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THE “TRUE” SELF-AVOIDING WALK WITH BOND
REPULSION ON Z: LIMIT THEOREMS!

By BALINT TOTH

Mathematical Institute of the Hungarian Academy of Sciences

The “true” self-avoiding walk with bond repulsion is a nearest neighbor
random walk on Z, for which the probability of jumping along a bond of
the lattice is proportional to exp(—g - number of previous jumps along that
bond). First we prove a limit theorem for the distribution of the local time
process of this walk. Using this result, later we prove a local limit theorem,
as A — oo, for the distribution of A-%3X_ /4> Where 6,4 is a random time
distributed geometrically with mean e~/4(1 — e 5/4)"1 = A/s+ O(1). As a
by-product we also obtain an apparently new identity related to Brownian
excursions and Bessel bridges.

1. Introduction and results. In the present paper we consider a “true”
self-avoiding walk with bond repulsion (abbreviated BTSAW) X; on the one-
dimensional integer lattice Z, defined as follows. The walk starts from the
origin of the lattice and at time i + 1 it jumps to one of the two neighboring
sites of X;, so that the probability of jumping along a bond of the lattice is
proportional to

exp(—g - number of previous jumps along that bond).

More formally, for a nearest neighbor walk gf) = (%9, %1,...,x;) and a lattice
site y € Z we define

(1.1 r(ylag) =#{0<j<it xj=y—1, xj11 =y},
(1.2) S Uylxh) =#{0< j<iixj=y, x4 =y -1},
(1.3) v(ylxh) = r(ylxg) + Uylxp).
Writing e~ = X € (0, 1), the walk is governed by the law

. . Av(x,+1|§6)

. —_ A L, —

(1.4) P(Xi=x+11X;=1x) = AvCtlzg) o po(xlag)’

. ] PUEAE)
(1.5) P(Xi+1=xi—1|£6=£6)=

/\U(x,‘+1|§:)) + /\U(xll?f:)) ’
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The only difference from the “orthodox” true self-avoiding walk with site
repulsion (abbreviated STSAW) [see Amit, Parisi and Peliti (1983)] is that
here we count the local time spent on edges, while the jump probabilities
of STSAW are determined by the local time spent on sites. We expect that
the physical phenomena should be very similar in the two cases. Based on a
nonrigorous renormalization group argument it has been conjectured in Amit,
Parisi and Peliti (1983) that the upper critical dimension of STSAW is d. = 2.
That is, in more than two dimensions the STSAW behaves diffusively, like
an ordinary random walk, with logarithmic corrections in two dimensions.
Computer simulations of the same authors seem to agree with this conjecture.
It was natural to expect overdiffusive behavior below the critical dimension,
that is, in d = 1. In Peliti and Pietronero (1987) the one-dimensional problem
was considered. In that paper, based on nonrigorous scaling arguments, the
authors argue that, for late times, the variance of the STSAW should behave
like

(1.6) E(X}) ~ >,

with v = 2/3 in one dimension. They also cite numerical simulations strongly
supporting this conjecture. For a review of the problem, see also Lawler (1991)
and Madras and Slade (1993). We do not know about the existence of any
rigorous results concerning true self-avoiding walks. However, let us mention
here two related problems:

1. The self-avoiding walk problem (which is, strictly speaking, not a random
walk in the sense of stochastic process evolving in time) has a long his-
tory, and there are deep and technically difficult results concerning it. See,
for example, Brydges and Spencer (1985), Hara and Slade (1992), Madras
and Slade (1993), Bolthausen (1990) and further references cited there. It
is particularly interesting to compare Bolthausen’s result on “ballistic be-
havior” of the one-dimensional weakly self-avoiding random walk with our
limit theorems proved in the present paper.

2. On the other end of the spectrum are the problems related to self-attracting
rather than self-repelling walks, a typical example being the so-called re-
inforced random walk [see, e.g., Pemantle (1988) or, for a one-dimensional
problem closer to our present paper, Davis (1990)].

In the present paper we make assertion (1.6) rigorous: we formulate and
prove limit theorems with rather explicit limiting distributions for the local
time and position of BTSAW. Our results are in agreement with the physicists’
conjectures and numerical results. The results are formulated in Sections 1.1,
1.2 and 1.3. )

Let |[W,|, y € (—o0,00), be a (two-sided) reflected Brownian motion with an
arbitrary starting point |Wo| = h € [0, 00). For x € [0,00) define

(1.7) w, =sup{y < x: |W,| =0},

(1.8) ot =inf{y > x: |W,| = 0}
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and

wf
(1.9) Tx=/_ \W,| dy.

