(—(l S vy s 1){ > (5]) } log, n(m)>.

j=1

Finally, we see from (2.90) that if we choose € > 0 so small and v > 0 so large

that
N
_L-e (-n}i)z <1,
1- (1/7),':1 Q

then (2.89) holds. The proof of Lemma 2.8 is now complete. O
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REMARK 2.1. A simple argument based on step 2 of the proof of Lemma
2.7, in combination with the just-given proof of Lemma 2.8, shows that, for any
random sequence {v(n), n > 1} of positive integers such that almost surely

~1u(n) — p € (0,00) as n — oo, the sequence {X,(,), n > 1} has almost surely
a limit set containing L,. Since Lemma 2.7 also implies that this limit set is
almost surely included in L,, we see that we may formally replace n by v(n) in
the statement of Lemmas 2.7 and 2.8. 4

LEMMA 2.9. The sequence {((2log, n)~Y20,(C),...,2 log, n)~1/20,(Cy)),
n > 1} is almost surely relatively compact in RM | with limit set equal to

(2.91) {( H()dAGS), ..., / ¢(s)d)\(s)>: / ¢2(s)d)\(s)§1}.
C; Cy Re

PRrROOF. By combining Lemma 2.7 and 2.8, we obtain readily that the se-
quence {((2log, n)~1/20,(D,), .. .,(2log, n)~1/20,(Dy)), n > 1} is almost surely
relatively compact in RY, with limit set equal to

N 2
(2.92) {(yl,...,yN): > Aéi)_) < 1}.
i=1 ¢

Let

(s) = Z D, 3o 18 € D).

Observe that, whenever (2.92) holds, we have

(2.93) y;= /D Y(s)d\(s) fori=1,...,N and /R ) P(s)dA(s) < 1.
Assume, conversely, that ¢ is an arbitrary measurable function on R?, with
(2.94) ' /]R RLOLCES!

and let y; = fDi ¢(s)dX(s) fori = 1,...,N. We obtain by the Schwarz inequality
and disjointness of the D;’s that

N
Yi

N 2 1 2
b ot | ,¢(S)dMS)}

i=1

N
< ; (D){/ ¢2(s)d)\(s)}{/Dld)\(s)}

/ #%(s)d\(s) < 1.
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By all this, and in view of (2.57), it follows that the set defined by (2.92) coincides
with

(2.95) {( #()dAG), ..., ¢(s)d)\(s)): / ¢2(s)d>\(s)$1}.
Dy Dy R¢

Since each C;, i = 1,...,M, is, Ap-a.e., the disjoint union of sets taken among
{D1,...,Dn}, (2.91) follows readily from (2.95). O

ProOF OF THEOREM 1.1. Wehave now in hand all the ingredients necessary
for proving this theorem, following the lines of the final part of the proof of
Theorem 2.1 of Kuelbs and Dudley (1980), pages 415 and 416. Fix an arbitrary
€ > 0. If we choose 1 = % min(eg, ¢/8K, e%/4) in Lemma 2.4, we obtain from this
lemma that there exists almost surely an n; < oo such that, for all n > n4,

n ’k ) 2
(2.96) sup Wn (C.W/n,€1/2) < <
cec v2logyn 2

By (2.11) there exists a finite sequence {C;, 1 <i < M} C C with the following
property. For any C € C, there exists an i € {1,...,M}, with d,(C,C;) < £;/2.
By (2.40) and (2.96) this implies, in turn, that

(2.97) (21ogy n)~1/20,(C) — (2logy n)~26,(Cy)| < %

Let 1 < njy <--- < n,, < -- be asequence such that, along {n/,}, the se-
quence {(2log, n)"1/20,(C;)} converges to a limit for each 1 < i < M. Then,
by Lemma 2.9, there exists a measurable function ¢ satisfying (2.94) and such
that, ultimately along {n/,},

&

<
4

(2.98) max ‘(210g2n)‘1/2@n(0i)— / P(s)dX(s)
1<i<M c

On the other hand, the Schwarz inequality entails

i / () dA(S) / () dA(S)
(2.99) ¢ Gi

1/2
< { / ¢2<s)dx<s>} dA(C,CV? < £,
CcCAC, 4

uniformly over ¢ € S(C) and d,(C, C;) < £%/16.
Thus, by combining (2.97), (2.98) and (2.99), we obtain that, ultimately along
{n}.}, we have ’

(2logy n)~1/26,(C) —. / #(5)dA(s)| < e.
C

(2.100) sup
CcecC
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We will now show that, almost surely,

. . -1/2 _
(2.101) lim sup {fé%(f(:) (21;% [(21og, n)~126,(C) f(C)]> } <e.

n— oo

To prove this statement, we observe that if (2.101) did not hold, then there
would exist an ¢’ > 0 and a sequence 1 < n; < ng < -- - such that, along {n,, },

inf 21 -1/2 - >e+e
fé%(C) (Slé}% |(2logyn) O,(C)—fO) | Ze+¢

On the other hand, Lemma 2.9 enables us to extract from {n,,} a sequence
{n!,} along which {(21og,n)~1/20,(C;)} converges for each 1 < i < N. In view
of (2.100), we obtain a contradiction. Since £ > 0 may be chosen as small as
desired in (2.101), it follows that, almost surely,

n — oo

. . _1/2 _ _
(2.102) lim {fé%(t;:)u(zlogm 0,(C) f(C)l]C}_O.

