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INTERMITTENCY-TYPE ESTIMATES FOR SOME
NONDEGENERATE SPDE’S!

By RICHARD B. SOWERS

Northwestern University

In this paper we prove some intermittency-type estimates for the
stochastic partial differential equation du = .Zu d¢+ .#,ucdW!, where ./
is a strongly elliptic second-order partial differential operator and the .#’s
are first-order partial differential operators. Here the W¥s are standard
Wiener processes and o denotes Stratonovich integration. We assume for
simplicity that (0, -) = 1. Our interest here is the behavior of E[|u(¢,x)|?]
for large time and large p; more specifically, our interest is the growth of
(p%t) llog E[|u(t, x)|”] as t, then p, become large.

Introduction. In this paper we prove some intermittency-type estimates
for the stochastic PDE (SPDE)
n
(L1) du=Ludt+)y HuodW,  u(0,)=1,
=1

where .# is a strongly elliptic second-order partial differential operator and
the .#’s are first-order partial differential operators. The W'’s are standard
Wiener processes. For simplicity we let the spatial variable take values in a
d-dimensional manifold without boundary. Our interest here is the behavior
of E[|u(t, x)|P] for large time and large p. More specifically, we are interested
in the behavior of the moment Lyapunov exponent

(12) Tim = log E[ju(t, x)1"]

for large p (of course we do not a priori know that this limit exists, nor that
it does not depend on x). We are interested in finding when this limit grows
quadratically in p, that is, when

13) Jim ~log E[Ju(t, 2)1”] = O(|pl?)

as | p| becomes large. This has implications about the “patchiness” or “inter-
mittency” of the random field u [15].

Received May 1992; revised September 1994.

IThis work was originally written while the author was at the Center for Applied Mathe-
matical Sciences, University of Southern California, Los Angeles, California 90089-1113 and was
supported by ONR Grant N00014-91-J-1526. The work was revised while the author was sup-
ported by a National Science Foundation Postdoctoral Fellowship at the University of Maryland
at College Park.

AMS 1991 subject classifications. Primary 60H15; secondary 47D07, 60G60, 76W05, 93E11.

Key words and phrases. Intermittency, moment Lyapunov functions, stochastic partial differ-
ential equations.

1853

[
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%:%?’)

8

The Annals of Probability. STOR ®

WWww.jstor.org



1854 R. B. SOWERS

Our technique in this paper is to convert the study of (I.2) into some calcu-
lations like [3] (see also [8], [12] and [25]). We get some conditions on .# and
the .#;’s under which (I1.3) is true. We must admit that our aims here are very
modest. Many aspects of the calculations of [3] rely on the simple structure
of finite-dimensional Euclidean spaces. Here, we will eventually set up a sim-
ilar problem in an infinite-dimensional space. Hence, to try to extend in full
the calculations of [3] would lead to a host of technical calculations. Either
we could attempt to derive a complete, but long, analogue of [3], or use sim-
pler, but less complete, estimates, which more quickly lead to some explicit,
computable and geometric conditions under which (I.3) does or does not occur.
We chose the shorter and simpler approach. A noticeable penalty for adopting
these simpler estimates is that we do not get conditions which are both nec-
essary and sufficient for (1.3) to occur. In fact, neither do we attempt to show
that the limit (I.2) exists. We hope, however, that the connection between our
problem and that of [3] may in itself be of use.

There recently has been much interest in intermittency in SPDE’s. It de-
scribes some extreme irregularity in certain magnetohydrodynamic phenom-
ena. One should also note that since (I.1) is the SPDE for the unnormalized
conditional density for a certain filtering problem, this problem is connected
with other questions about the asymptotics of filters ([18], [19], [21] and the
references therein). Intermittency has been found in discrete versions of this
problem (see [1], [7] and [15]) and in a strictly parabolic version of the SPDE
(I.1) (see [2]). The significance of our results is that we consider here a fully
superparabolic SPDE with continuous time and space variables. This entails
a conceptually more difficult problem than in [2], since the superparabolicity
condition requires that the characteristics of (I.1) contain an auxiliary noise.
In the language of [2], we are considering an incompressible and conduct-
ing fluid with finite magnetic Reynolds number. This necessitates a detailed
study of how this additional noise is smoothed out in representing the solu-
tion of (I.1), and in seeing how this smoothing operation is affected by higher
moments (see also [14] for different aspects of this sort of difficulty).

This paper is divided into four sections. The next section contains a review
of some standard results about (I.1). It also contains some slight reformula-
tions of our problem; these will somewhat simplify our calculations. Section 2
contains a review of some of the calculations of [3]; these will form the model
for our analysis of (I.2). In Section 3, we introduce a measure-valued Markov
process which will allow us to rewrite our analysis of (I1.2) in a form similar to
the studies of [3]. Finally, Section 4 contains the final results about (I1.2). We
give some necessary and some sufficient conditions under which (1.3) is true.

1. Some well-known results. We now recall some salient parts of the
theory of the SPDE (I.1). Specifically, in this section we shall give more explicit
definition to the SPDE (I.1) and, second, we shall state a standard Feynman—
Kac representation formula which will be fundamental to our arguments.