@
That is, w, (respectively, w}) is the starting (respectively, ending) point of
the excursion straddling x € [0,00), and T, is the area under the curve |W,|
between w; and w?.

1.1. The local time process and hitting times. Our first result is a limit
theorem for the local time process of the BTSAW X ;, stopped at appropriately
defined stopping times. Let £ € ZN (0,00) and m € N. Denote by T'; , (respec-
tively, T;’m) the time of the (m + 1)th arrival to the lattice site % from & — 1
(respectively, from % + 1):

(1.10) T; ,=0=T;_,,
(1.11) P =min{i > T;,: Xia=k—1, X; =k},
(1.12) Tipp =min{i > T5,: Xia=k+1, X; =k}

Most of the forthcoming formulas and results are identically valid for both
superscripts > and <. In these cases the superscript * stands for either < or >.

-We consider the following (bond) local time processes of the BTSAW, stopped
at T3 .-

(1.13) s () =1k — 11X,

Note that Sj (1) is roughly half of the total number of jumps across the bond
(k—1—1,k — 1), performed by the walk stopped at T7 , :

) 7y, | 28,,(D+1, for0=<I<k,
(1.14) p(k -1l1X, ) - [ZS};’m(l), forl <Oorl>k.
Denote
(1.15) Wp = @ (S},,) = max{l < 0: 8},,(1) =0},
(1.16) w;:"m = w+( Z,m) = min{l > k: Sz’m(l) — 0}.

In plain words, & — w}:’m (respectively, & — w’,';;n —*1) is the leftmost (respectively,

rightmost) site visited by the stopped walk X *".
From (1.14) it clearly follows that

i
(1.17) 1a=2 Y 8.0 +k.
S e

Lobking at the formal definitions only, in principle, these local times or hitting
times might be infinite. That is, it could happen that the site & € Z is never



1526 B. TOTH

hit. The following proposition ensures that, with probability 1, this is not the
case.

PROPOSITION 1. With probability 1, for any k € Z, m € N, ]l € Z and *
standing for > or <,

(1.18) k(1) < 00,
(1.19) w’,';fm < 00,
(1.20) w};;n < 00,
(1.21) om < 00

Relation (1.21) directly follows from (1.17)—(1.20), (1.18) will be proved at
the end of Section 2, and (1.19) and (1.20) in Proposition 2 of Section 4.

The following theorem describes the precise asymptotics of the local time
process Sy, (-), properly scaled:

THEOREM 1. Let x € [0,00), let h > 0 and let * stand for > or <. Then

*— *4 *
(w[Ax],[JZah] w[Ax],[«/erh] S[Ax],[x/Kah]([Ay]) .
A ’ A ’ ovA
*— *+
(1.22) ClanVaoh] _ o _ “lAxl[VAoh]
=y=
A A

= (wg, 0], |W,l: 0wy <y <} ||Wol=h)
in R_ xRy x D(—00,00) as A — oo, where

2
2 _ Leen 2N

(1.23) o ,
ZzeZ /\22

[For the notion of corivergence in distribution in the function space involved
see Billingsley (1968) and Lindvall (1973).]

REMARK. It is instructive to compare this behavior with that of a simple
symmetric random walk on Z. The analogous result for the simple symmetric
random walk is formulated in the Ray—Knight theory of local times. According
to these classical results, in the ordinary random walk case, the proper scaling
is

SFAx],[Ah]([Ay])
A

and the limiting process is a squared Bessel process. For a thorough analysis
of the limiting process, see, for example, Revuz and Yor [(1991), Chapter XI].

(1.24)




SELF-AVOIDING WALK ON Z 1527

The scaling and weak convergence in this case follows from diffusion approxi-
mation of Galton—Watson processes; see Kawazu and Watanabe (1971), Kurtz
(1978) and references cited in these works.

A straightforward consequence of Proposition 1 is the recurrence of the
random walk considered:

COROLLARY 1. The BTSAW visits infinitely often every lattice site, almost
surely.

From (1.17) and (1.22) directly follows the limit theorem for the hitting
times:

COROLLARY 2. For x € [0,00), h > 0 and * standing for > or <,
T*
[AxL[VAah] _
This last limit law shows that the BTSAW behaves overdiffusively indeed,
the suggested rate of diffusion being X, ~ ¢2/3.

1.2. A by-product: an identity concerning Brownian excursions and Bessel
bridges. Our second result can be formulated in terms of Brownian motion,
without any reference to the BTSAW. It is an apparently new identity con-
cerning Brownian excursions and Bessel bridges.

