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Recent results on the Berry—Esséen bound for U-statistics assumed the
following conditions: Suppose a U-statistic (of degree 2) is nondegenerate.
Then the rate of convergence in the CLT is of the order O(n—1/2) provided
that

E|E{h0t, X5) | X1 }|° < o0, BIAGK, X/ < oo,

where % is a symmetric kernel corresponding to the U-statistic. It follows
from our results that these moment conditions are final. In particular, the
last moment condition cannot be replaced by a moment of order 5/3 — ¢ for
any € > 0. Similar results hold for von Mises statistics.

U-Statistics. Let X,X;,X5,... € X be a sequence of independent identi-
cally distributed (briefly i.i.d.) random variables (r.v.’s) taking values in a mea-
surable space X. Let & be a symmetric function of two variables and such that
Eh(X,X;)=0.

The U-statistic corresponding to 4 is defined [see Hoeffding (1948)] by

Up=Uy)= Y hX,X).

1<i<j<n

Let the function g: X — R be given by g(x) = Eh(x,X). Thoughout we shall
assume that 0 < Eg2(X) < oo. Therefore, without loss of generality we may

assume that Eg%(X) = 1.
If we define the symmetric function

¢(x1y) = h(x7y) _g(x) _g(y),
then Ev¢(x,X) = 0 and
ey Up=(n—-1) > gX)+ Y 9X,X),

1<i<n 1<i<j<n

which is the Hoeffding decomposition of U,,.
Let 72 = n(n — 1)? be the variance of the first term on the right-hand
side in (1) and let ® stand for the standard normal distribution function. The
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following Berry—Esséen result is well known (see discussion below for historical
references).

THEOREM 1. There exists a universal constant c such that
@) sup|P{r; U, <x} - &) < cn~V{E|gX) + El(X, Xy)[5/%}
x€R d

forn > 2.

REMARK. Obviously, the estimate (2) is equivalent (up to the value of the
absolute constant ¢) to

3) sup ]P{T,flUn <x}-— <I>(x)| < cn‘1/2{]Elg(X)l3 + Elh(X,X1)|5/3}
x€ER

The Berry—Esséen type results
sup [P{r; U, < x} — ®x)| = O(n~1/2)
x€R

in growing strength and generality were obtained by Grams and Serfling (1973),
Bickel (1974), Chan and Wierman (1977) and Callaert and Janssen (1980).
Helmers and van Zwet (1982) proved it under the condition: there exists ¢ > 0
such that E[¢)(X,X)|%/3*¢ < co. The result without an ¢ in the moment condition
can be found in Koroliuk and Borovskih (1989), Friedrich (1989), Bolthausen
and Gotze (1989) and Gétze (1991). Our main result is that the moment condi-
tion E|#(X,X;)|*/® < 0o in Theorem 1 is final, that is, it cannot be replaced by
E|(X,X1)|%/3 ~¢ < oo for any € > 0.

Throughout we denote by 7,71,79, ... a sequence of i.i.d. standard normal
rv’s, by Z,Z,,Z,,... a sequence of i.i.d. real r.v’s, and assume that all r.v’s
are independent.

A natural way to find an example that does not satisfy the Berry—Esséen
inequality is to choose the function 4 in such a way that h(X;, X)) = n; + nj + Z,Z;,
where EZ; = 0. Moreover, to make the situation simpler, we may assume that
Z; are symmetrically distributed. Then 7, 1U, is distributed as 7 + S, where
Sn = 77 %1 <i< j<nZiZj. The Berry-Esséen inequality is violated if the sum S,
is relatively large, and this happens if the variables Z; have few moments. This
idea, which is formulated more explicitly in Lemmas 11 and 12, is behind the
definition of the class A, (X, A).

For a given a > 0, a measurable space X and a symmetric function 2: X2 — R,
let A.(X, h) stand for the class of all r.v.’s X assuming values in X and such that

EgX)=0, Eg*X)=1, E|gX)?=4,
Ey(x,X) =0, ElvX,X3)|* = 1.
EXAMPLE 2. There exist a function k& = hq and a measurable space X such
that the class A,(X, k) is nonempty. Indeed, let X = R2,
(4)  holx,y) =x1 +y1 +xay2,  x=(x1,%2), y=(y1,y2), xy€R%
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Let n be a standard normal real r.v. with mean 0 and variance 1. Let Z be a
symmetric real r.v. independent of 7. We shall denote by C the class of all r.v.’s
X =(n,Z) € R IfX € € and E|Z|* = 1, then go(x) = x1, ¥o(x,y) = x9y2 and
X € A,(R? hy).