We assume in this paper that M is a connected, compact, C* and d-
dimensional manifold with a Riemannian metric tensor (-,-). We let V and A,
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respectively, be the gradient and Laplace-Beltrami operators associated with
(,-). We then let {o;: 1 =0,1,...,n} be a collection of C* vector fields on M
and {h;: [ =0,1,...,n} be a collection of C* real-valued functions on M. As a
convention, we shall always consider tangent vectors on M to be derivations,
that is, local linear operators which obey Leibniz’ rule ([6], Chapter 4.1). We
then assume that the second-order operator .Z of (I.1) has the form

- 200 + (00, Vo) + hoo, ¢ € C*(M),

and we assume that the first-order operators {.#;: [ = 1,2,...,n} are of the
form

A0 = (01, Vo) + e, ¢eC®(M), 1=1,2,...,n.

To complete the background of (I.1), let (2, #,P) be an underlying proba-
bility triple on which an r-dimensional standard Wiener process {W!: | =
1,2,...,n} is defined. Then we know that the solution of (I.1) exists and is
unique for all time (see [24], Chapter 3).

Next we wish to write the solution u of (I.1) by means of a Feynman-Kac
function-space integral. This will in fact be crucial to our analysis. In order to
make our future arguments easier, however, let us first change our problem
in several simple ways.

To begin, let us more clearly state the goal of this paper. We wish to find
the behavior of

(1.1) limsup%log E[|u(t, x)|P]
t—00
and
1
(1.2) li¥ninf n log E[|u(t, x)|?],

for | p| large, for any specific x in M. We simply note in passing that the initial
condition u(0, -) = 1 is sufficient to imply that u(¢, x) is P-a.s. nonnegative for
each ¢ > 0 and each x in M, so the absolute value signs in (1.1) and (1.2) are
in fact extraneous. Instead of directly studying (1.1) and (1.2), we shall find
it more convenient in this paper to consider a slightly more general problem.
Let £2(M) denote the collection of probability measures on (M, #(M)), where
(M) is the Borel o-field of subsets of M. Instead of (1.1) and (1.2), we shall
be interested in

1 p
(1.3) limsup—logE[./ u(t, x)u(dx) ]
tsoo L M
and
1 p
(1.4) liminf - log E[I/ u(t, x)u(dx) ]
t—oco t M

for | p| large, for any fixed u in £(M). Clearly by taking u to be a point mass
at x, for any chosen x in M, we can study (1.1) and (1.2). Note that, again,
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the absolute value signs are extraneous due to the nonnegativity of our initial
condition.

Our second transformation of the problem is a bit more subtle. In the same
way that deterministic parabolic PDE’s admit a Feynman—Kac representation
in terms of stochastic characteristics, the solution u of (I.1) admits a represen-
tation in terms of stochastic characteristics (see [22] and [24], Theorem 5.1.1).
These characteristics, however, evolve backward; for any ¢t > 0 and any x in
M, we must solve a backward Itd equation. While this is not in itself very
difficult, it requires us to study the forward evolution of u by studying the
backward evolution of the characteristics. As most of the machinery in our
arguments relating to the characteristics is traditionally written in terms of
forward evolution, it will make our efforts easier to study the forward-evolving
characteristics of a corresponding backward SPDE. Let us consider then the
terminal-value problem

n
(15) —dvT = £vTdt+ Y AT S dWL,  oT(T,) =1,
=1

where o denotes backward Stratonovich integration (see [24], Definitions
1.4.13 and 1.4.14). The theory of (1.5) is exactly analogous to that of (I.1),
and we refer the reader to [24], Chapter 3, for a complete treatment. Since
the solution to (1.5) is unique, the statistics of v7(0,-) are the same as the
statistics of u(T,-) for any T > 0. More specifically,

]

p
] = ]EU/ vT (0, x)u(dx)
M
for any u in £(M), any T > 0 and any p.

Now we recall the well-known Feynman—Kac representation formula for v7.
Expand (), ,P) as necessary to support a d-dimensional standard Wiener
process {W!: 1 =1,2,...,d}. Let {6;: | = 1,2,...,d} be C*® vector fields on
M such that in Hérmander form

(1.6) IE[./M u(T, x)u(dx)

Then we let {9;: ¢ > 0} be the stochastic flow of diffeomorphisms of M defined
by

d ~
doy(x) =Y 6(F:(x)) o AW, + Go(De(x)) dt
=1

(1.7) &

+ Y ou(Di(x)) 0 AW,

=1
Fo(x) = x, xeM
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(see [10], [11] and [20] for a treatment of stochastic differential equations on
manifolds). Next define the subsigma fields of &,

(1.8) YEEGWL W s<r<t, 1=1,2,...,n},

s

for each 0 < s < t, and set #° £ Vst 7//tT, for each ¢t > 0. Then (see [22] and
[24], Theorem 5.1.1) P-a.s.,

T n T
(1.9) vT(o,x)=]E[eprO ho(ﬁs(x))ds-}—;fo h,(as(x))odwg]

& ]
for each x in M. For future ease of notation, let us define, analogously to (1.8),
FLE oW - Wk s<r<t 1=1,2,...,d},
for all 0 < s < ¢ with 7?/t°° £ Vst 77/?, for each ¢ > 0. For any u in (M),
we may further expand (Q), ¥ ,P) to support an M-valued random variable

having law w and which is independent of # & v W ¢°. Then it is easy to see,
from (1.9), that P-a.s.,

[ 070, m)u(dx)
M

T n T .
=E[exp[fo ho(as(x))ds+l§/0 hl(as(x))odws]

Wﬂuwm

(1.10) r w l
=E[fMexp[[) ho(ﬁs(x))dS‘l'l:Zl/O hl(’&s(x))odwsil“(dx)

%/3].