We now observe that S(C) as defined in (1.7) is a compact subset of B(C). To
prove that this property holds, it suffices to show that S(C) is totally bounded
and complete with respect to the uniform topology. In view of the equality of the
sets given in (2.92) and (2.95), and by compactness of the unit ball in R, the
first part is an easy consequence of (2.11) in combination with the existence,
for each € > 0, of {C;, 1 <i < M} € C, such that (2.99) holds. The second part
follows readily from the observation that S(C) is a closed subset of B(C).

By (2.102) it follows that the limit set of {(2log,n)~1/20,(C), C € C} is
almost surely included in S(C). To show that we have equality, we choose any
¢ € S(C). By Lemma 2.9, there exists a sequence 1 < n) <nj < ---, depending
on ¢ > 0, along which (2.98) and (2.100) hold ultimately. Therefore, there exists
ann = n(e, ¢) such that (2.100) holds. By repeating this argument for a sequence
€ =€, | 0, we obtain readily the existence of an increasing sequence 1 < nf <
nyg < ---, along which

I21ogy n)~20,(C) — gllc — 0.

This, in turn, implies that ¢ belongs to the limit set of {(21log,n)~ 129,, n > 1},
and completes the proof of Theorem 1.1. O

We now turn to the proof of Theorem 1.2, which will be obtained by com-
bining the following three main ingredients: (i) the just-given proof of Theorem
1.1, (ii) the classical proof of the functional law of the iterated logarithm for em-
pirical processes indexed by sets, due to Kuelbs and Dudley (1980) and (iii) a
general argument describing the LIL behavior of independent sequences, when
the corresponding behavior is known for each of these sequences. In order not to
repeat the unnecessary details of these proofs, we will limit ourselves presently
to a streamlined description of the main ideas which underline the result. We
start with three propositions. -
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PROPOSITION 2.1. Let ty,...,ty € [0,1]¢ be fixed. Consider N sequences of
positive constants {kj(n), n > 1}, j=1,...,N,and N classes C; of Borel subsets
of la;, b)% with bj—aj=1forj=1,...,N. Assume that, foreachj=1,... N, the
sequence k(n) = kj(n) satisfies assumptions (K.1) and (K.2), and that, for each
J=1,...,N, conditions (C.1), (C.2), (C.3), (C.4) and (C.5) are satisfied by C = C;
and t = t;. Consider N independent copies of the uniform empirical process

indexed by B, denoted by o$(-), j=1,...,N, and set

. . -1/2
w$(C) = (z 50 1og, n)

. . 1/d
xa511>(tj+<k;'(ln)) c)), CeCj,j=1,...,N.

Then the sequence {(w(,...,wM), n > 1} is almost surely relatively compact
in S(Cy) x - - - x S(Cy) with limit set equal to

(2.103)

N
{(wl,...,wN) e [[S(©): wyC) = /C $,(8)dA(s), j=1,...,N,

Jj=1
N
> / $2(s)d(s) < 1}.
j=1’®

ProOF. The proofof Proposition 2.1is obtained by repeating step by step the
arguments of the just-given proof of Theorem 1.1forj = 1,..., N, in combination
with the argument of the proof of Lemma 1 in Finkelstein (1971). We omit the
details for the sake of conciseness. O

PROPOSITION 2.2. Assume that the assumptions of Theorem 1.1. hold. Let
{k(n), n > 1} be a random sequence of positive numbers and let {v(n), n > 1}
be a random sequence of positive integers such that

(2.104) k(n)/k(n) — A €(0,00) and v(n)/n — pe (0,00) a.s.asn — oco.

Let
-1/2 1/d
a0 () (14 () ). occ

Then the sequence of functions {(2log,n)~Y20X(C),C € C}, n = 1,2,..., is
almost surely relatively compact in B(C) with limit set equal to S(C).

PROOF. First, observe that if the sequence {k(n), n > 1} satisfies (K.1)
and (K.2), then it is also the case for the sequence {Apk(n/p), n > 1}, where
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E(n+u):=(1 - wkn) +uk(n +1)for 0 < u < 1. Let

(-1 -1/2 T o—1 1/d
922’(C)=(__Ak(p 2) an<t+<——Ak(p 2) c), cec,

p~in p~In
and
(-1 -1/2 (-1 -1/d
6513)(0) = (_A.k_(f)i(l/—(;l))_> ) (t + (Ak_(_/l_l/(_ﬂ)l) C), CeC.
p~lu(n p~w(n)

The fact that, for i = 2, {(2log, n)~ ¥/20%9(C), C € C} is almost surely rela-
tively compact in B(C) with limit set equal to S(C) is an obvious consequence of
Theorem 1.1 taken with the formal replacement of k(n) by Apk(n/p). In view of
(2.104) combined with Remark 2.1, this implies, in turn, that the same state-
ment holds for i = 3. By (2.104) we get

(-1
(Ak(i V(n)))/<n(n)) —1 a.s.asn — oo.
p~lv(n) n

This, in combination with Lemma 2.4, suffices to show that

sup |OP(C) - 6¥(C)| - 0 as.,
CecC

which completes the proof of the proposition. O

Note for further use that the random time change considered in Proposition
2.2 could have been used without modification in the setting of Proposition 2.1.
Let M > 1 be fixed and let By, ...,By € B be disjoint and such that ,

(2.106) [0,11= |J B, and XB)>0 forj=1,.. M.
1<j<M

Observe that' the distribution of {c,(B;), i = 1,...,M, n > 1} is identical to
that of {£.(3;_;\(B))) - §n(2;='11)\(Bj)), i=1,...,M, n > 1}, where &, is as in
Theorem A. Let further

(2.107) zn,j = (2 logy )™, (B;) forj=1,...,M.
We have the following result due to Finkelstein (1971).

