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RECONSTRUCTION OF BAND LIMITED PROCESSES
FROM IRREGULAR SAMPLES!

By CHRISTIAN HOUDRE
Georgia Institute of Technology

The problem of recovering, say, a band-limited weakly stationary pro-
cess from a set of its irregularly spaced samples is studied. For rather gen-
eral sampling sequences some sufficient conditions ensuring mean square
or pathwise reconstruction are obtained. For the cases of regular samples
with either finitely many missing ones and/or finitely many irregular ones,
a necessary and sufficient condition is presented. Some elements of the
proofs involve classical results on nonharmonic Fourier series as well as
more recent results on frames.

1. Introduction. The main object of the work presented here is to study
the reconstruction of a process from a discrete set of its samples. The pro-
cesses under study generally have a band-limited spectral representation,
while reconstruction is achieved via a series expansion, giving a so—called
irregular sampling theorem. The results presented below can be read in at
least two different ways. First, as statistical results they provide a potential
solution to the so called “missing data” problem: Statistical interpolation from
sparse or missing data can be achieved under a density condition. Second, as
information-theoretic results, they provide irregular sampling theorems for,
say, deterministic signals corrupted by random “noise.” We do expect both in-
terpretations to be fruitfully exploited in applications.

The regular sampling theorem variously attributed to (among others)
Cauchy, Kotel’'nikov, Shannon and Whittacker, has been the subject of many
studies with theoretical or applied flavors. These many contributions are
well reflected in the rather comprehensive works of Butzer, Splettstésser
and Stens [5] or Higgins [9]. However, for path reconstruction or interpola-
tion of stochastic processes, rather few results, mainly dealing with regular
sampling points, are available. Under a stochastic model assumption, the
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usual approach in the literature is to obtain a mean square convergent
series representation which follows from the deterministic sampling results.
When interpolating with samples from a path of a process, reconstruction “on
average” might be inadequate and path reconstruction has to be considered.

As already mentioned, the results on the almost sure convergence in the
sampling expansion of band-limited processes are limited: Mainly, there are
three papers all dealing with uniformly spaced samples and second-order pro-
cesses. First, Belayev [2] obtained, for stationary processes and under an
oversampling assumption, exact reconstruction via the cardinal series. Sec-
ond, Piranashvili [21] extended Belayev’s result to include some classes of
second-order nonstationary processes. Third, Gaposhkin [8] gave, as a conse-
quence to a more general theorem, a necessary and sufficient condition for
path reconstruction of stationary processes. Gaposhkin’s result does not re-
quire oversampling, the sampling points are uniform and so the recovery is
also achieved via the cardinal series.

In the work below, both the assumptions of stationarity of the process and
of regularity of the samples are relaxed. No moment condition is needed. Con-
ditions for the path recovery of some classes of nonstationary band-limited
processes using irregularly spaced samples are given. Various related prob-
lems and extensions are also considered and a truncation error analysis is
provided.

Let us now give a more detailed description of the content of the paper: In
the next section we set the framework, introduce some notation, terminology
and essentially recall known results. In Section 3 and under the assumption
that the sampling sequence {¢;}xcz is such that sup,.; |t — (k/d)| < +00 and
inf, [tr — t,] > 0, some sufficient conditions for reconstruction (both in L*
and pathwise) are provided. The exponential kernels in the spectral represen-
tation are also replaced by more general ones. Then, for sampling sequences
{te}rez = {k/d}rez—ihy,. by Y {S1,82,...,5¢},d > 0, and for processes band-
limited to (—y,v), 0 < y < md, an explicit interpolating series, generalizing
the cardinal series expansion, is presented. A necessary and sufficient con-
dition for path interpolation via this series representation is then given. For
band-limited stationary Gaussian or harmonizable stable processes, the cri-
terion is always satisfied. To end the section, the rate of convergence of the
sampling expansion is studied and a truncation error analysis provided.

2. Preparation. Let (Q, %, P) be a probability space. For 0 < a < 2,
let L*(Q,®, P) [L%(P) for short] be the corresponding space of complex-
valued random variables equipped for 0 < a < 2 with the (quasi-) norms
(&]-1%)/* =|| - |l« (& is expectation), while on LO(P) the topology is the
one induced by convergence in probability (metrized in the usual fashion). The
main class of processes considered here has a spectral representation, namely,
X; = Jge**dZ()), t € R, where the random measure Z induces a bounded
linear operator from Cy(R) to L*(P), 0 < a < 2. Using the terminology of [10]
and [11] (where the reader can find more details, examples and references),
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these processes are (bounded, continuous) (a,o0)-bounded. Essential to our
approach is the following result (again see [10] and [11]).

LEMMA 2.1. Let X = {X:}ter, X: € L%(Q, %, P), be (a,c0)-bounded,
0 < a < 2, with random measure Zx. Then there exists a probability space
(Q, 8, P) with L2(P) C L2(P), a stationary process Y = {Y;}scr, Y € L2 (P),
and a random variable A € L2*/(- "‘)(P)~ such that X; = AQY, t € R, where
Q is the orthogonal projection from L2?(P) to L%(P).

In Lemma 2.1, Zy the random measure of Y, is orthogonally scattered;
hence there exists a finite positive measure F (a dominating measure) such
that

ev  &|[rdqzy[ <iQire|[ razs| =iQit [ irPar

for all f € L3(F) = {f: R — C, [z |f|I?dF < +o0}. Furthermore, examining
the proofs in [10] and [11] will convince the reader that Zy can be chosen in
such a way that its support coincides with the support of Z x. In particular, if
X is band-limited to (a,b), that is, if Zx = 0, a.s. P, outside of (a, b), then so
is Y, that is, Zy =0, a.s. P, outside of (a, b).

Now that the probability material needed hereafter has been given, let us
briefly state some elements of the theory of frames. Frames were introduced
by Duffin and Schaeffer [7] in their study of nonharmonic Fourier series and
have, in recent times, regained popularity in connection with wavelet theory
(see Meyer [19] and Young [22] for more recent work and references).