7/{]

! S Th dw!
=E[exp[f0 ho(ﬁs(g))ds+lzzlf0 1(95(€)) o Ws]

Before closing this preliminary section, we define a certain collection of test
functions on £(M). We say that a smooth function ® on (M) is one which
may be represented as

(111) (b(ﬂ-) - ‘P((¢1, 7T>’ (1702, ’ﬂ'), ey (¢My 77)), (S Q(M)y

for some m, where {¢;: i = 1,2,...,m} are some functions in C*(M) and ¢
is some bounded and twice-differentiable function from R™ to R whose first
and second derivatives are bounded. Here we have used the standard notation
that if ¢ is in C(M) and = is in (M), then

<%wé&MMﬂwl

Let © denote the collection of such smooth functions. By the Stone—
Weierstrass theorem (see [23], Section 9.7), © is dense in C(Z#(M)).
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2. Some exemplary finite-dimensional calculations. We now briefly
review the results of [3], which will serve as a guide to our studies of (1.3) and
(1.4). The calculations of [3] are directly relevant when we replace .Z by a
first-order operator (this is done in [2]). We shall also see that the calculations
of [3], when applied to a certain auxiliary process, give us some insight into
the behavior of (1.3) and (1.4).

Let M be a compact, connected, d-dimensional manifold. Let {o,o1,...,
o} be C® vector fields on M and let { ko, h1,...,h,} bein C®(M). Let {9;: t >
0} be the stochastic flow of diffeomorphisms of M which are defined by

d9u(z) = 3 o(D(x) 0 AW + 5o(9(x)) dt,
(2.1) =1
Fol(x) = x, xeM.

We can then study the asymptotics of the quantity
t n_ ot

@2 1t,pix) £8fex|p [ ho(2a@)ds + 3 [ oo awt]],
0 i=1/0

for t > 0, p € R and x € M. This is somewhat related to our studies of (I.1) in
that the solution of the first-order (Hérmander form) SPDE,

du = (—gou + hou) dt + ) (—cyu + hju) o dW,,

=1
E(Oa ) = 1>

satisfies
t n t

©.3) g(t,ﬁt(z))=exp[f ko)) ds + 3 [ @l@s(g))odwé],
0 = Jo

for all ¢ > 0 and x € M. Thus,
I(¢, p;x) = E[|u(t, 9:(x))1”], ¢20, peR, xe M.

This is explored in more detail in [2]. The philosophical difference between
(1.7) and (2.1) is that the manifold M on which {93;: ¢ > 0} is defined is
different than M. In particular, it need not be Riemannian and it may be
“larger” than M.

The results of [3] state that, under some nondegeneracy conditions,

(2.4) lim 11m—log1(t pix) = 1 inf sup Z((rld) h)¥(x).

|p|—>o0 t—00 D $peC>(M) xeM

These nondegeneracy conditions are essentially twofold:
Lie{_O"__(), O1,... 7g_n}(£) = TxM,
(2.5) B
ao(x) € Span{go(x),01(x),...,0n(x)}, x€M.
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Unfortunately, neither of these conditions will be reasonable in our study of
(1.3)—(1.4). It will thus be useful to restate some of the calculations of [3] so
that we will be able to derive some weaker results than (2.4).

The ideas of [3] can be understood as follows. Fix ¢ € C*(M). Then

1(t, pix) = E[exp[pw(@t(g)) — $)}]
2.6) xexp[p{/th (9 (x))ds+Zn:/th(0 (x)) o AW
. 0_0_3_ l=10_l_s_ o s
— ($@e() - ¢<g>)”].

By Itd’s rule,
[ "ho(Du(x))ds + 3 [ hu(B.(x)) 0 WL — ($(D3(2)) — b))
=1

= [ (o~ oop) (@) ds + 3" [ (bs - 18)(D(2)) 0 W
0 -1 0

Inserting this into the exponent in (2.6), we can form a Girsanov exponent
and write that

1(t, px) = E[exp[p{(b(ﬁf"”(z)) — @)
2 n
xexp| B[S (- 0102024 ) ds]
@.7) =1

x exp[p [ ho ~ cop)(024(2) ds

t n
2 ["S - ot)24 @) s ]
=1
where {9} . t > 0} is the stochastic flow of diffeomorphisms of M defined as
AP (z) = Y o3P (2) 0 AW} + ao(3*(x)) dt

=1

28) 42>t — i) (3P ()i (9P(2)) d,
=1

(x)=x  xeM.
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Next we can rescale, writing s = r/p in the integrands in (2.7). We get that

I(t, pix) = E[exp[p{(b(ﬁﬁ};"’(&)) @)

xexp| 5 [73 (- 002324 ar |
2 0 o1
(2.9) "
xexp| [ (ho - 20 (32420 dr

+ % /Otp g(gzhl - a?d)(FP*(x)) dr]],

where now { ﬁf "$. ¢ > 0} is the stochastic flow of diffeomorphisms of M defined
as

d5P* (x) = T_f (5f’¢(£))odWﬁ+%zo(ﬁf’d’(z))dt
=1

(2.10) +] ( b — 31$) (3P (2)a1(5 (2)) d,

) =2, zxeM

From (2.9), it is very easy to see that

1 1
limsup limsup —-logI(¢, p;x) < 5 inf su hy)*(x
msup limsup -5 logI(t, pix) < 5 fnf sup IZ(_@ ha)* ().