THEOREM 3. Let € < 1/3. There exist a measurable space X, a function h
and a positive constant c(¢) > 0 depending only on ¢ such that

(5) supsup |P{7;1U, <x} — ®@)| > c(en® V2 vn>2
x€R

where the first sup is taken over all r.v’s X of the class As/3 _ (X, h).

The space X and function 4 in Theorem 3 are given in a constructive way
and one may choose X = R? and & = h( from Example 2. More details and a
description of some minimal and simple subclasses of A5/3 _ . for which (5) holds
are given below. Let us note here only that it seems that there does not exist a
r.v. X realizing a lower bound in Theorem 3.

Van Zwet (1984), Friedrich (1989), Gotze (1991) and Bolthausen and Gotze
(1989) have obtained Berry-Esséen bounds for classes of statistics containing
U-statistics as a subclass. It follows from Theorem 3 that moment conditions
of these papers are final.

Lower bounds of order O(n~1/2) for the rates of convergence have been ob-
tained by Maesono (1988, 1991). In these papers the author solves slightly dif-
ferent problems assuming the existence of EA%(X,X;) and moments of higher
order.

Von Mises statistics. For a symmetric function A such that EA(X,X;) =0
the corresponding von Mises statistic is defined by

Va=Vah)= ) hX,X).

1<i,j<n
It is clear that
Vi=2n Y gX)+ Y %X, X).
1<i<n 1<i, j<n
It may be shown that
(6) sup |P{27'n=%2V, < x} — ®(x)| = O(n"1/?)
provided that
(M. Elg®P <o, ERXX)<oo, EWXE X< oco.

The following two theorems show that the moment conditions given in (7) are
final for (6). )
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For a > 0 let B,(X, ) stand for the class of all r.v’s X assuming values in X
and such that

EgX)=0, FEg’X)=1, E|gX)]®=4,
Ep(x,X)=0, EpX X)*=1, EpX,X)|?2<1

THEOREM 4. Let ¢ < 2/3. There exist a measurable space X, a symrhetric
function h and a positive constant c(e) > 0 depending only on ¢ such that

(8) sup suﬁ |P{27 10732V, <x} — ®(x)| > c(en®/4~ Y2 vn>1,
x €

where the first sup is taken over all r.v.’s X of the class By _ (X, h).

It follows from Theorem 4 that the last moment condition in (7) is final for
(6). The second condition is final as well according to the following theorem.

THEOREM 5. Let ¢ < 1/3. There exist a measurable space X, a symmetric
function h and a positive constant c(¢) > 0 depending only on ¢ such that

supsup |P{271n %2V, <x} — ®(x)| > c(e)n®* V2 vn>1,
x€R
where the first sup is taken over all r.v’s X of the class Bs;3 _ (X, h) such that
El¢wX,X)| = 0.

The previous theorems present results showing that bounds of type (6) are
unimprovable. However, they do not imply the existence of a (independent of n)
r.v. X and a function A realizing the rate in n. For von Mises statistics we are
able to construct such X and A.

THEOREM 6. Let ¢ < 2/3. There exist a measurable space X, a symmetric
function h, a rv. X of the class | J, <s<1B2—c—5(X,h) and a positive constant
c(e) > 0 depending only on ¢ such that

sup |P{271n 732V, <x} — ®()| > c(en®/* =12 wn>1
x€R

Some remarks and possible extensions.

REMARK 7. In Theorems 3 and 5 it is sufficient to take the first sup over all
rv’s X = (,Z) € €N As/3_ (R?, ho) with Z symmetric and assuming at most
three values (we recall that € and A are described in Example 2). In Theorem
4 it is sufficient to take the first sup over all r.v’s X = (,Z) € € N By _ (R%, hg)
with Z symmetric and assuming at most three values.

REMARK 8. It is possible to replace R? by R. Of course, in this case the proofs
and the structure of 2 are more complicated. In the higher order case when the
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main part of a statistic has a Gaussian limit we may show that for the conver-
gence rate O(n~/2) it is necessary to have the condition E|g,| @ +1/@r -1 < o,
1 < r <k, where g1, ...,8 are the well-known functions in the Hoeffding de-
composition of a U-statistic (if £ = 2, then g; = g, g9 = ¥).

REMARK 9. In Theorem 6 one may choose the r.v. X = (1,Z) € C and the
function A& = hy from Example 2 with Z being symmetric and (2 — ¢)-stable.

REMARK 10. It would be of considerable interest to improve and extend
Theorems 3-6 in the following directions: to get an analogue of Theorem 6 for
U-statistics [a natural candidate for r.v. X is X = (n,Z) as in Theorem 6 (see
Remark 9) with a stable Z] and to investigate the higher order case when the
main part of a statistics has non-Gaussian limit as n — oo.