Let H be a complex separable Hilbert space, with norm | - || and inner prod-
uct (-,-). A sequence {x;} in H is a frame if there exist two positive constants
A and B (the frame bounds) such that A|x||2 < Y, [(x, xz)|? < B||x||2 for all
x € H. It is readily verified that frames are complete and that x| < B, for
all k. A frame is tight if A = B and a frame which fails to be a frame by the
removal of any one of its elements is called exact. Exact frames and bounded
unconditional bases are identical. Associated with a frame {x;} is the (well
defined) frame operator T' given via Tx = Y ,(x, xz)x%, x € H. The operator T
is positive, invertible with A < T' < B, that is, A(x, x) < (T, x) < B(x, x), for
all x € H. If T-! denotes the inverse of the frame operator, then {7 lx;}
is itself a frame (the dual frame) with bounds 1/B and 1/A and, in par-
ticular, 3", |(x, T~ 'x4)|> < +oo. Furthermore, when the frame 1s exact, the
sequences {x;} and {T lx;} are biorthonormal, that is, (xz, T~ lx,) = Sk,
for all k,n. Since T is invertible, x = Y 4 (x, xz) T 1xs = Y p(x, T~ 1xp)xs un-
conditionally for every x € H. Of these two expansions (known, respectively,
as the frame expansion and the dual frame expansion), the second is the
most useful since the expansion is with respect to the elements of the frame.
An inexact frame is not a base. However, the dual frame expansion is some-
how unique in that its expansion has minimal energy: if x = }_; czx;, then
Zk |C‘k|2 =2 lx, T_lxk)lz + X pler — (%, T_lxk)lz-
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To conclude this brief review of frames in Hilbert space, we make a simple
but rather useful observation (for C = 2/A + B, the statement below is well
known and already present in [7]).

LEMMA 2.2. Let C be any positive constant such that max{|l — CA|,
|1 — CB|} = K < 1 (in particular, let C = 1/B). Then CT is invertible; the
T-1=CY2 (I - CT)" in the uniform operator topology.

PROOF. Since A < T < B and since I — CT is Hermitian, ||I — CT| <
max{|1 — CA|,|1 — CB|} = K. Hence, whenever K <1,CT =1- (I -CT) is
invertible and its well known series expansion gives the conclusion. O

The observation that a C above could be chosen only depending on B is
rather useful (C = 2/A + B is taken in [7]) because, in general, one lacks a
knowledge of estimates of A, while estimates of B are known and easier to get.
The reason is that B corresponds to the boundedness of the operator T', while
A corresponds to its more intractable invertibility, which is often an existential
result. Another advantage of having such freedom on C is the possibility of
enhancing the convergence of the series by choosing the appropriate C. Of
course, C = 2/A + B is the optimal constant.

Recall (again see [7]) that a sequence of reals {¢;}rcz has uniform density
d.> 0if D = sup,y |tr — k/d| < 400 and if 6 = infr, |tr — t,] > 0. For the
class of nonharmonic Fourier series corresponding to these sequences, Duffin
and Schaeffer developed a convergence theory extending the work of Levinson
([18], Chapter IV) and of Paley and Wiener [20]. From their fundamental pa-
per, we extract (combining elements of Theorems I and IV there) the following
result, which for the sake of convenience is only stated for sequences with
uniform density 1.

LEMMA 2.3. Let {ti}rez have uniform density 1 and let 0 < y < . Then
{exp(ity-)}rez is a frame for L%(—vy,v) and there exists a unique (see Re-
mark 2.4) sequence {hy}rez C L2(—v,v) such that for any g € L%(—vy,y),

) n 1 y___ )
g()) = lim Z(— / hk(x>g(x)dx) exp(iti ),
n— 00 < 2'y —y
in L?(—v,v). Moreover, if g € L*(—w, ),

+2’° (/_: Wg(x)dx) exp(ity-)

k=—0

does converge in L2(—1r, ) and the corresponding ordinary and nonharmonic
Fourier series are uniformly equiconvergent to zero over any [—m + &, 7 — &),
. e>0. .

r

REMARK 2.4. The nonharmonic Fourier expansion of a function g is far
from being unique (as will become even clearer with our next lemma). The
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uniqueness in the statement corresponds to the uniqueness given by the dual
frame expansion. An important feature of the above lemma is the fact that for
any given (fixed) v,

400 vy
S ([ mtat) dx) exslinan),

k=—00

which a priori is only convergent for —y < A < vy [since {exp(its-)}rez is a
frame for L%(—1v,y)], does in fact converge over the bigger interval (—, )
whenever g € L2(—, 7). Furthermore,

n n 1 |

’}11{)10{2 S(k)exp(ikA) — Z(ﬁ; hi(x)g(x) dx) exp(itk/\)] =0
- -n -n =Y

uniformly for A € [—7 + ¢,m — €], & > 0. Another important aspect of

Lemma 2.3 is that the removal of a finite number of points does not affect the

results (a sequence with uniform density 1 remains of this type after deleting

a finite number of its points).

In general, y above cannot be replaced by 7. However, for sequences {¢}rcz
such that D = sup,; |tz — k| < %, in which case 6 = inf}4, |t — 4| > 0, such
_a replacement is possible. This result (stated below) which is due to Levinson
([18], Chapter IV) preceded Duffin and Schaeffer’s work and has its origins in
the work of Paley and Wiener [20]:

Let D = sup, 4 Itr — k| < %. Then {exp(it;-)}rez is complete in L2(—1r, )
and there exists a unique biorthonormal sequence {4}z C L2(—m, ) such
that for any function in L2(—, 7), the ordinary and the nonharmonic Fourier
series are uniformly equiconvergent over any [ —7+¢, 7 —¢], € > 0. Moreover,
the h; are given via

G(¢)

1 m— .
Vi) = 5- f Ta(m)e dr = s,

where
G(t) = (t — to) ﬁ(l— ;)(1— 2"—) teR.
n=1 n -n

The bound % is tight and is a sufficient condition for {exp(itz-)}rez to form a
bounded unconditional basis of L2(—r, 7) (see Kadec [15]). Hence, the Paley—
Wiener and Levinson theories are only concerned with the theory of exact
frames. The series expansion for D < % is more constrained. It fails to hold by
the removal of a single sampling point. The functions ¥, are called Lagrange
interpolating functions since -

_ |0, fork#n,
\Pk(t”)_{l, “for k= n.
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When ¢, = k, G(t) = sin#t/w, but, in general, no closed form expression
is available for G. Still when ¢, = &, we have A(x) = e** and ¥,(¢) =
(sinwr(t — k))/(7(t — k)).