For any initial condition |Wy| = A, T, defined in (1.9) clearly has an abso-
lutely continuous distribution. Let

P(T. e (t,t+dt)||Wo| = h)
dt

be the density of the distribution of T',. From scaling the Brownian motion,
we easily get

(1.26) o(t;x,h) =

(1.27) ao(at;a®3x, a'/3h) = o(t; x, h)

for any a > 0. Define R, x R > (¢, x) — ¢(¢,x) € R, as follows:
e t

(1.28) o(t, %) =/ Q(E;m,h) dh.
0

The finiteness of the integral on the right-hand side will be seen soon. The
scaling property (1.27) of ¢ implies

(1.29) a?Bo(at, a®3x) = ¢(t, x).
We shall denote by ¢ and ¢ the Laplace transforms of ¢ and ¢:

(1.30) o(s;x,h) = s/oo exp(—st)o(t; x, h) dt = sE(exp{—sT.}||Wo| = h),
0

(1.31) @(s,x)=sfoooexp(—st)go(t,x)dt='/Ooo@(Zs;]xl,h)dh.
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These functions scale as follows:

(1.32) ad(ats;a?3x, alBh) = o(s;x, h),
(1.33) ?3p(a s, a?Px) = §(s, x).

THEOREM 2. Given t € (0,00) [respectively, s € (0,00)] fixed, x — @(¢,x)
[respectively, x — @(s,x)] is a probability density. That is, for any t € (0,00)
[respectively, s € (0,00)],

(1.34) [°° o(t,x)dx =1,

(1.35) /°° #(s,x)dx = 1.

REMARK. Equations (1.34) and (1.35) are, of course, equivalent statements:
&(s, ) is the distribution ¢(,-) observed at a “random time” of exponential
distribution with mean value s~!. Furthermore, given the scaling property
(1.33) of ¢ it is enough to prove (1.35) for one particular value of s, say s = 1.
The statement of this theorem is quite surprising, since we could not find any
direct intuitive way of proving it. The proof relies partly on some probabilistic
- results concerning Brownian excursion theory and Bessel bridges and, on the
other hand, on rather messy integrations involving Bessel and hypergeometric
functions.

1.3. Local limit theorem for the position process. We are ready now to for-
mulate our main result. We denote by P(n,k), n € N, k € Z, the distribution
of our BTSAW at time n,

(1.36) P(n, k) =P(X, = k),

and by R(s, k), s € Ry, k € Z, the distribution of the BTSAW observed at an
independent random time of geometric distribution with mean e=5(1 —e=%)~1,

(1.37) R(s, k) =(1—-¢7%) Ze‘s”P(n,k).

n=0
We define the rescaled “densities” of the above distributions
(1.38) oa(t,x) = A*PP([At],[ A**x)),
(1.39) da(s,x) = A2PR(A™'s,[A%3x)),

t,s € R,, x € R. It is straightforward that ¢4 is exactly the Laplace transform
of pa: .

(1.40) Pals,x) = s/w e Stpa(t,x)dt.
0

Our main result is the following theorem.
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THEOREM 3. For any s € R, and almost all x € R,

2/3

(1.41) bals,x) — a?3p(s,0*3x)

as A — oo. The positive constant o is explicitly given in (1.23).

REMARK. This is of course a local limit theorem for the BTSAW observed
at an independent random time 6,4 of geometric distribution with mean
e~5/A(1 — e~5/4)~1 In particular, the (integral) limit law

0?3y

(1.42) P(A X, <2) > [ o(s,9)dy

—00

follows. This is a little bit short of stating the limit theorem for deterministic
time

o3y

(1.43) P (A3 X 4 < x) —+f o(t,y)dy,

—00

but, of course, we can conclude that if X 4,) has any scaling limit, then (1.43)
also holds.

The paper contains five more sections. In Section 2 we describe the local
time process S};’m(~) as a random walk on Z,. In Section 3 we investigate
in more detail an auxiliary Markov chain arising naturally in the previous
description. Finally in Sections 4, 5 and 6 we prove, in turn, Theorems 1, 2
and 3 stated above.

2. The local time process as a Markov chain. For sake of definiteness
we consider the case of superscript >; that is, we stop the BTSAW at the
hitting time T'; . The case of superscript < is done in an identical way, with
slight changes in the definition of “system of spanning steps,” (2.2) below.

The clue to the proof of Theorem 1 is the observation that, with 2 > 0
and m € N fixed, the local time process S;m( .) defined in (1.13) is a Markov
chain on the state space Z, = Z N[0, 00). Apparently this trick has its origin
in Knight (1963) and has been rediscovered several times since then [see,
e.g., Kesten, Kozlov and Spitzer (1975)]. However, as opposed to the previous
applications of this trick, the Markov process arising in our case will be more
complicated than a branching process [Knight (1963)] or a branching process
with random offspring distribution [Kesten, Kozlov and Spitzer (1975)].