Aucxiliary lemmas and proofs. We shall consider the functions A, go, %
and r.v. X = (,Z) € R? of the class € described in Example 2. Let Z;,Z,, ... be
independent copies of the r.v. Z. We may write

9 Tn—IUn(ho) =n+Sy,, Sn = Tn_l Z ZiZj, 7'3 =n(n — 1)27

1<i<j<n

(10)  (2n®?) Waho) = n+Ma, My = (2037 Y 7z

1<i,j<n
because 7 is standard normal and independent of Z. Furthermore, we have
(11) P{1;71U,(ho) < x} = E®(x — Sy),
12) P{(2n*/%) ' Va(ho) < x} = EOGx — My).

LEMMA 11. We have

E®(x — Sy) = $6) + "(x)(EZ%)? + & (x)ES? +R,

_1
(n—-1)
where

(13) IR| < cn~(EZ*)? + cn2(EZ2)".

Proor. The Taylor expansion yields
Ed(x — S,) = ®(x) — E®'(x)S, + E®"(x)S2 — 1ES"'(x)S3 + R,

where |R| < cES%. Now the result follows because elementary calculations and
symmetry of Z show that

= o_ 1 002
ES,=0,  ES}= 5= (EZ%)
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and that ES? does not exceed the right-hand side of (13). For example,

1

2\ 2
2(n — 1)(IEZ )

ES'% = Tn_l Z ZiZan = %Tn‘ln(n — DEZ1,Z5S, =

1<i<j<n

because Z,Z1,Zs, ... areiid. O

LEMMA 12. Let o > 4/3. Then there exists a constant c(a) > 0 depending
only on a such that

A, = supsup [E®(x — S,) — ®(x)| > c(a)n®~39/2  vn>2
xER

where the first sup is taken over all symmetric rv.’s Z assuming at most three
values and such that E|Z|* = 1.

Proor. It is clear that A, > 0, for all n > 2. Therefore, it is sufficient to
prove the estimate of the lemma for n > C(a) where C(a) is some (sufficiently
large) positive constant to be specified later. Let Z be a symmetric r.v. such that

(14) P{Z=0}=1-2p, P{|Z|=a}=2p

for some 0 < p <1 and a > 0. Clearly,

(15) EZ*=1 <= 2pa®=1.

Applying Lemma 11 with r.v. Z defined in (14) and using (15), we get

A, > cin~ta*~2%(8"(1)| - |R|,

where
|R| < czn‘la4_2°‘{n_3a4+n_1a4‘2°‘}

and where ¢y, cy are some positive absolute constants. Let us choose a = yn®/*
with some 0 < v < 1 to be specified later. Then

A, > n(4_30:)/2,)/4—201((:3 _0274 _ 0274—2an2—3a/2)

and the result follows if we choose v > 0 sufficiently small [this is possible only
for n > c4() because of p < 1]. The term cyy* ~2*n2~3/2 js small for n > C(a)
provided C(a) is sufficiently large. O

LEMMA 13. We have

= Do) — B (x)EZ2
E®(x — M,) = ®(x) 2\/7_1(1) (x)EZ? +R,

where : )
IR| < cn=2EZ* + cn~1(EZ2)".

ProoF. The proof is similar to that of Lemma 11. O
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LEMMA 14. Let o > 4/8. Then there exists a constant c(a) > 0 depending
only on «a such that

sup[®(0) — E®(—M,)] > clan? 3/ vn>1,

where the sup is taken over all symmetric r.v.’s Z assuming at most three values
and such that E|Z|* = 1.

PrROOF. The proof is similar to that of Lemma 12. O

LEMMA 15. Let Z be a stable symmetric r.v. having the characteristic function
Eexp{itZ} = exp{—[t|*} with an exponent 4/3 < a < 2. Then there exists a
constant c(a) > 0 depending only on o such that

®(0) — E®(—M,) > c(a)nl—3¢/4  vyn>1.

PrOOF. Let us note that M,, has the distribution of n=3/2+2/2Z2 > 0, There-
fore,

8(0) — E®(—M,) > EI{M, > 1}((0) — &(~M,))
> (8(0) — B(~1))P{|Z| > n®/4=1/a} > ¢(q)nl ~3a/4

because P{|Z| >t} > c(a)t~*fort > 1. O

ProoF oF THEOREM 3. Combine Lemma 12 and representations (9) and
(11). o

ProOOF OF THEOREM 4. Combine Lemma 14 and representations (10) and
(12). O

PRrROOF OF THEOREM 5. Let & be the function from Theorem 3. Define A;(x, y)
=h(x,y)ifx # y and h;(x,x) = 0. Then Theorem 3 with ~ = h; implies Theorem 5
if we note that Eh(x,X) = Eh(x,X) for X and h = h( from our construction. O

PRrROOF OF THEOREM 6. Combine Lemma 15 and representations (10) and
(12). O
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