PRrRoOPOSITION 2.3. The sequence {(z,,1,...,2,,m),n > 1} is almost surely
relatively compact in RM  with limit set equal to

M M
(2.108) {(zl,...,zM)eRM: > 2=0,>

Jj=1 Jj=1

22
A(B)) = 1}'

PrOOF. See Lemma 1 and Theorem 1 of Finkelstein (1971). O
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Note that a direct proof of this proposition may be obtained by similar sub-
sequence arguments and probability inequalities as those used in the proof of
Theorem 1.1. This observation is of interest in view of the proof of Theorem 1.2.

PrOOF OF THEOREM 1.2. Let M > N and let By,...,By € B be disjoint,
satisfying (2.106) and such that there exists an Ay > 0 with

(2.109) ti+hCCB; forallCeC;,0<h<hpandj=1,...,N.

Note here that it is always possible, by eventually adding to C, a finite number of
sets (up to a constant of proportionality), to assume that there exist By, ...,By €
Cy satisfying (2.109).

Set, forj=1,...,M,
(2.110)  Nj(n) = n\,(B)) =: n\(B;) + (2n log, n)l/zz,,,j forj=1,...,M,
and
(2.111) N;'(n)=inf{m > 0: Njm)=n} forj=1,...,M.

Also, introduce the conditional empirical processes indexed by B, defined for
Jj=1,...,Mby

N AB N B))
. (B)=nl/2! = : o2 ) B e B.
(2.112) a, (B)=n {n igl 1(U; € BNB)) B, }, €
Observe that the processes ay, 1, .. ., 0, i are mutually independent and inde-

pendent of the sequence {N1(n), ..., Ny(n)}. Moreover, since A/}‘I(J\G(n)) =n,we
have, forj=1,...,M,

" BNB;
N} anm, /(B) = > 1(U; € BNB)) — Nj(n )A(A(E')J)
J

2.113) = N
\n
=n'20,(BNB;)+nABN BJ)<1 B n,\J(Bj)) '

Recall (1.8). By letting B = t; + (kj(n)/n)l/dC in (2.113), it follows from (2.109)
that, for allj =1,...,N and C € C;, we have for n sufficiently large

. -1/2 ' 1/d
w,, ;(C) = <2k’(n) log, n) Qn (tj + (kjr(ln)> C)

n
N:m\Y? [/ kin) -1/2 . kn)\ Ve
2.114) = ( fnn) (2-Jnn log2n> QNy(n), j tj+( ’n ) C
kin) \V? Nj(n)
—<2log2n> /\(C)<1 B n/\(Bj))

: w;’j(C) + w;”j(C).
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By the law of the iterated logarithm, we have Nj(n) — n\(B)) = O((nlog, n)*/2),
almost surely as n — oo. Thus, by (2.114), we have

@18 sup jwi (0 = O((n~h;)"*) =0 as.asn - oo.

Since the processes o, ; are mutually independent, and independent of the
Nj(n), by the same lines as used to establish Propositions 2.1, 2.2 and 2.3,
we obtain readily, after a simple but lengthy argument, that the sequence
{@n, 1,120,015 w;lyl, cH Wy Nh 1} is almost surely relatively compact in

RM x B(C)V, with limit set equal to

M
{(zl,...,zM; wi,...,wy) € RM x B(C)N: Z z; =0,
i=1

2
]

M
(2.116) w;(C) = /C¢J‘(S) dX(s),j=1,....N, X; 2B,

N
+Ad;¢}(5)dx(s) < 1}.

To complete the proof of Theorem 1.2, it suffices now to use a straightforward
modification of the arguments of Kuelbs and Dudley (1980), pages 415 and 416,
to show that if the preceding result holds for an arbitrary disjoint sequence
Bi,...,By € C, satisfying (2.109), then the conclusion of the theorem is true.
We omit the details of this argument for the sake of brevity. O

3. Applications.

3.1. Introduction. The results of this section are given to illustrate how our
methods can be applied to describe the limiting behavior of statistics depending
locally on the empirical process. We start in subsection 3.2 by extending our
theorems to sequences of independent random variables with a common density
on R?. We then investigate multivariate density estimators in subsection 3.3
and the Bahadur—Kiefer representation in subsection 3.4.

3.2. Local theorems for nonuniform samples. Let X, = (X,(1),...,X,(d)),
n=1,2,...,beaniid. sequence of R%-valued random variables with common
density f with respect to the Lebesgue measure A. The following multivari-
ate quantile transformation lemma, in the spirit of Rosenblatt (1952), will be
instrumental in the applications of our theorems.

LEMMA 3.1, Let X* = (X*(1),...,X*(d)),d > 1, be a random vector taking
values in R? with distribution function F* and let U* = (U*(1),...,U*(d)) be a
uniform (0, 1) random vector. Let F}; denote the distribution function of X *(1)
and let F; (- | x1,...,%;_ 1) be a regular conditional distribution function of X*(j)
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given (X*(1),...,X*(j — 1)) = (xq, ... y%j—1) for 2 < j < d. Define the function of
x=(x1,...,xd):

(3.1) H*(x) = (F;(xl), o Fy (g | 1, ,xd_l)).