A finite walk 56 which hits % for the (m + 1)th time, coming from the left,
at time i,

O:xO’xl"--yxi—l,xi =k,
(2.1)
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determines uniquely the finite sequence

3(0) =m,
3(1-1)

a(l) = (oo(l),...,o50-y(1), D)= Y o),

r=0
forl=1,2,...,k,

3(1-1)
22) g(l) =(o1(D),...,o50-(D), 2= )Y o),

r=1

forl=kFk+1,k+2,...,

3(1+1)

a) = (o1(D),...,o50:1(), D)= Y o),

r=1

forl=-1,-2,...,

where, for I > 0, o,(l) is the number of steps (k—1) - (k—1— 1) between
the rth and (r + 1)th steps (A -1+ 1) - (kB —1) and, for [ < 0, o,.(I) is
the number of steps (k-1 — 1) —» (k& — [) between the rth and (r + 1)th
steps (B — 1 —2) - (k-1 — 1), performed by the walk. We shall refer to the
sequence (2.2) as the system of spanning steps of the walk (2.1). Finiteness of
the system of spanning steps means that there exist lax > & and i, < 0 such
that 3 (lpax) = 0 = 2(Imin). This correspondence between finite walks hitting
k and finite systems of spanning steps is one-to-one: given the sequence (2.2),
one can reconstruct the complete walk (2.1) uniquely. Clearly, the system of

T .
spanning steps is defined so that, for X *" = x{,
(2.3) inD=3%(1), lel

Let the finite walk (2.1) be given, and let (2.2) be the corresponding system of
spanning steps. Since T’ , is a stopping time, the probability that the BTSAW
coincides with (2.1) until 7% is
T2 , i ;
(2.4) P(Xp* = xb) = [Tw;(x)),
j=1

where, according to (1.4) and (1.5), the weight of the jth step is

; A1) 2120
(2.5) wj (lo) =

Av(xjfllﬁ).vl) + /\U(xj—1+1|£({71).

Now, rearranging the product in (2.4) we get

(2.6) P(X:’:'”‘ =) =TT} TT (Wajor = b — Dwy(ad) + Uy £ b —l})].

lezl1<j<i
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This last rearranged product can be written in terms of the system of spanning
steps o(l) as

> . k—1
P (X, =)= [H RS+ 1>;g_(l>>][ ]2 - 1);g_(1))]
2.7) 1<0 =1

X 2((k - 1>;g_<k>>[1‘[ A(3(1— 1>;g<l>)]

1>k
with transition probabilities

s [ o /\2(2’ Lo s Hi—1)+1 A2r
2.8 e@ ;o' = r / ’
( ) (E}_‘I ) ,1:!) -g /\27‘ N /\2(2;=3 ol+i—1)+1 A2r + A22s=0 o+l

s [ o, 2AY L al4i-1) 2r

A &s=07s A

2.9 ;0') = -
( ) 9(2’9_- ) 'l:!) l:[ or + Az(zr 1 ’-I—L 1)] Azr + A2Z;:0 oy )

s [ o, A2 oiti-1) A2r-1
2.10 R, 0') = —,
( ) (2 Q ) '1;11 l i )\2r 1 + Az(zr 1 0”+l 1) Azr—l + /\223=1 [

From (2.3) and (2.7) we see that Sk,m(l) and S;m(—l), 1=0,1,..., are indeed
two independent Markov chains on the state space Z., with initial condition

S; (0) = m. The chains are homogeneous in the intervals [ < 0, 0 < < &,
l=Fkand !> k.

REMARK. In the case of STSAW this rearrangement of the product, that is,
the transcription of (2.4) to (2.7), cannot be performed. This is the step where
the proof of a similar result for the STSAW fails.

The transition probabilities &, 2 and % look quite threatening at first
sight, but we shall see soon that they have a transparent interpretation and
can be tamed. In order to see this, we define two auxiliary Markov chains on
Z which will help us to understand the random walk S;m(-) better.

For z € Z let

2z+1
(2.11) p(z) = 14 Azerl q(2) = 1+ A2e+1’
B /\22 B
(2.12) p(z) = 13 a2z’ 4(z) = 1+ A2

and, for x, y € Z,

Y
[1p(2)a(y+1), ifx—1<y,

Z2=X

, ifx—1>y,

(2.13) P(x,y) =

=]
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Y
[ p(2)d(y+1), ifx—1<y,
zZ2=X

o, ifx—1>y.