The other direction is more difficult. Here is where the nondegeneracy require-
ments are needed.

3. A measure-valued Markov process. In this section we will trans-
form the representation (1.10) into something like the right-hand side of (2.3).
This will allow us to use calculations like those outlined in Section 2. As we
shall see, however, the cost of this is that, in place of ¥ of (2.1), we will need
to consider a stochastic process which is measure-valued. More precisely, we
will replace M of Section 2 by &#(M).

The basic difference between (1.10) and the right-hand side of (2.3) is the
conditional expectation. Let us first pass the conditioning to the exponent. De-
fine the C*°(M;R)-valued process {q;: t > 0} as

gi(x) & exp[/t Ro(94(x)) ds + Z/t Ru(94(x)) o dwg], t>0, xeM.
0 = Jo

It is easy to see that {q;: ¢ > 0} is indeed P-a.s. in C*°(M;R) for all ¢ > 0.
One may use the techniques of [10], [11] and [20] to construct a stochastic
flow of diffeomorphisms of M x R which coincides with the mapping (x, y) —
(9:(x),log q;(x) + y) for each ¢t > 0. Let us now fix a u € £(M) and assume,
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as before, that ¢ is an M-valued random variable which is independent of
7'y v #3° and which has law u. Then we may rewrite (1.10) as

07(0,.),n) =Elqr(&)I¥¥], T>o.

Writing down the stochastic differential equation for {q,(£): ¢ > 0} and then
taking the conditional expectation, we find that

Elq:(6)17]

t
— 14+ [0 El ho(9:(£))qs(£)1#51ds

nooot
+3° [ B3, () a7 510 dW]
(3.1) =170

_ 1+/0t E[hO(ﬂS(g))qS(g)IWS]]E[qS(fﬂ%/(S)]ds

E[qs(&)|17§]

N e R

The proof of (3.1) requires, of course, an intermediate representation in It6
form, and also requires some calculations similar to those used in the proof
of the Zakai equation of nonlinear filtering. For each ¢t > 0 and u € #(M),
define a random element 7;(u) of £2(M) by

E[far xa(9:(x))qe(x) u(dx)| # ]
E[fyr q:(x) u(dx) | # 5]

(One may assume that our underlying space of events is Polish since every-
thing can be defined in terms of Wiener processes and M-valued random vari-
ables. Thus we can indeed assume that 7;(u) € 2(M) for every ¢t > 0 and
n e P(M); see [26], Theorem 5.1.15. We will have more to say about the tech-
nicalities of {7,(u): ¢ >0, uw € (M)} in a moment.) Then (3.1) can easily be
rewritten as

Elgs (17 §1odW:,  ¢>0.

m(pn)(A) = ,  AeB(M), t=>0.

t
E[q(&) 78] =1+ /0 (ho, mo(w)ELqs(£)1 73] ds

n t
+ 3 [ o, () ELgu ()7 510 aW,, £ 0.
=1
This directly leads to the following proposition.

PROPOSITION 3.1. For any u € (M),

t n t
<vt<0,->,m=exp[/o o, ma(u) s+ [ <ho,ws<m>odW§], £>0.
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Using (1.6) to return to our original problem, this implies the following
corollary.

COROLLARY 3.2. Forany u € (M) and any p € R,

t
E[l(u(t, ), )] =E[exp[p [ tho, w1 ds
(3.2) n
+py | <ho,ws<m>odW§]], £>0.
=170

We will treat this as an analogue of (2.2). In place of {93,: ¢ > 0, x € M}, we
use {m;(u): t >0, uw e (M)}, and in place of the A;’s, we use the mappings
{#:1=0,1,...,n} from (M) to R which are defined as

Hy(m) 2 (h,m), weP(M),1=01,...,n.