Fort € (0,1), set inv Fj(¢) = inf{x: Fi(x) > t}, and, for 2 < j < d whenever d > 2,
define invFJ’.“(t | %1,...,%-1) = inf{x: F;‘(x | %1,...,%;_1) > t}. Also, set for
u=(uy,...,ug) € (0,1) Gi(uy) = inv F{(uy) and, for 2 < j < d whenever d > 2,
define Gf(ul, .o,uj) =inv Ff(uj | Gi(u), ... ,GJ’.*_ 1@, ... uj_1)). Let further

(3.2) G*(u) = (G{(ul), o G, . ,ud)).
Then
3.3) X* =5 G*(U*).

Moreover, if H* is continuously (resp. twice continuously) differentiable in a
neighborhood of x € R? with a nonzero Jacobian at x, then G* is continuously
(resp. twice continuously) differentiable in the neighborhood of t := H*(x) and
such that

(34) [G*(w) - G*(®) - DG*®(u —t) =o(ju—t|) and DG*(t)= (DH*®))

where DG*(t) [resp. DH*(x)] denotes the differential of G* at t (resp. of H* at x).
If X* has a continuous density f* on R?, then the Jacobian of G* at t is equal to

(3.5) 1/f*(G*b)).

Proor. That (3.3) holds is Theorem 6 of Einmahl (1989), while (3.4) is a
consequence of the inverse function theorem. For (3.5), note that DH*(x) is a
lower diagonal matrix, and thus its determinant is the product of its diagonal
elements which is easily checked to be equal to f*(x). Since DG*(t) = (DH*(x))~!,
the assertion follows. O .

Our next lemma gives a local version of Lemma 3.1, where we assume that
the density f of X € R? is continuously differentiable in a neighborhood of
x € R%. This ensures, via a suitable definition of F*, that the function H* defined
in (3.1) is continuously differentiable in a neighborhood of x. This assumption
could be weakened at the price of lengthy technicalities. Since our aim is to
present applications of our main theorems, we will limit ourselves to the present
setting which simplifies greatly the exposition. Let X denote a random variable
with the same distribution as X,, n = 1,2,..., and let U = (U(1),...,U(d))
denote a uniform (0, 1)? random vector.

LEMMA 3.2. Assume that f is continuously (resp. twice continuously) differ-
entiable in a neighborhood of x € R? and that f(x) > 0. Then there exists a
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point t € (0,1)%, a neighborhood V of X, a neighborhood N of t and a one-to-one
mapping G of N onto V such that x = G(t) and

(3.6) X1X e V) =; GAUL(U € N).
Moreover the function G is of the form
(3.7 G() = (G1(u1), Goluy, us),. .., Gqluy,. .., uq),

with w = (uy,...,uq) and such that, for each 1 < j < d, Gi(uy,...,u;) is an in-
creasing function of uj. In addition, G is continuously (resp. twice continuously)
differentiable on N and such that

(3.8) IG) - Q) — { F)} (- t)] = o(ju - t]).

ProoOF. Let V* =x+(—c, ¢)?, where ¢ > 0 is chosen in such a way that f is
continuously (resp. twice continuously) differentiable and bounded away from 0
on V*. Denote by X* a random variable following the conditional distribution of
X given X € V*, with density equal to f* = f/P(X € V*) =: f/q. Let F* denote the
distribution function of X* and let H* be as in (3.1). Making use of Lebesgue’s
theorem, it is readily verified that H* is continuously (resp. twice continuously)
differentiable on V* with nonzero Jacobian. Thus, by an application of Lemma
3.1, we obtain that (3.2)-(3.5) hold. Now u = u(v) and v = v(u) be related via
the formula

(3.9) v=t+{f(C"®) }l/ ‘DG t)u - b).

Recalling from (3.5) that the Jacobian of DG*(t) equals 1/f*(G*(t)), we see
that the Jacobian of the linear mapping u — w(v) equals 1. Thus, if U* is a
uniform (0, 1)? random vector, then the random vector V := v(U) has density
equal to 1 on the set E := v((0,1)?). Set, for convenience, G(v) = G*(u(v)) and
notice that G(t) = t. By (3.9) we may rewrite (3.4) as

-1/d
(3.10) ‘E(V) -G - {gf(ﬁ(t))} - t)‘ = o(|v —t|).

By (3.2) DG*(t) is lower triangular and therefore {DG*(t)}~! is also lower tri-
angular. This, in combination with (3.9), implies the existence of constants {a;;}
and {b;} such that, with v = (vy,...,vq),

(3.11) u(v) = (auvl + b1, o, aq1U1 + -+ agqlg + bd).

Recalling that @(\L) = G*(u(v))‘,'We deduce from (3.2) and (3.11) the existence
of functions Gy, ..., G4 such that

(312) ﬁ(V) = (61(1)1), PN ,ad(vl, ves ,Ud)).
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We may now rewrite (3.3) into
(3.13) X* =5 G(V).

By (8.9)v(t) = t € (0,1)?, and therefore the set E = v((0, 1)¢) is a neighborhood
of t. This, in turn, implies that E; := E N (0, 1)? is also a neighborhood of t.
Therefore, the open mapping theorem implies that V' := GE)CV*=GE)is a
neighborhood of x = G(t). By (3.13) it follows that

(3.14) X*1(X* € V) =g GV € Ey).