Lemma 2.3 would be highly unsatisfactory without more explicit knowledge
(outside of the case D < Zl) of the sampling coefficients (1/2y) f_yy hp(x)g(x)dx.
A determination of these coefficients is the purpose of our next lemma, This
result is the dual of a method and proof (replacing also B below by 2/A + B)
given for functions in the Paley—Wiener class PW, by Benedetto and Heller
[3]. The proof is in [13] and so is omitted here.

LEMMA 2.5. Let {t3}rez have uniform density 1, and let B > (1+]e?? —1])?,
0 <y < m. Then,

1 % — e o n e
o [ e dx =B 5> -By ( . )cb(n Bt ),

where
1 7 .
D0, t5,y) = = [ exp(—ityx)g(x) dx
27 -y

and where for q > 1,
+00 +0Q
RCARIEID YD VD DI M [ exp(—itm, x)g(x) dx
mp=—00 Mmgo=—00 mq 1=—00 Mq~'—00
Siny(tm, — tmy) -+ - SinY(m,, — tm,) SN Y(tm, — tr)
')'(tml - tmz) cee 'Y(tmq_l - tmq)')’(tmq —tr)

In Duffin and Schaeffer’s proof of the frame property, the lower frame bound
A is only given in an existential way. Since estimates on A seem to be lacking,
Lemma 2.5 is rather useful. The expression for f_"y hi(x)g(x) dx is horrible
and since the series

By (- B)M( )(I)(n i) =B1S 3 (-B) P( )@(p,tk,y)

n=0 p=0 n=0 p=0

is not unconditionally convergent, no more simplification can be expected.
However, the finite approximation formula is quite manageable:

N N
By 3 (-By- "(5)et-ptnn) =B L -Brremnn Y (5 ):
n=0 p=0 p=0 n=p
When g is an exponential function, for example, for band-limited processes,
nicer expressions as well as error estimates are available (see some of the
results in the next sections). Again, when D < Z’ v can be replaced by =
. and the uniqueness of the decomposition ensures that the two expressions
for f_ hi(x)g(x)dx agree. When the frame is tight, that is, when the frame
constants A and B are equal, T = Al, T !=A"'Tand [7 hi(x)g(x)dx =

A1 [7 exp(—ityx)g(x) dx.
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3. Reconstruction. We now present our first results on the reconstruc-
tion of processes applying the framework of the previous section.

THEOREM 3.1. Let {t3}rez have uniform density d and let X be a process
band-limited to (—yd,vyd), v < m, and (a,+00)-bounded, 0 < a < 2, with
associated finite dominating measure F. Let there exist ¢ > 0 such that F
is absolutely continuous over (—yd,—yd + ¢) U (yd — &,vd) and such that its
Radon—Nikodym derivative F' is essentially bounded over these same intervals.

Then X(t) = Y12 . Vi(t) X (t,) in L*(P), uniformly on compact subsets of R,
where
V) =B Y Y-8 )0yt
n=0 p=0
and where
: -1
Do (2, 82) = sn;;ﬁ(i tki;i) ),

with

q)q(t, tr)

R 2 sinyd(t — tm,d7 1) siny(tm;, — tm,)
ml;m m;w o mq_IX_:_w mq;w YAt =t d D) y(Emy — tmy)

x sin y(tmq—l B tmq) sin Y(tmq - tk)
Y(tmgs — tmq)')’(tmq —tg)
q > 1, with also B > (1 + |ev4D — 1))2.

’

PROOF. Without loss of generality, again let d = 1. Applying Lemmas 2.3,
2.5 and 2.1 to the functions g;(A) = e}, t e R, —y < A < vy, we get

X(t) = /wqexp(it)t)dzx(,\): fM lim ; W4 (t) exp(ityd) dZ x(A)

<y n—+o00

=A lim Z V() exp(itpA)dQ Zy(A)

|A|<y —>+00 he—n

= A(f + ) lim W4(t) exp(its)) dQ Zy(A),
|Al<y—¢ y—e<|A|<y/ P>t

where the ¥(t) are given as in the statement. We now wish to interchange

the limits and the integrals. First, by the equiconvergence result (Lemma 2.3),

u (sin y(t — k)
k=—n

lim sup exp(ikA) — \I'k(t)exp(itk)t))’ =

>0 \|<y—el|p— 'Y(t - k)
Then
sup EEM ikA <C’ t e K’
—y<r<yli=, Yt — k)
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where K is a compact subset of R and n > 0. It thus follows from (2.1) that

[M lim 3 Wi(t)exp(itad) dQ Zy(A)
k=—n

|<y—s n—+4o00 -

= lim Zn: W,(t)exp(itpA)dQ Zy(A),

n—>+0 J|\|<y—¢& he—n

in L2(P), and this provides the first interchange. For the second interchange,
by (2.1) and since F’ < C (throughout, C is an absolute constant whose value
might change from one expression to another) over (—yd,—yd + &) U (yd —
g,vd), it follows that

2

n
limsupé’/ {exp(it/\)— Z \I'k(t)exp(itk)t)}dQ Zy(A)
n—+00 y—e<|A|<y ——n
n 2
< lim sup exp(itA) — > Wi(t)exp(itrA)| F'(A)dA
n—>+oo Jy—e<|Al<y b——n
n 2
< Climsup exp(itA) — Y Wi(t)exp(ityA)| dA
n—+oo Jy—e<|Al<y k=——n -
n 2
< Climsup exp(itA) — Y Wi(t)exp(itzA)| dA =0,
n—>+oo J|Al<y k——n

since {exp(itxA)}sez is a frame for L2(—v,y). Hence, QY (¢) = Y72°  Wi(2)
QY (¢) in L2(P) and X (¢) = Y72 Wi(¢)X(tg) in L*(P). O

REMARK 3.2. Again (see Remark 2.4) when D = sup,.; |¢tx — k/d| < 1/4d,
v in Theorem 3.1 can be replaced by 7 and an alternative expression for ¥y
is given by

G(t)

V= T =)’

where

el t t
G(t) = (¢ to)L[l(l tn)(l t-n)’ teR.
For D < log2/m and X stationary, this result with a similar proof is owing
to Beutler [4]. The hypotheses of Theorem 3.1 are, in particular, verified un-
der a guard band assumption. Recent results of Jaffard [14] (based in part
on Landau [16]) do provide a characterization of sampling sequences {¢;}zcz
. for which {exp(it;-)}rez is a frame. Thus, under an equiconvergence result,
Theorem 3.1 remains valid for these more general sequences.