To close this section, we will give some basic properties of {m,(u): ¢ >
0, w e Z(M)}. Clearly, {m;(n): t >0, uw € (M)} will play a central role
in our studies of (3.2). It is not hard to see that, for any ¢ € C2(M) and any
wePM), {(g,m(u)): t >0} satisfies

n

33 dip, m(w)) = L, me(w) dt + > A (¥, m (1)) 0 AW,
. =1

W, mo(w)) = (Y,m), =0,

where .1 and {,lf: 1=1,2,...,n} are the mappings from C2(M) x 2(M)
to R defined as

L, m) (LY, 7y — (W, m) (L 1,7,

AW, ) E (M, ) — (W, T AL, ),
1=1,2,...,n, ¢y € C3(M), me P(M).
Here 1 is the mapping from &#(M) to R defined as 1: £(M) — 1. Of course

-Z 1 and the .#;1’s have a much simpler representation, namely,

(£ 1)(x) = ho(x),

(A11)(x) = hy(x), 1=1,2,....n, xe M.
By standard results in partial Malliavin calculus ([4], [5] and [24], Chapter 7.2)
P-a.s. m:(u) possesses a smooth density with respect to the Riemannian vol-

ume measure B on (M, #(M)) for every t > 0 and p € £(M). If we then
define

) 2 T Gy e, 10, we (M),
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the equations (3.3) imply that { p;(u): ¢ > 0} satisfies the SPDE

dpi(p) = £* pa(p) dt — { [ ho<z>pt<u)<z)%(dz>}ptw)dt
+3 ) pi(p) o dW!
(3.4) =1

n

- 2{ [ hz<z)pt<u>(z>%<dz>}pt(m o dW!,

=1
po(p) =, t>0.

Here .#* and the .#)’s are, respectively, the adjoint operators of .# and the
A)’s with respect to the measure 8. The reader acquainted with nonlinear
filtering theory will recognize (3.3) or alternately (3.4) as the Kushner equa-
tions for a certain filtering problem ([17], Section 11.2, and [20], Section 6.3).
We can also show that, for each u € (M), {7,(u): t > 0} is a P (M)-valued
Markov process. For any ® € © which has representation (1.11), define

Bod(m) 2 3" 2 (o, ), (o sy Wiy 7)) L (1, ),

=1 0x;

B(m) 23 22 (1, m), (o mhy -, Wy )k W), 7€ P,
=1 4

Then we have from (3.3) that, for any u € (M) and any ® € S,
d®(m(p))

= (Bo®)(mi(p)) dt + 3 (B®)(m () 0 dW!
(3.5) -1

= (Bocb +3Y B} d))(m(,u))dt + i(Bld))(m(,u))dWﬁ, t>0.
=1 =1

Summing up all of this, we have the following proposition.

PROPOSITION 3.3. For each u € (M), {m(n): t > 0} is a Markov process
with respect to the filtration {#{: t > 0} and its associated semigroup of
transition operators is Feller. For any ® € S and u € (M), {®(m,(n)): t > 0}
evolves according to (3.5).

PROOF. The fact that, for each u € (M), {m;(u): ¢t > 0} is Markovian
with respect to {#'}: ¢ > 0} and its associated semigroup is Feller comes from
calculations like those of [18], Theorem 2.3. O

4. Asymptotics. The next step is to use calculations like those of Section
3 to get, as much as possible, the analogue of (2.4). Of course, as we pointed out
earlier, we probably cannot get a complete analogue of (2.4) since, in general,
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it would be too restrictive to impose the counterpart of the nondegeneracy
assumptions like those of (2.5).

As a first step, let us transform (3.2) in ways analogous to the transforma-
tions of (2.8) and (2.10). We give the results in the language of semigroups.
Let B(£2(M);R) be the Banach space of bounded and measurable mappings
from 2(M) to R. For each p € R and ® € &, define a collection {Tf’q): t >0}
of mappings from B(%(M);R) to itself by

n t/
(TP 2 B[ gy enp| o3 [ (1~ B ) W
=1

41 5 [
(4.1) _%;fo p(;fl—Bldnz(ws(u))ds]],

t>0, ue M), F c B(Z(M);R).

Then we have the following lemma.

LEMMA 4.1. Forany peRand ® € &, {T? ®. ¢ > 0} is a Feller semigroup
on B(Z(M);R) whose generator, when restricted to ©, is
o A& 1 1 &9
APP =Y (# -Bi®)B+—=Bo+— > Bj.
=1 p 2p 3

PROOF. That {Tf’q): t > 0} is a semigroup on B(#(M);R) follows from
the fact that for each u € 2(M), {m(u): t > 0} is a Markov process with
respect to the filtration {#7: ¢ > 0}. The Feller property comes from the
analogous statement in Proposition 3.3 and the fact that the mapping @ —
(#1—B®)(w) from P(M) to R is continuous for each [ = 1,2,..., n. Finally,
the formula for the generator is a simple consequence of (3.5) and the definition
(4.1). O

Now set Q' 2 C (Ry; #(M)) and let &' be the canonical Borel sigma field
on (V' (defined using the Prohorov topology on &(M) [13], Chapter 3.1 and
Problem 25 in Chapter 3). Let {X;: ¢ > 0} be the collection of &(M)-valued
random variables on (), ') defined by

X, (o) 2 w(t), t>0, oecQ.

Finally, for each p e R, ® € © and u € (M), let Fﬁ’q) be the unique proba-
bility measure on (', #') such that

Pr(Xr e Alo{Xy: 0<s <)} = (TEOxa) (X)),  PPPas.
0=<t=<T, AcB(PM),

where (% (M)) is the natural Borel sigma field of subsets of #(M). Let Eﬂ’q)
be the associated expectation operator.
We can now write down the analogue of (2.9).
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PROPOSITION 4.2. For each ® € &, every p € R, every u € #(M) and every
t>0,

=1‘E',‘:""[exp[p{¢<xt>—¢<m}]
p [P 2 ]
= (& —-BiP)“(Xs)d
xexp[2/0 ; ) ! s
tp
xexp[fo (H#o — Bo®)(X,)ds
+ 1/“’ S (B, # - Blztb)(Xs)ds]].
2 Jo =

From this, we immediately get the following proposition.