Since V has a density equal to 1 on E;, we may replace V in (3.14) by any other
random variable with density equal to 1 on E;. Now let U denote a uniform
(0, 1)¢ random variable and set

(3.15) Vy=t+q VU -t).

Observe that g = P(X € V) = P(V; € (0, 1)%). Thus, by (3.15), the distribution
of V; conditional on V; € (0, 1)¢ is uniform on (0, 1)? (with density equal to 1
on E). Moreover, the conditional distribution of X given X € V is equal to the
distribution of X*. It follows therefore from (3.14) that

(3.16) X1(X € V) =4 G(V)L(V; € E;) = GU1LU € N),
where we set
(3.17) Gw) :=G(t+q V¥u~-t) and N:=t+q"*(E,-t).

By combining (3.10) and (3.17), we obtain (3.8), while (3.16) yields (3.6).
Finally, (3.7) follows from (3.12) and (3.17). The proof of Lemma 3.2 is now
complete. O

Our next result gives an example of how Theorem 1.1 may be applied to
sequences of random variables with a nonuniform distribution.

THEOREM 3.1. Let X, = (X,(1),...,X,(d)),n=1,2,..., be a sequence of in-
dependent random vectors with common probability measure y on R%. Assume
that 1 has a density f = dp/dX, twice continuously differentiable in a neigh-
borhood of x = (x(1),...,x(d)) € R? and such that f(x) > 0. Let {k(n),n > 1}
satisfy (K.1) and (K.2). Then, for any fixed ¢ = (c1, . ..,cq) € R%, the sequence of
functions of s = (sy, . ..,sq) € [0,1]¢ defined by

T, (s) = (2k(n)f(x)logyn) ™/

n )\ V4 .
(3.18) X Z{ <X - x(J)€< ) (cj,cj+sj)forj=1,...,d>

n 1/d 1/d
(H [x(;)q- (k(n)) cj,x(j) + (@) (cj+sj)}>}
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is almost surely relatively compact in the set of bounded functions on [0,1]%,

endowed with the uniform topology. The corresponding limit set consists of all
functions of the form

81 Sd 1 1
(3.19) w(s)=/ / plw)ydi(u) with / / p(w)di(u) < 1.
0 0 0 0

ProofF. Let t, G, N and V be as in Lemma 3.2, with G(t) = x. For the
sake of notational simplicity, let x = 0 = (0,...,0), t = (%,...,%) and ¢ =

a = (—%,...,—%), where a is as in Section 1. Further let u = (uq,...,uy),
v =(y,...,Vq), Z = (21, ..,24) and define the class C' = {C'(z): z € [-1, 119}, of

subsets of [-1, 119, where

1/d

(820) C'@:={veK:u{fO} " <z, ,0a{fO} " <24}

and K := [-2{£(0)}}/¢, 1{ £(0)}!/4]?. Consider likewise the class of C” of subsets
of [-3, 114 defined by C" = {yC"(z,p):z € [-3,1]1¢, 1 <7 < 1,0 < p < po},

212
where
G(t + pv) ,
——"—cC , for0 < oo,

C'(z), for p = 0.

Here, po > 0 is chosen in such a way that t + 2pg —%, %]d C N. Recalling that
G(t) = 0, we infer from (3.8) that |G(t + pv) — p{f(0)}~¥?v| = o(|p|) uniformly
over v € K as p — 0, and obtain readily from (3.20) and (3.21) that, uniformly

over z € [-3}, 319, we have

(3.22) lim d(C'(2), C"(z, p)) = 0.
P

Letting a = —% and b = %, it is easily checked from (3.20) and (3.21) that
either of the classes C = {f(0)}~/4C’ or C = {f(0)}~1/4C" satisfies (C.1), (C.2)
and (C.4). To check that (C.3) holds is more difficult. In the first place, we make
use of the results of Donsker (1952) (for d = 1) and Dudley (1966) (ford > 2) who
showed that the class of left orthants is a u-Donsker class for any probability
measure x on R?. From there, it follows readily that { £(0)}~1/¢C’ — a is a \¢-
Donsker class [i.e., C = {f(0)}~1/4C’ satisfies (C.3)]. Toward proving that a
similar result holds for C = {£(0)}~'/4C”, introduce the function of v € K and
(v,p,2) € L :=[},1] x [0,1] x [-3, 1] defined by

o(v; 7, p,2)

(3.23) 12‘}2d (zj -G <t+ gv)/(p{f(O)}_l/d)>, for 0 < p < po,

1
; L . for p=0
12524 (z’ vv’)’ e
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where G;(u) := Gj(uy,...,ug), 1 <j <d,is as in (3.7). Keeping in mind that
(v,~, p,z) varies in the compact set K x L, we will show that & satisfies the
following three conditions:

(i) For each fixed (v, p,z) € L, ®(v;~, p, 2) is a continuous function of v € K;
(i) Uniformly over v € K, the function (v, p,z) — ®(v;~,p,2) satlsﬁes a
Lipschitz condition of order 1;
(iii) AM({v € K:|®(v;v, p,2)| < €}) = O(¢) uniformly over (v, p,z) € L.