We now examine a first almost sure convergence problem.
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THEOREM 3.3. Let D = sup, |ty — k/d| < 1/8d, d > 0, and let X be a
process band-limited to (—yd,yd), v < =, and (a,+o0)-bounded, 0 < a < 2.
Then X(t) = Y7  Wi(t)X(tr) with probability 1, uniformly on compact

k=—00

subsets of R, where
G(t)

) = T =

and

G(t) = (t - to) ﬁ(1- ;)(1— ?”—) teR.
n=1 —-n

n

PROOF. As usual, let d = 1. We first wish to show that whenever ¢ € K ,a
compact set of R and for £ > 0,

exp(it)) — Xn: Vi(t) exp(itpAd)| = O(n*P-1)

k=—n

sup
|A|l<m—¢

(with the usual O notation). This quantitative estimate essentially follows
from the proof of Theorem XVIII in Levinson [18]. Let us try to dig out some
buried estimates there. Before doing so, we note the following two Fourier
series estimates which follow from standard arguments:
- o(l)
n

sin 7 (¢ — k) exp(ikA)
dr

sup
Al<m—¢

exp(itA) — ) p

k=—n

and

sin(n + (1/2))r
1/27

. At . . sin(n+1/2)7 _ 1
— exp(itA) f)‘_w exp(—wt)——m— dTl = O(n)

sup

|A|<m—¢

At
exp(it)) f exp(—irt)
A=

Hence, using (16.11) in [18],

exp(itA) — i U (t) exp(itpA)

k=-n

3" () expliti)

=-n

- in(n 4 1/2)(A 1
3.1) - ;/_7r exp(it‘r)sm(n -(FAi:;A 2 dT‘ * O(;)

=

T A
= L[ exp(itt) dr lim/ G(u)exp(—itu)du
472 J_, A>oo)_a

exp(iAz) 1
¢ G2)(u—2) dz’ " 0(5) !
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where ¢ is the rectangular path with vertices at n+ %+ iIM,—n— %+iM ,—n—
% —iM and n + % — iM. Now, using inequality (16.19) in [18], (3.1) with ¢
replaced by its horizontal lines is majorized by

(3.2) Cn%(M?+ n?)exp(—M(m — |A])) < Cn?2(M? + n?) exp(—Me).

For ¢ replaced by its vertical lines, since by (16.08) in [18], |G(z = x + iy)| =
Cexp(w|y|)(1+ |z])~*P, and since |A| < 7 — £ with u € K, we have

‘/M exp(IA(N + 1/2 + iy))

MGN T2 ) a-N-12-5)%?

dy

- /M exp((—7 — M)y)(1+|N +1/2+ iy|)*P
~Jo lu— N —1/2 — iy|

0 exp((m — A)y)(1+|N +1/2+iy|)*?

u—N—-1/2—iy| &y

_|_
(3.3) M
< /M exp(—£y)(1+ N +1/2+iy)*”
~Jo lu — N —1/2 - iy|

dy

0 exp(ey)(1+|N +1/2 +iy|)*P
M lu— N —1/2 — iy

+ dy

< Cn~1-4D) 4 Cp~(1-4D),

Letting M — +o0 in (3.2), it follows from (3.1) and (3.3) that

exp(itA) — Z W, (t) exp(itpA)| < Cn~(1—4D),

k=—n

(3.4) ' sup

|Al<m—e¢

In order to conclude, and since X = AQY (Lemma 2.1), it is enough to show
that

SRV (1)~ 3 WaB)QY (84)? < +oo.
n=1

=-—n

Now QY is band-limited to (—v, y); hence, (2.1) as well as (3.4) lead to

2

S el - 3 vy ()
n=1 k=—n .

2
dF())

exp(itA) — i V() exp(itgA)

k=—n

sci/y
n=1v"7Y
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00 n 2
< CF(-v,7v))_ suplexp(itA) — > Wi(t)exp(itzA)

n=1 |Al<y =—n

00
<C Z n—2(1—4D) < 0,
n=1

since t € K and since 8D <1. O

It is clear that whenever X has moments of order greater than 2, the con-
dition D < 1/8 can be weakened. For example, if X is a zero mean stationary
Gaussian process, then we can have D < (4 + £)71, ¢ > 0, as is easily seen
by replacing in the above proof the second moment by an even moment of
appropriate magnitude.

We now briefly sketch, as an example, a result extending Theorem 3.3. This
shows how to generalize the various results of Belayev [2] and Piranashvili
[21] (as well as some of [12]) to our non-second-order irregular sampling frame-
work.

Let X(t) = [5f(t,A)dZx(A), where E is a Borel set, ¢ .€ R, where
Zx extends to a bounded linear operator from Cy(E) to L*(P) and
where f(-,A) extends to an entire function of exponential type such that
SUD) g SuPseg | £ (¢, A)| < +oo. Let ¢(A) = limsup,,_, , (n!lc,(A)])}/", where the
cn(A) are given via f(¢,A) = 3% e (A)2".