PROPOSITION 4.3. We have that

1
limsup lim sup —- log E[[(u(¢,-), u)|P]
ploco  tooo PPt

4.2)

n
inf  sup (Bi® — #))* (@),
P we.@(M);

l\'JIF—-‘

forall p e P(M).
This of course immediately leads to the following corollary.
COROLLARY 4.4. We have that

1
lim sup hmsup~——log E[|(u(t, ), w)|P] < = sup Zéfl (w),
lplsoo  t—00 2 ger(m) |

for all w e P(M).
PROOF. Simply take ® =0 in (4.2). O

Now comes the lower bound. Here is where we must be satisfied with
weaker results than the full analogue of (2.4). Of course we have the following
results.

PROPOSITION 4.5. We have that

lim inf 11m1nf~——10g E[|{u(t,-), w)P] > %sup inf Z(Blfb X)) (w),

|pl—>o00 PeS weP (M

for all u e (M).
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COROLLARY 4.6. We have that

1
1i fli f——l E t p — f H, ,
1;111_32 1m1n og E[[(u(t,-), w)|P] > 5. lg(M) Z (@)

for all e (M).

Our final trick in bounding (1.4) from below is to use Jensen’s inequality to
see that, for any p e R and u € #(M),

1
ligninf P log E[|(u(t,-), u)?]

> liminf — ’CDI:E /tp i(éfl -B®)%(X,) ds
p2t 2

t—>00
¢ 12
43) + [ oo - Bow) + 5 B - B fx) s
0 =1

..ol fipa[l &
—_:llmlnf? A E [§ Z(éfl—BﬂD)z(Xs)] ds

t— 00 =1

L1 t 13
- 11m1nf Efj""“(% ~Bo®) + 5 ;(Bléfl - B,%)}(xs)] ds

p t—>00
From this, we easily get the next proposition.
PROPOSITION 4.7. We have that

lim inf 11m1nf—1—-log ]Ep [l(u(t,-), u)|P]
p

| pl—>00 t—>00

(4.4)
> sup liminf 11m1nf qu)[ Z(Jfl Bltb)(Xs)] ds

Pe IPImo t—>00
forall p € Z(M).

The goal now 1s to see when the right-hand side of (4.4) is positive. To do
s0, let us fix ® € S. Define V® € © as

V¥(w)= 1l inf Z(;fk ~-B 0 (w), e 2(M).
weP (M) he

We want to show that, as p and ¢ tend to infinity, {X;: ¢ > 0} stays away from
the set

® 2 {weP(M): V®(w)=0}.
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Note that
APP V(X))
= Y {(# —Br®)(H; — B;®)(Bi#} — BB, ®)}(X;) dt
1<k,l<n
1 n
+ =Y {(#1 — Br®)(Bo#; — Bo B ®)}(X,) dt
(4.5) Pz
1
+5- 2 (0~ Br®)(BI, — BI®)}(X,) dt
p 1<k,l<n
= Y B4 -BBORX)dt,  t20,
2p 1<k,l<n
and
n
(4.6) d(V*(X)), = %Z(BZV‘I’)(XQZ dt, t>0.
=1
Define now

@n A2 inf{ Y G- BB @)y w eI, Y ¢ = 1}-
k=1

1<k,l<n

If A? > 0, then the evolution of {V®(X,): t > 0} looks like a perturbation of
the unstable ODE,

(4.8) V =2%V.

This turns out to be correct. We have the following proposition.
PROPOSITION 4.8. If A® > 0 for some ® € &, then

(4.9) liminf liminf ;}2; log E[ |{(u(t,-), u)|P] > 0,

|pl—>o00 t—

for all u € P(M).

The proof is given in the Appendix.
A simple example of this occurs when ® = 0, where 0 € © is the identically
zero mapping, that is, 0: (M) — 0.

COROLLARY 4.9. If A\° > 0, then
1
liminf liminf ——log E[|(u(¢,-), u)I?]1> 0,
lpl>oo tooo p2¢

forall w € (M).
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Let us investigate this last result a bit more closely. Rewriting (4.7) with
® = 0, we have that

(4.10) A0 = inf{ Y. B #)(w)ér: w el i &= 1}~
1<kl<n k=1

Now fix @ € I* and (£1, €2, ... &,) such that Y}_; £€2 = 1. Then

Yo aBi ) (@er= Y, Ef( b, @) — (hp, @) (b, @)}

1<k,l<n 1<k,il<n

> &{(oihe, @) + (hihy, @)} i

1<k,l<n

(4.11)

< > &o,VRE+ Y (§zhlhk§k),w>'

1<k,l<n 1<k,l<n
The second equality uses the fact that @ € 1°. Define

n 2 n
Xé inf{ Z E1(o, Vhy)(x)ép + (Zflhl(x)) txeM, Zfi = 1}'
k=1 k=1

1<k,l<n

Then by (4.11),

(4.12) A >

so we have the next corollary.
COROLLARY 4.10. If A > 0, then

1
liminf liminf Elog E[[(u(t, ), w)|?]1>0

|pl—> o0 t—

for all w e (M).