That (i) holds follows from the continuity of G. The fact, following from
Lemma 3.2, that G is twice continuously differentiable on N is used for (ii),
since then we may write G(t+(p/y)v) = (o/){f(0)}~Yev+R((p/v)v), where R is
twice continuously differentiable with differential at 0 equal to DR(0) = 0. Ob-
serve thatif a function g has continuous second derivative g” and first derivative
g’ such that g'(0) = 0, then

d (80| _
de\ x )|~

is bounded in neighborhood of 0. From there, we obtain readily that p=*H((p/~)
v) is (uniformly over v € K) Lipschitz in (p, v), so that (ii) holds. The proof of
(iii) is obtained through similar arguments.

Conditions (i)-(iii) are requlred to apply Theorem 2.3 of Gaenssler (1984)
which implies that the class of sets 'yC" (z,p) = {v € K:®(v;v,p,2z) > 0} [recall
(3.21) and (3.23)] and is a pu- -Donsker class, where here 1 denotes the uniform
distribution on K. This, in turn, implies that C = {£(0)}~/¢C’ satisfies (C.3).

Now let {U,, n > 1} be ani.i.d. sequence of uniform (0, 1)? random variables.
In view of (3.6), set, without loss of generality for n > 1 and if U, € N (or
equivalently if X, € V), .

(3.24) X, = GWU,).

Observe from (3.20), (3.21) and (3.24) that the following equalities of events
hold for each z € K and 0 < p < pg. We have

(% e o{r O} @} = {6W) € p{ FO)} @)}
= {U, € t+pC"(z,p)}.

Recalling (1.4) and (3.9) and setting p = {k(n)/n}'/? in (3.25), we see that, for
all n sufficiently large and s € [0, 1]¢,

n 1/d
U,(s) = (2k(n)f(0)logyn) ~/* Y {1 (X,, c (@) (F) " *C(s + c))

i=1

1/d
(3.26) - P(X,, € (@) (f(o))-l/dC/(s + c)) }

1/d 1/d
o (o soe (2. (2]7),

g'x) gk

x x2

(3.25)
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Making use of the just-proven fact that both C = { £(0)}~1/4C’ and C = {£(0)}~1/¢

C” satisfy (C.1)~(C.4), we can apply Lemma 2.4 to C = {£(0)}~1/¢ (C' uC”). In
view of (3.26), this lemma, in combination with (3.22), implies that almost surely

1/d
T, (s) — f(0)"1/2%0, <C”(s +c), {_k;_n)} )

= lim (2f(0)logyn)™"/*

1/d 1/d

on{(sve 12} ™) {21
n n

1/d

—E-),,(C'(s+c),{£e(—n’2} )

Now it is easy to enlarge the class C = { f(0)}~1/¢C’ to also satisfy (C.5). From
Theorem 1.1 applied to this enlarged class, we readily obtain from (3.27) that
the sequence of functions

. 1/d 1/d
{(2f(0)log2n)_1/2@,,(C"(s+c,{IE%Q} ){’f%@} ),se[o,ud},

n=12,...,

/2 sup

s€e[0,1)d

lim (2log,n)~
n— oo

(3.27)

X sup
s€ [0, 14

=0.

is a.s. relatively compact in the set of bounded functions on [0, 1]¢. By (1.7) the
limit set is composed of all functions of the form

U(s) = / s(u+c)d(u+c)
[FO] = (s+e)
(3.28)

S1 Sd 1 1
- / / " ¢)dA(u) with / / #% (wdAu) < 1.
0 0 0 0

Since (3.28) coincides with (3.19), the proof of Theorem 3.1 is completed by
(3.27). O

REMARK 3.1. In Theorem 3.1 the assumption that f is twice continuously
differentiable in a neighborhood of x € R? is only required for d > 2. When
d = 1 we can use a direct argument to show that the conclusion of the theorem
remains valid under the much weaker condition that the distribution function
FofX,,n=1,2,...,1is differentiable at x = x with differential f(x) > 0. This is
achieved as follows. To avoid technicalities, we limit ourselves to the case where
F is continuous and strictly increasing on R. Let U, = F(X,,),n =1,2,..., and
observe that the random variables {U,, n > 1} are i.i.d. uniform (0, 1). Next,
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recalling (1.3) and setting s = s;, X =x =x; and ¢ = ¢; in (3.18), we see that

-1
¥,(s) = 2log,n)"Y/%20, ((@f(x)) <F (x + Iff—?c) — F(x),

(8.29)
F(x + M(c + s)) - F(x)> , F(x), &%@f (x)) :

n

Making use of the fact [see, e.g., Donsker (1952) for (C.3)] that the class
C = {(y,2]: —% <y<z< -21—} satisfies (C.1)-(C.5), we can apply Theorem 1.1 to
C. We so obtain that, for any A > 0, the sequence of functions of (y,z) defined
by

T,(y,2) = (2logyn) V%0, ((y,Z], F(x), @f(xv

for —A < y < z < A is almost surely relatively compact with respect to the
uniform topology. The limit set consists of all functions of the form

(3.30) W(y,z) = / ’ ¢(t)dt with / ~ H2@)dt < 1.
y —00

An easy argument based on the uniform equicontinuity of the functions ¥ in
(3.30) enables one to show that the sequence ¥,(g,(y),g,(2)) is also relatively
compact with limit set characterized by (3.30), whenever g, is a sequence of
nondecreasing functions such that, for any M > 0,

(3.31) lim < sup |g,,(z)—z|) =0.

"0 Nl <M

Now let

(k) N\ k(n)
gn(z) = <~n—f(x)) <F<x + Tz) — F(x)) .

Since this function obviously satisfies (3.31), we see that the conclusion of
Theorem 3.1 holds.