THEOREM 3.4. Let sup,.gc(A) = 0 < +oo, let p > o and let D =
Supycz [ty — kw/pl < w/8p. Then X(t) = 3;2°  Wi(t)X(¢) with probabil-

=—00

ity 1, uniformly on compact subsets of R, where

G(t)

YO -

and
o t t
G(t)=(t—t0)l—[(1—t—)(1—t——), teR.
n=1 n -n

Alternatively, for p > o, B < (p — 0)/q, q integer, and for D = sup,y |ty —
km/pl < m/2p,

+o00
X(t)y= ) V() X(ta),

k=—00
with probability 1, where

G(t) sin? B(¢ — tz)

U = G-t =t
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PrROOF. Without loss of generality, let p = 7. Then, as in the proof of
Theorem 3.3, we first show that

sup| (£, 1) - 3 f(tk,wku)‘ < C/nt-D
k=-—n

uniformly on compact subsets of R. For any A such that ¢(A) < 7 and prdceed-
ing as in the proof of Theorem 3.3, we have

. f\,2)
(&, 1) — (tp, M)W =G ——————dz,
FEN = 3 Ftn VW& =6(&) [ Gire=g d

where ¢ is as in (3.1). Since

If (A, 2)| <sup|f(A,t)|eMI?
teR

z = x + 1y, it follows as in the proof of (3.3) that

U f(A,N+1/2+1iy)
MGIN+1/2+iy) (- N —-1/2 - iy)
( / exp(—(7 — ¢(A)y)(1+ N +1/2 + iy|)*? dy
| — N —1/2 — iy|
/0 exp((m — ¢(A1))y)(1+ [N + 1/2 + iy|)*P p )
M lE—N—1/2—iy| Y
< Csuplf(A )|(m — c(1))"In=(04D)

dy

- <sup|f(A,2)l
(3-5) teR

for £ in a compact set. Replacing € by its horizontal lines, and still for £ in a
compact, and still proceeding as in Theorem 3.3, the integral

f(A,2)
4O [, g %

is majorized by
(3.6) CP(n,m)exp(—M(m — c(1))),

where P(n, M) is a polynomial. Letting M — +o0 in (3.6) and using (3.5), we
thus get

3.7 sup

Z f (2, )‘)‘I'k(t)‘ <C(m- (})—ln—(l-w).

k=-n

Sirice Zx = AQZy and since sup, g sup;.g |1 (¢, A)| < +o00, we have

X(t) = /E f(t,\)dZx(A) =AQ Lj f(t,\)dZy
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and, as previously,
oo
Y&
n=1

allows us to conclude. To obtain the alternative expression, it is enough to
show that

Q) - 3 Va()QY(t)

2 00
<C Z n—20-4D) _ 4o
k=—n n=1

f(t9 /\) - i f(tk, A)‘I’k(t)’ < Cn—q—1+4D'

k=—n

sup
AeE

This estimate is essentially obtainable like the previous one. The major dif-
ference comes from the fact that |sin? 8(z — ¢)| < Ce?PY. This is controlled
as previously by using B < (p—0)/q. O

REMARK 3.5. When |f(¢,2)| < C(1+ |2|P)e’?!, p < q, p integer, it follows
from using the alternative expression that

sup|f(¢,A) — i f(tr, A)¥s(£)| < CnP=a-1+4D,
AeE

k=—n

Hence, for D < w/4p, X(t) = Zim ¥, (t) X (¢p) with probability 1. Second-
order processes band-limited in the sense of Zakai (see Cambanis and Masry
"[6] for more details) can also be represented as [, f(t,A)dZx(A), where
If(¢,2)] < C(1+ |z|P)e”"? (see Lee [17]). Hence, the above results generalize
and extend the regular sampling results of [6] and [17]. It is clear that for
sequences with uniform density 1 or whenever D < 1/4d, Theorem 3.1 can
also be extended to the more general framework presented in the above

theorem.

, Although the potential extensions of the previous results are numerous
(generalized random processes, sampling with derivatives, sampling for time-
limited processes, sampling for second-order processes whose covariance is a
tempered function, etc.), none of these will be pursued here. Instead we will
study the “simpler” case of regular sampling with either finitely many missing
ones and/or finitely many irregular ones.

The results presented below can be interpreted as statistical “missing data”
results. For irregularly spaced data satisfying a uniform density condition
d > 0, and for, say, a weakly stationary process X, the part of the process
whose spectrum is contained in (—yd,yd), 0 < ¥ < , can be exactly recov-
ered [in L2( P), or pathwise under the necessary and sufficient condition given
below]. The mean square error committed with the band-limited assumption
is majorized by &| [)>,q € dZ(M)? = f5ya AF(A). The results allow inter-
polation, using finite data, of sets containing mixtures of regular and irregular
points with gaps.

" Throughout the rest of the section, and unless otherwise stated, we as-
sume that the sampling sequence is of the form {tp}rez = {R/8}rez—{hs,..0} Y
{s1,82,...,8¢}, d > 0. For such sequences, we present another lemma which
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permits us to find a closed form expression for the interpolating function
¥,. Other expressions could be obtained by replacing g(x) by e** in the
statement of Lemma 2.5. However, in that case, the computations become
rather cumbersome and difficult to handle. In our special case, it is possible
to exploit the fact that only finitely many sampling points differ from the
integers to provide a more direct approach. The proof of this lemma (stated
for d = 1) is in [13] and so is ommited here [below (-, ), is the inner product

in L2(—y, ).

LEMMA 3.6. Let {¢tr}rez = {&,51,82,. --,sl}keZ—{kl,...,k,} and let 0 < y < m.
Then the statement of Lemma 2.3 continues to hold with

-217 ] T T(Dg(x) dx

= Y(g(-),exp(ity-))y

:]

(3.8) 2 r r
+ (%) > (), exp(iky-))y(exp(ikq-), exp(ite-))yVap

p=1g¢g=1
Y2 & & . . .
- (;) > (8(-), exp(isp:))y (exp(isg-), exp(ite-))y Vo,p,
p=1g=1

where V4 , is the (q, p)-entry of the inverse of the matrix

’YSin‘Y(fp—fq)) . {k p=1,...,r
I- with fp=1{ " P
( 7Y(fo—Fa) ) pg=t, . rie fp Sp, p=r+1,...,r+¢.