Note that, in getting the bound (4.12), we have not fully used the fact that
we are concerned only with @ € I° in (4.10). In particular, we have not used
this fact in bounding the last line of (4.11) from below. We will, however, be
content with Corollary 4.10, since a more detailed investigation of (4.11) would
take us rather far afield.

In the interest of seeing what Corollary 4.10 means, let us consider an
example.

EXAMPLE 1. Let o0y =Vhy, foralll=1,2,...,n. Then

2 n 2 n
+ (Z fzhz(x)) xeM, 3 &= 1},
=1 k=1

X:inf{

Y & Vh(x)
=1
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where | - || is the Riemannian metric on M. Thus A > 0 if

{(fl,fz,m,fn) €R™ 3£ Vhi(x) =ox}
(4.13) =1 .
n {(fl,gz,...,gn)ew: Zfzhl(x)=0} ~(0,0,...,0),
=1

for each x € M, where 0, is the zero element of T, M for each x € M and
(0,0,...,0) is the zero element of R”.

An even simpler example is given by further specifying that n = 1.

EXAMPLE 2. Let n =1 and oy = VA;. Then
A =inf{[|VAy(x)[® + [k (x)|%: x € M),

so A > 0 if Vhy(x) # 0, whenever hi(x) = 0. The condition (4.13) is simply a
multidimensional generalization of this.

Recall that we embarked upon the analysis of (4.3) in order to see what
happens when

n
. 2

(4.14) welg(fM) ; HP(w) =0,

that is, when Corollary 4.6 is not refined enough to give us (I.3). If (4.14)
is true, then the zero sets of the A;’s must each be nonempty; that is, {x €
M: hi(x) =0} #, foreach I = 1,2,...,n. The above examples illustrate that
we still have (4.9) if the gradients of the A;’s are nonzero in enough directions.
One might somehow understand this in the sense that the flow of the o/’s
pushes away from the zero sets of the h;’s. We shall not attempt to make
this idea rigorous here. Also, we shall leave it to the reader to devise other,
perhaps more elaborate, examples of when A® > 0. Many such examples are
obvious. All of them share with the above examples the idea of imposing some
additional structure on the o,’s and A;’s which allows a more explicit lower
bound on A.

APPENDIX

This Appendix is devoted to the proof of Proposition 4.8. The expression on
the right of (4.4) reflects some aspect of the invariant measures of {Tr P>
0}. An ergodic decomposition allows us to consider only invariant measures
for {T? Pt > 0} which are also ergodic. For such ergodic probability mea-
sures, a Has'minskii-type representation ([16], Chapter 4.4), followed by some
standard stability analyses, leads to Proposition 4.8. Let us fix now for the
r%st of this Appendix a p € R and a ® € &. Recall that we are assuming that
A® > 0.
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We begin with the fact that, for any u € 2(M),

b
li}ninf% E5’¢[V¢(xs)]ds:/ Ve (w)Q(dw),
0 0 P (M)

where @ € #(#(M)) is an invariant probability measure for {T? Pt > 0}.
For convenience, let 3® be the collection of elements of P(P(M)) which are
invariant for {T7®: ¢ > 0}. Then (4.9) is true if

(A1) hminfinf[/y(M) V¥ (w)Q(dw): Q ¢ sp"‘)} > 0.

|pl—>00

By virtue of the ergodic decomposition theorem ([9], Chapter 5.2, and [26],
Chapter 7.4), this is true if
(A.2) y 2 liminfinf[ [ V®(@)Qdw): Q C&ES"""}
|pl—>o0 2(M)
is positive, where €37 is the collection of elements of 3”® which are ergodic.
We want to consider the infimum in (A.2) via a Has’minskii-type represen-
tation. To do so, define

L®() 2 {w e #(M): V¥(w) <n}, 120,
and fix ' > 0 such that

int 3 6B - BB @)k @< L), 3= 1}z a0

1<k,l<n k=1
Note that

yo & inf{ Loy V@@ @ € 2@ (), QLG =]
P(M)
is positive. Indeed, yo > 7’. Thus, we need to show that
(A.3) Y1 2 inf[/ V®(w)Q(dw): Q € €IP®, Q(L(%)) > O}
P(M)

is positive; y > min{vyo, y1}. To do this, fix 0 < 71 < 92 < 1. We will write a
Has’minskil representation using the Markov process induced by {X,: ¢ > 0}
on JL(7m1) and dL(7mz). As a preliminary, of course, we need to ensure that
{X;: t > 0} hits dL(n1) and dL(nz) infinitely often. Note that, for any @ €
©3IP® such that Q(L(n')) > 0,

— o1 gt ,
= /gm Pﬁ@[}ﬁgz fo xre)Xs) ds = Q(L(n ))}Q(dm

PP [q. _
S/Q(M)P# {lutllizleL(,,r)(Xs)_ 1]Q(d/.1,),

y X

so at least we know that L(7’) is recurrent for {X;: ¢ > 0} under Jon) TIEM

- @(du). To prove furthermore that dL(n;) and dL(7n3) are recurrent under
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fg(M)Fﬁ’q)Q(dp) for any @ € €3P® such that Q(L(7n')) > 0, let us look more

closely at the evolution of {V®(X;): ¢t > 0} as described by (4.5) and (4.6).
Define the two constants

f2inld ¥ Bk BB (@) @ e L),

1<k,(l<n

{12 Sup[% Y (Bo#) — By B®)*(w)