REMARK 3.2. The argument of Remark 3.1 can also be applied for an arbi-
traryd > 1if F(xq,...,xq) = H‘;!: F j(x;), in which case we let G ;(s) = inf{x: F ;(x)
> s} for 0 < s < 1. By replacing formally the function'G of (3.7) by

(332) G(a) = (Gl(ul), e aGd(ud));

with G;, 1 <j < d, as above, we see that the conclusion of Theorem 3.1 holds
whenever F is differentiable at x; with differential f;(x;) > 0 forj=1,...,d.
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3.3. Density estimation. Let X, X3, X5,... be a sequence of independent
and identically distributed R%-valued random variables with common distribu-
tion function F and density f (with respect to the Lebesgue measure A). Much
attention has been directed to the problem of estimating f by nonparametric
techniques [see, e.g., Devroye and Gyorfi (1985) for a survey]. We will con-
sider here the Parzen—Rosenblatt kernel density estimator [Parzen (1962) and
Rosenblatt (1956)], defined by

(3.33) fulx) = # ZK<X,:X"),
n=1 n

where {h,, n > 1} is a sequence of positive constants, and the kernel K(-) is a
function such that:

(A1) [reK@)dA(u)=1.

(A.2) K(-) is of bounded variation on R? in the sense of Hardy and Krause
[see, e.g., Hobson (1937). In particular, this condition is fulfilled when (A.3)
below holds, and K has bounded partial derivatives of order 2].

(A.3) There exists a ¢ < oo such that K(u) = 0 for [u| > c/2.

Hall (1981) proved the following theorem for d = 1.

THEOREM C. Let d = 1. Assume that F(x) = P(X; < x) satisfies a Lipschitz
condition of order 1 in a neighborhood of x and that F'(x) = f(x) is defined at x.
Assume further that

(3.34) h,l0 and nh,1

and that

(3.35) n—-’;"ligﬂ — 00 asn — oo.
og'n

Let K(-) satisfy (A.1), (A.2) and (A.3). Then

lim sup + (fn(x) - E(fn(x))) ( nh, ) 1/2

n— o0 2 10g2 n

(3.36)
0o 1/2
= (f(X)/ Kz(u)du) a.s.

Observe that the conditions of Theorem C imply the existence of the Lebesgue
derivative f of F in a neighborhood of x.
‘In the section we will prove the following result.

THEOREM 3.2. When d > 2 assume that f is twice continuously differentiable
in a neighborhood of x € R%, and when d = 1 assume that F is differentiable at
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x € R with positive differential f(x). Assume further that (3.34) holds and that

nhg
logyn

(3.37)

— 00 asn — oo.

Let K(-) satisfy (A.1), (A.2) and (A.3). Then

nhd 1/2
lim sup + (fn(X) - E(fn(X))) <2 Togs n)
(3.38) T 2

1/2
= ( f(x) /]R ) Kz(u)d)\(u)) a.s.

Proor. We limit ourselves to the main ideas underlining the proof, which
we give for d = 1, in order to avoid technicalities related to integration by parts.
Further details concerning this argument are given in proof of Theorem 4.1 of
Deheuvels and Mason (1992a). Let x = x,

(3.39) Fu@)=n"W{X <z 1<i<n) and F&x) =PX <.

We have, by (A.3),
(3.40)  fulx) — E(fulx)) = hi /c Kw)d{Fy(x + hou) — F(x + hyu)}.

Integrating by parts, we get from (3.40)

+ ( nhy ) 2 (fn(x) - E(fn(x)))

2logyn
(3.41) 4 ¢ [ Vn(Fa(x + hou) — Fo(x — hne) — F(x + hou) + Flx — hnc)) }
-+ [ Nemon
xd( - Kw)).

Next, an application of Theorem 3.1 shows that the set of limit points on the
right-hand side of (8.41) is almost surely equal to

{ + \/f(x)/c {/u ¢(s)ds}d( - K)): ‘ $*w)du < 1} a.s.

—-cC

We conclude by integrating by parts once more to obtain that this limit set
equals

{ ++/f(x) ) o(w)K(w)du: /c $*(w)du < 1}.

The conclusion (3.38) now follows by Schwarz’s inequality. O
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REMARK 3.3. The assumption that f is twice continuously differentiable
in a neighborhood of x € R? is only required for d > 2, since our proof then
relies on an application of Theorem 3.1. For d = 1, we see from Remark 3.1
that the conclusion of Theorem 3.2 holds under the weaker assumption that F
is differentiable at x = x with positive differential f(x). Likewise, by Remark
3.2, the same result holds if X has independent coordinates whose distributions
follow this condition. In particular, these requirements are satisfied under the
assumptions of Theorem C, that is, for d = 1, when F(x) = P(X; < x) satisfies a
Lipschitz condition of order 1in a neighborhood of x, and F'(x) = f(x) is defined
at x. This shows that Theorem C is valid when (3.35) is replaced by (3.37). In
view of the results of Deheuvels (1974) [see also Devroye (1979)], the latter
condition is sharp.

REMARK 3.4. By repeating the preceding arguments with Theorem 1.2 re-
placing Theorem 1.1, we obtain the following extension of Theorem 3.2. Let
x;,i = 1,...,N, be fixed, distinct points of R? such that the assumptions of
Theorem 3.2 hold for x =x; and i = 1,...,N. Then, under (3.34) and (3.37), the
limit set of the sequence of random vectors of RY defined forn =1,2,..., by

A~ EGEN (VL [ rna) " i
{( VI(x:) )(210g2n> ( RdK (u)du) ,i=1,...,N,

is almost surely equal to the (Euclidean) unit ball of RY.