In the case of no missing observation and regular sampling, y = &, the
correcting térm in (3.8) vanishes and the above lemma is just the (dual of the)
classical regular sampling theorem. The correcting factor in (3.8) can be rewrit-
ten in matrix form (y/7)2¢*(I — (y/m)G) 17, where G is the Gramian matrix
((exp(if p-), €xp(if 4*))y ) p,q» Where £* is the row vector ((exp(if 5-), exp(itz-))y)p
and where 7 is the column vector ((+g(-),exp(ifq))y)q, (+g forg=1,...,r,
—gforq =r+1,...,r+£). Hence, for an increasing (but finite) number of miss-
ing observations, recursive computational procedures to obtain the correcting
factor in (3.8) are possible.

It is assumed from now on that the process X = {X,}ser is (bounded, con-
tinuous) (a,00)-bounded, 0 < a < 2, and is also band-lzmzted to (—vy,7),
O<y<wd,d>0.

With this last assumption, we can now prove another stochastic result and
) congider convergence of the interpolating series in L* and with probability 1.

THEOREM 3.7. Let X and {ts}sez be as above. Then X(t) =
32 o Yi(t) X (8) in L*(P), uniformly on any compact subset of R, where
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the ¥y are given by
siny(d~1t; — t)
y(d-1t, —t)

Y & & siny(d 71k, —t) sinyd (g — kq)
+ wd Z Z y(d-1k, —t) yd-1(ty —t,) VP

W(t) = %[

3.9)
p=l q=1

4

- ZZ: 3 siny(d~lsp — ¢) sinyd~1(¢; — s4) ]
md oo y(dls,—t)  ydlte—sg) PP

Furthermore, the interpolating series converges with probability 1 if and only
if
,}E’L‘O{ZX(" 2P y)-Zx(~y,~y+27P)} =0 as. P.

PROOF. We first prove L“-convergence. Let d = 1. Applying Lemma 3.6 to
the functions g;(A) = e}, te R, —y < A < 7y, we get

X(t) = f exp(ith) dZ x(A) = / lim 3 Vi(t) explits) dZx(A),
|Al<y | k=—n

A<y =00 =

where the expression for the ¥y is given via (3.8). We now wish to interchange
the limit and the integral. This can be done as follows: Since e} x(_, . (A) €
L%(—m, ), the equiconvergence result (Lemma 2.3) gives

n (sin y(t — k)
y(t— k)

However, it is classical that

lim sup exp(ikA) — Vi(8) exp(itk)t))‘ =0.

=00 _y A<y

k=-n

n

sin y(t — k)eik’\
p—n Y(E—Fk)

compact subset of R and n > 0. Now, since the dominating measure F in (2.1)
is finite, we can appeal to bounded convergence to get the result. In fact, it is
possible to get this result by directly proving [using (iii) and (iv) of our next
lemma] that

<C, te K

sup
—y<A<y

n
> Wh(t)exp(itpr)| < C, teK

k=-n

sup
—y<A<y

compact subset of R, and n > 0. This proves the first part of the result. For
the a.s. part, more preparation is needed.

REMARK 3.8. The first proof of the L*-convergence given above applies, as
well, to arbitrary sampling sequences with uniform density d = 1. Only the
interpolating functions ¥, have to be changed to those obtained by replacing
g(-) by e* in Lemma 2.5.
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Via Theorem 3.7, the value of the missing observations can also be recov-
ered:

7 siny(¢ — k;)
X(kj) = p ;{_—_‘y(tk — k.)J

i ZZslny(k p— kj)siny(t, — kg)

8.10) Yo —k) A=ty O

p—l q=1

sin y(sp — k;) sin y(¢; — sq) }
w Vo (X (tr).
IJX—:lq—l 'Y(sp - kj) y(ty — Sq) ap ()

We now turn to the a.s. result (with d = 1) and follow the strategy of proof
devised by Gaposhkin [8] in the regular sampling case. The next lemma pro-
vides some useful estimates on the kernels S, (¢, 1) = Y b Yr(2) exp(itpA),
written for short S, (A).

LEMMA 3.9. Let S,(A) = Y 5__, Vrexp(itgd), A € (—=y,7), t € K compact
subset of R. Then,

(@) 1S(A) = Su(A) = C((m —n)/m), 2P <n <m < 2P,
(i) [Sn(£A) = Sp(£A) < C{(m —n)ly FAl+1/n}, 2P < n < m < 2P+,
y=1l/n<fA <y, A>0.
(iii) |Sp(£A)—eXM 4 (e — 7 /2)| < C{nlyFA|+1/n}, n>1, y—1/n <
+A <y, A>0.
(v) 1Sn(£1) — M| < C{1/(nly F A+ 1/n}, n > 1, 0 < £A < y — 1/n,
A>0.

PROOF. (i) From the form of {tk} and for p large enough, it is clear that
[Wi(t)] < C/|k]; hence, [S(A) — Sm(M)| < C Tpeipyam 1/1EI < C((m — n)/m).

(i1) We only consider the case y — 1/n < A < v, since the result for —y <
A < =y + 1/n is similar. From the form of the ¢, and of the ¥, it is enough
to find similar estimates for

_ &siny(k—1) 4, siny(k— ko) i
P =L SR e and S

as well as
i sin y(k — sq) i*A
—— e
= v(k—sg)
This is done only for P, since for the other two sums, it can be done similarly:

) _ i MY _izesin(n + (1/2)7)
' Pr(d)=e /A—y ¢ sin(7/2)

. A+ . .81
=e”t/ Q—deHO(E)
A=y T/2 n

dr
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It is thus enough to estimate this last integral which is denoted by Q,(A).
However, now, dividing the domain of integration of @,(A) into (A — v, 0],
(0,2A], (2A, A +y) and since for y — 1/n < A < v, the integral over the middle
interval is equal to 7/2 + O(1/n), we have

Q) =2 ([° st WDD o,

4 [T gimSinnt A/2)7) L Z) + 0(1).
21 /2 2 "

(3.11)

Hence from (3.11),
1@r(A) — @m (1)