1<k<n

+1 Y B}#-Bi®)(w): we L(n’)}-

1<k,l<n

Note that, under our assumption that A® > 0 and our choice of 7/, {o > 0.
Then by an easy application of Young’s inequality,

Ad)  (AP* V(@) > (— 1 —) V(@) + = (¢o — 801),
p 2p

for all w € L(n'), all p € R and all & > 0. Thus, if we take & > 0 sufficiently
small and |p| sufficiently large,

A®
(A5) (AP Vo) (@) 2 L VO (a) + S0 5 L2

4 4p — 4p
for all @ € L(7'). Turning now to (4.6), we also see that since A® > 0 and, by
our choice of 7/, there is a constant k > 0 such that

(A6) VO (@) < 3 (B, VO (w) < VO (aw),
=1

for all w € L(7n'). Consider now any @ € €3P® such that Q(L(v')) > 0.
We already know that L(7n’) is recurrent under [ 2( M)ﬁZ’¢Q(du), and, com-
bining this fact with (A.5) and (A.6), we can also conclude that dL(%;) and
dL(mg) are recurrent. Indeed, for sufficiently small n” > 0, we can com-
pare {V®(X;): ¢ > 0} to the deterministic process {({o/(4p))t: ¢ > 0} on
L(n"), and on L(n') ~ L(%"), we can compare {V®(X;): ¢t > 0} to a process
{(Zo/(4p))t+(1/\/D)M;: t = O}, where {M,: t > 0} is a continuous martingale
whose bracket grows linearly (thus {M;: ¢ > 0} is a time-changed Brownian
motion whose clock grows linearly). We leave the details of the argument to
the reader. We are now assured that a Has’minskii-type representation will
be valid. Define the mappings 71 and 72 from ' to R, by

71 = inf{t > 0: V*(X,) = m},

o 2inf{t > r1: VO(X,) = M2}
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Clearly, 7; and 79 are stopping times with respect to the filtration of %' gen-
erated by {X; : ¢t > 0}. Then for any @ € ©3P® such that Q(L(7')) > 0,

Sz B3 VE(X,) ds] @(dp)
faL(nz)fE—i’d)[Tz]Q(dM) ’

[ vi(@ede) =
P (M)

where Q is a probability measure on (dL(n2), #(dL(72))) which is the distri-

bution of X,, under fy(M)Fﬁ’¢Q(d#).
The way is now clear for some simple stability calculations. For any measure

Q on (dL(mz), B(dL(n2))),

faL(nz)Eﬁ’(b[ 7 VO(X,) ds]Q(du)
Syt B2 1721Q(dp)

—=p,®r o A
AT) N Jonow Ep Ug" VE(Xs) ds]Q(dp)
" Lo B2 P Ir11Q(dp) + 50D ey Bl T2 — 71]

—p,d A~
. M [y Ep [T11Q(dp)
> —3 - s )
faL(nz) ]Ei [TI]Q(d#’) + SUP e 1.(n2) ]Ei [72 — 'Tl]

We want to show that the right-hand side of (A.7) is bounded away from
zero uniformly in p and Q This entails showing that | aL(m)Eﬁ’q)[n]Q(d,u)
is bounded from below and sup,,. L(nz)E£’¢[72 — 71] is bounded from above.
Using (4.5) and (4.6) and the bound (A.4) to consider {V®(X;): t >0} as a
perturbation of (4.8), we find that both of these are not unreasonable. Let us
first bound Eﬁ’q)[fz — 71] from above. Returning to (A.5), we see that, when
| p| is sufficiently large,

me—m=E." [ f " (AP V) () ds]
T1

{o=p®
> EE” [r2—71],  medLing),

SO

< 4p(ng — 771),
{o

—p,®
E, [72—71] p € dL(n2).

Second, we bound fﬁL(m)Eﬁ’q)['rl]Q(du) from below. Taking £ = 1 and |p|
sufficiently large in (A.4), we get that

()]
(AP V) (@) = 7 V(@) - L, 4
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for all w € L(n3). Thus for all u € dL(732),
m—ne=E° [ /0 " (APP V) (w) ds]

{1

=p,P
> _%Eﬁ [Tl]’

SO

2p(n2 —m)

{1 ’
Using simple properties of the mapping (x, y) — (n1x)/(x + y), we may thus
conclude that, for any @ € €3”® such that Q(L(%')) > 0,

DASERE p e IL(ma).

m2p(ne —m))/é1
—m))/{1+ (4p(n2 —m1))/do

{0}
/Q(M) Vi@)Q(dw) 2 (2p(n2

. m
1+2¢1/¢0

Thus, returning to (A.3), we have that

'}’IZ_“TM—'
1+241/8

Thus 7y in (A.2) is positive, so (A.1) is true and Proposition 4.8 is consequently
verified.
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