3.4. Bahadur-Kiefer representations. Let Uy, Uy, ... be an i.i.d. sequence of
uniform (0, 1) random variables. Set further

U,lx) = n“l#{Ui <x:1<i<n}hxeR,

(3.42)
Vo(s) = inf {x > 0: Up(x) > s},0<s<1,

and consider the uniform empirical process {a,(¢),0 < < 1} and the uniform
empirical quantile process {(3,(¢),0 <t < 1} defined respectively by
a,,('ac) =n'?(U,(x) —x), x€R,

(3.43) Buls) = n1/2(Vy(s) —s), 0<s<Ll.

The Bahadur-Kiefer process [see, e.g., Deheuvels and Mason (1990a)] is then
given by

(3.44) R,(®) = a,(®)+B,() for0<t<1

The process {R,(), 0 <t < 1} was introduced by Bahadur (1966) and later
studied by Kiefer (1967, 1970). Kiefer (1967) proved that, for any fixed 0 < ¢ < 1,
we have

(3.45)  limsup £nY4@2logy n)"¥/4R,(0) = (H(1 - 1))/*2/287%/4  as.

n—oo
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Recently, Deheuvels (1992) and Deheuvels and Mason (1992b) have pro-
vided new proofs of (3.45), the latter two authors also giving a simple expla-
nation of the mechanism which generates the unusual limiting constant in
this expression. Theorem 3.3 below extends these investigations by describing
the joint limiting behavior of {(R,(¢1),...,R,(tx)), n > 1} for arbitrary fixed
0 <t <--- <ty < 1. The proof of this theorem, obtained by a direct argument
based on Theorem 1.2, gives a new proof of the main result of Deheuvels and
Mason (1992b), corresponding to N = 1.

Throughout, we will use the following notation and assumptions. We assume
thatp=0<¢; < - <ty <1l=t#y,1 are fixed and set, forj=1,...,N,

(3.46) %n, j = (2logy n)"l/zan(tj),

and, for |u| <1,

9 1/2
fr, i@ = (2{ - log, n} log, n)
9 1/2
X (a(tj) —Qp <tj — {; log2 n} u) ) .

The following lemma relates these expressions to the Bahadur—Kiefer
process R,,.

-1/2

(3.47)

LEMMA 3.3. We have almost surely, foreachj=1,...,N,
(3.48) [n'/%(21ogy n)~¥/*R,(t)) — fo, j(xs, )| = 0 a@.s.asn — oo.
PRrROOF. See, e.g., (2.6) and Fact 2 of Deheuvels and Mason (1992b). O

In view of Lemma 3.3, we see that the limiting properties of {R,(¢), j =
1,...,N} are governed by that of (x, 1,...,%,, n) X (fz,1,...,fs,n). Our next
lemma gives the appropriate description of the strong limiting behavior of this
sequence. '

Denote by B(—1, 1) the set of bounded functions on [-1, 1], endowed with the
topology defined by the uniform metric, and by AC(—1, 1) the set of all absolutely
continuous functions on [-1, 1].

LEMMA 3.4. The sequence {(x,,1,...,%,, N) X (f,1,..-,fn,N), n > 1} is almost
surely relatively compact in RY x B(-1, l)N, with limit set equal to

]KN = {(xl, . ,xN) X (fl, N ,fN) S RN X AC(—la l)N

(349) N+1(x‘—x~ )2 N 1
Z Jj —X%i—1 +§ / f}(u)zdug 1, withxo=xy,1=0.
LA e
j=1 Jj=1
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Proor. It follows readily from Theorem 1.2. O

We may now state our main result concerning the Bahadur-Kiefer
representation.

THEOREM 3.3. The sequence {n'/*(2log, n)~3%/4(R,(t),...,Ru(ty)), n > 1} is
almost surely relatively compact in RN, with limit set equal to

(3.50) {(fl(xl), o) @, xn) X (f, - f) € KN}-
PrOOF. (3.50)is a direct consequence of Lemmas 3.3 and 3.4. O

REMARK 3.5. For N =1, (3.49) becomes, with x =x;, £ =¢; and f = f3,

(3.51) K, = {(x,f) € R x B(-1,1): t(l / Fw)?du < 1}

It is readily verified in this case [see, e.g., Deheuvels and Mason (1992b)] that,
given any x such that |x| < /#(1 —¢), an arbitrary function f with (x,f) € K;
satisfies

1/2
x2
(3.52) |f(u)|S{|u|( - t))} .

By (3.52), on K, | f(x)] is less than or equal to
(3.53) (1 -)Y* sup s(1—s?) = (#(1 —1))/*21/23-3/4,

0<s<1

As shown by Deheuvels and Mason (1992b), there exists a function f for
which this supremum is reached. Thus (3.53) provides a simple interpretation
of how the constant in the right-hand-side of (3.45) is generated. Given Theorem
3.3, similar evaluations as given above can be achieved for an arbitrary N > 1
by routine analysis.

4. Conclusion. The preceding examples show the power of the methods
based on the asymptotic theory of local empirical processes. A systematic study
of the applications of our results will be developed in forthcoming publications.

Acknowledgment. We thank the referee for insightful comments.
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