0 Aty
3.12) -<—C<fH+ . )

0 pus
50(/ +/ 7)|m—n|d7+g5C|m—n|(y—)t)+£,
A—y  J2a n n

dr +

sin(n +(1/2))7 _ sin(m + (1/2))7
T T

¢
n

from which (ii) follows.
(iii) We only prove the inequality for A > 0:

eiyt _ e—i'yt
2

ei'yt + e—i'yt
2

1
<Cnly— A+ O(;) +Cly = A,

Sn(/\) - ei)‘t +

(3.13) < (8,(A) — + | — et 4 it

where to obtain the first inequality in (3.13), we use lim,_, 100 Sn(y) = (et 4
e”*) and also the fact that, as in (ii), to study the asymptotics of R,(y) =
Yikisn Vr(2) exp(ityy), it is enough to study

siny(k—12) 4,
—_—e ,
|k|>n 7(k - t)

which is a O(1/n).
(iv) Only the case 0 < A <y — 1/n is considered. Since exp(iAt) — S (1) =
Yikisn Vi(2) exp(iAty), from the W), we need to show

siny(k — kg) in,
hon Y(E—1)

and —_—
|kl>n y(k — kq)

as well as
—_— ¢
|kl>n y(k —sq)
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are dominated by C(1/(n|y—A|)+1/n). These three estimates are similar and
we only indicate how to get the first one. Since

siny(k—1t) ;. siny(x — 1) ;) ’ (1)
—_ = _ e d -
|kIZ>n yk—1) © /|x|>n ya—o o o)

we just need to estimate this last integral. Now, an integration by parfs [dif-
ferentiating 1/(x — ¢)] gives (iv). O

We have all the ingredients to prove the a.s. part of Theorem 3.7.

PROOF OF THEOREM 3.7 (a.s.). First, we need to show that
(3.14) lim max |S,X —S2X|=0,

P—>+00 2P < <2+
that is, that the problem can be reduced to studying the kernels Sg» X(¢) =
2_"2,, ¥, (¢t) X (¢). This is done by using the dyadic decomposition of n. Then,
using Lemma 2.2 in [11], and mimicking the proof of Lemma 3.1 there, using
the estimates (i), (ii) and (iv) above, (3.14) follows. Once this first reduction of
the problem is achieved, we write

X(2) — 8, X (2) = {S2» X(2) - S, X(2)}

ei7t _ it
+ {X(t) - SpX() + " Zx(y—27,7)
- ey +20)
- sz(v -27%7,)
+ iW-Te?i—w—zx(—v,—v +277).

To prove the a.s. part of Theorem 3.7 is thus equivalent to showing that with
probability 1,
iyt _ ,—iyt
tim | X(6) = S0 X(0) + 5 2y =2 7,)
p—>00 2
iyt _ ,—iyt
- Ay )| =,

uniformly for ¢ in a compact of R. It is in turn enough ‘to show that:

X ry
xf
v p=1 y

. eiyt _ e—i'yt
e — Sop(A) + _'2—X(y—2‘P,y)(A)

2

iyt __ ,—iyt
e "¢ dF()) < +o0.

- TX(—%—HZ-P)()\)
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Dividing |A] < yinto 0 < |[AF y| < 27P and |A F y| > 277, and providing

estimates over these two regions, the result follows. For example, for |A Fy| <
27P and if A = {27%1 < |A £ y| < 27*}, Lemma 4.7(iii) gives,

00
pgl /(;<|)qw|<2 P

00 o0 o0 1
sglzngfl{ﬁnyﬁdmcz_;@

+iyt _ ,Fiyt |2
ettt _ g (iA)+5—Te-— dF

<C 2221’ Z 272 F(Ap) +C Z 22p
p=1 k=p

<CZF(A )+CZF(A")

+C < 4o0.

For [A\Fvy| = 277, the estimates are essentially similar to the ones given above
using (iv) of Lemma 3.9 instead of (iii). O

The essential moral of Theorem 3.7 is that in a random environment and as
far as sampling and reconstruction are concerned, a realization of a process is
representative if the end points of the band are filtered out or if the spectrum

~of the process is smooth enough.

Of course, for regular sampling y = 7 and Theorem 3.7 recovers (and ex-
tends to nonstationary processes) the results of [8]. More generally, for sam-
pling sequences whose corresponding interpolating functions V¥, satisfy esti-
mates ¢ la Lemma 3.9, a.s. convergence can be similarly obtained.

We now give some corollaries which state that for particular cases of X,
simplifications occur. We still assume in these results that X and {¢;} are as
in Theorem 3.7. The proofs of the next three corollaries are omitted since they
are similar to the proofs of Corollary 3.5, Corollary 3.4 and Theorem 3.6 in
[11].

The first corollary applies, in particular, to stationary Gaussian processes
or to “harmonizable” SaS processes.

COROLLARY 3.10 Let Z x have independent increments. Then, with proba-
bility 1, X(¢t) = WL (t) X ().

k——oo

When the dominating measure F in Lemma 2.1 has some degree of smooth-
ness, reconstruction is always possible. In particular, this applies to band-
limited second-order stationary processes with continuous spectral density.

COROLLARY 3.11. Let dF = F'd0, F' € L*?(—y,y), ¢ > 0. Then, with
probabzlzty 1, X(¢) =272, Wr() X (tr).

The next corollary essentially gives the best possible behavior of F in
order to always get exact reconstruction [F’ € Ll(—y,y) is not enough].
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Later in this section, we present an example of a stationary process
(whose F violates the condition given below) such that with probability 1,
limsup,, o | >h, Yi(t) X (¢r)| = +o00. Below, log is the base 2 logarithm.

COROLLARY 3.12. Let 1 < a and let there exist a positive Borel measure F
on (—vy,7y) x (—vy,v) such that:

(i) €|Zx(B)|* < F(B x B), B a Borel set in (—vy, ).

1 1 a/2
ii loglog ——< loglog ———< dF(A, ,
(i) / /0<|Aiy|<a, 0<mi)«|<a(og B Eo ) 08108 2 /ﬂ)) (A, ) < oo

for some 0 < 8 < 2. Then with probability 1, X(¢) = Y12  Wr(t) X (t2).

Other corollaries are possible, for example, the guard-band case, that is, if
X is band-limited to (—y + &,y — €), € > 0, and if we use the ¥}, of (3.9), then
convergence with probability 1 holds. A version of Theorem 3.7 can also be
given by replacing (—v,vy) by a bounded Borel set.

To finish these notes, we study various problems related to the previous
results and thus also complement various results in [8]. We start by studying
the rate of convergence in the interpolation formula. We complete the section
with a truncation error analysis. Other types of errors occur when using a
sampling series representation (aliasing, jitter, round-off, etc.) they are not
considered here and should deserve another study.

First, we show below that with the help of a mild enhancing factor, the
remainder in the interpolation formula always converges to zero with proba-
bility 1.

COROLLARY 3.13. Under the hypotheses of Theorem 3.7,

1

nl]).l}_loom Z ‘I’k(t)X(tk) =0 a.s P,

|k|>n
uniformly on compact subsets of R.

PROOF. First, 345, ‘If;;(t)X (tz) is well defined [it converges in L%(P)].
Now, using Theorem 3.7, we need to show that for 27 < n < 2p+l

: 9P — —_ — -p =
nl—yfoologlogn{ZX(y 2707) — Zx(=y,—y+270)) =0

a.s. P. However, 29 < p < 29+1

ZX(Y - z_p,Y) = ZX(Y - 2—2‘7’ 7) - ZX[Y _2—p,,y - 2—2‘1)
and similarly for Z x(—vy,—y + 27P). To prove the result, it is thus enough to
. proyve that :

00
1 q —-29
> ?lezy(v—Z‘z ) — QZy(=y,—y +27%) < +o0
q=1 )
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and that

[e o]

1
Y —¢ max [QZy(y—-27P,y—2%) - QZy(-y+27%,—y+277)2 < +o0.
=19 2i<p=s2et
The proofs of these two results follow as in the proofs of Theorem 3.7 and
Corollary 3.12 and so are omitted. O

The enhancing factor log log is essentially minimal. This is the conclusion of
our next proposition. As often in building this kind of counterexample, essen-
tial use is made of Rademacher-Menchov systems of divergence. We also note
that the result below provides a band-limited stationary process for which
limsup,,_, o0 | 2 5-_, Vr(£)X ()| = +oo0 a.s. P. This is in sharp contrast to
the L*-convergence results of Theorem 3.7 and Remark 3.8. For the proof, we
again refer to techniques of [8].

PROPOSITION 3.14. Let {t3} be as in Theorem 3.7 and let {a,},>1 be a non-
decreasing sequence of positive reals diverging to infinity and such that:

(i) a, = o(loglogn).
(ii) There exists C > 0 such that as+1 < Cage, n large enough.

Then there exists a probability space (1, %:,P;) and a band-limited
- stationary process defined on that space such that limsup,_ . (1/a,) -
Y he—n Yr(t) X (ty) = +o0 a.s. P.

We are now ready to start a truncation error analysis, that is, we wish to
estimate the order of the remainder if only a finite sum is used to approximate
X. Since we are concerned with the paths of the process, these estimates have
to hold with probability 1. The theorem below is again optimal since, as in our
previous result, if g = o(f) replaces f below, a Rademacher—-Menchov system
of divergence will give a counterexample. As in Corollary 3.12, we could also
replace the exponent 2 below by a.

THEOREM 3.15. Let X and {t3}rez be as in Theorem 3.7, let F be a dominat-
ing measure in (2.1) and let T1 < Tz € R. Let f: R* — R* be an increasing
function such that:

i) T’igere exists C < 2 such that f2(2n) < Cf2(n), n large enough.
G [ F2(1/(92 = AB)dF() < +oo.
-y

Then
lim f(n) sup | Y Wu()X(t)|=0

n—-+00 T1<t<Ts |kl=n
with probability 1, if and only if
Jm F2P{Zx(y =277,y) = Zx(=y,—y+277)} =0

with probabiliy 1.
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PROOF. Using the decomposition results of the previous section, we need
to show that with probability 1,

(3.15) lim f(2°) max |S,X —8S2X|=0.
p—>+00 2P <n<2p+1
and that
eiyt _ e—-i'yt
Elfoof(zp) X(t) =S X + 3 Zx(y—27%,y)
(3.16) ) .
elvt — g—ivt

- —Zx(—y,—y+27)| =0,

To do so, it is enough to mimic the proof of Theorem 3.7. First, since C < 2,
we can choose v in Lemma 2.2 in [11] so that 1 < v < 2, and (vC;1/2) < 1.
Furthermore, since f2(2n) < Cf2(n), it follows that f2(2Pn) < C?f%(n) and
f2(2P) < f2(1)CP. Using these results, to prove that (3.15) holds we need, in
turn, to show that (also using the notation of Lemma 3.1 in [11])

00 P
322> vk2t max [ " 18as(A) = Sar (MIEAF(A) < +00.
p=1 k=1 (61,...,8k)€{0,1}k -y

The methods of the previous section as well as the ones presented above do
provide such a result and similarly for (3.16). O

Let us note that if there exist Cy > 1 such that Cof2(n) < f%2(2n), n large
enough, then under (i) and (ii) of Theorem 3.15,

Jm f(n) sup |37 Wi(t)X(2x)| =0

T1=t<T2l\k|>n

with probability 1. This is so because this added condition with Cy ensures
that

3 F(2P)E1QZy (Y — 2P, y) — @Zy(—y,—y + 27P) < +oo.
p=1 :

Still under the conditions of Theorem 3.15, and whenever f there is such
that [;**° f~2(A) dA < +o0, then

Y V()X (%)

|k|zn

sup =o(nlog'**n) as. P.

T1<t<T,

More generally, if 3% (n¢(n))~2 < +oo, then

> Wu(t)X(tr)| =o(¢(n)/n) as. P.

|kl=n

sup
i T1<t<Te

F"inally, Theorem 3.15 can also be slightly sharpened replacing f2 by f¢,
1 < a < 2, using the methods of Corollary 3.12 and the above ones.
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