(2.14) P(x,y) =

(When x = y + 1, the empty product is by definition equal to 1.) From
[, p(z)=0= ]'[°°_x p(2) it follows that P and P are the transition matrices
of two Markov chains 75, and 7,, r = 0,1,2,..., on the state space Z. On the
right-hand side of (2.8) [respectively, (2.10)] we have exactly the probability
distribution of the first 3 + 1 steps (respectively, the first 3 steps) of the
Markov chain 7. starting from 0 (respectively, starting from —1). On the
right-hand side of (2.9) we have the probability distribution of the first % + 1
steps of the Markov chain 7. starting from 0. More precisely,

(2.15) P(20)=Pny1—mr=0,—-1,r=0,...,2|n9=0),
(2.16) 23;0)=Prp1—Mr=0,.-1,r=0,...,% |1 =0),

(2.17) R20)=P(n,—mpo1=0,-1, r=1,...,%|no=-1).
Thus, denoting by f;m(l ) the Ith step of the random walk SZ:m(')’ that is,

(2.18) &) =87, - S;,.(1-1), 1>0,
(219) fz,m(l): Z,m(l)_ Z,m(l-'—l)’ l<0’
we get
P& (D=x|S; (I-1)=n)=P"*(0,x -1
(220) (fk,m( ) x” k,m( ) n) ( x )
forl=1,2,...,k—1,
@21 P&, =x|8;,(0-1)=n)=P"10,x—1) forl=k,
P& ()=x||S;, (I-1)=n)=P*"(-1,x—1
forl=F+1,k+2,...,
P, =x|S;,0U+1)=n)=P(-1,x-1)
nap  PER0 =25 )

forl=-1,-2,....

PROOF OF (1.18) IN PROPOSITION 1. As S;,m(O) =m < oo and (2.20)—(2.23)
are bona fide transition probabilities, that is,

(2.24) P(¢;,,(1) € [-n,0)|8; ,(l-1)=n <o0) =1 forl>0,

2.25)  P(£7,,(1) € [-n,00)I8;,,(l+1)=n<o0) =1 forl<0,

the local times S} (1) € Z,, | € Z, are almost surely finite. Relations (1.19)
and (1.20) will be proved in Proposition 2 in Section 4. O
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3. The auxiliary Markov chains: technical lemmas. In this section
we summarize the properties of the Markov chains 7; and 7; needed for the
proof of Theorem 1.

LEMMA 1. The unique stationary distribution of the Markov chain n, re-
spectively, 7, is

Alx+1)?
(3.1) p(x) = m, X €2,
respectively,

A(x+1/2)
(3.2) px)= ————= x €Z.

T oez AT

There exist constants C; < oo and Cq > 0 such that the following exponential
bounds hold:

(3.3) Y IPM0,y) — p(¥)| < Ciexp(—Can),
YEZL
(3.4) Y IP*(—1,y) — p(y)| < C1exp(—Czn),
yeZ
(3.5) > 1P™0,y) - p(y)| < Crexp(—Czn).
yeZ

REMARKS. Denote by 7 the following probability distribution on Z:
A
ZzeZ )‘22 ’
According to (2.20), (2.22), (2.23), (3.3) and (3.4), the distribution of the steps
f;m(l ), L # k, of the process S;m(l) will be typically very close (in variation
distance) to the distribution 7. This observation is the clue to the coupling
argument used in the next section. On the other hand, (3.5) provides a uniform
stochastic bound on the size of the single exceptional step f;m(k), ensuring

that this single step will have no effect whatsoever on the limiting process.

(3.6) m(x) =plx—1) = x € Z.

PRrROOF OF LEMMA 1. We prove (3.1), (3.3) and (3.4). An identical proof
works for (3.2) and (3.5), too. The identity

1 y+1
_— P _1
(3.7) P(x,y) =1 p(x) l:p('x)zﬂl Q(z)]/)(y), or x <y,
0, for x —1> v,

is straightforward. Hence,

y+1
(3.8) Zp(x)P(x,y)={ Y. px) [] q(z)]p(y)=p(y),

x€Z x<y+1 z=x+1
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which proves that p is indeed a stationary distribution of the chain 7,, r =
0,1,2....

The proof of uniqueness and exponential convergence (3.3) and (3.4) is a
bit lengthy, but consists of standard procedures. First of all notice that, due
to stationarity of the distribution p, the inequality

(3.9) Pr(x,y) < )
p(x)

holds, which proves a superexponential bound, uniform in n, on the rate of
decay of the tails of the distributions P"(x,-). In consequence, all the expec-
tations below make sense.

Denote by 6. and o the following stopping times:

(3.10) 0, = min{n > 0: 5, > 0},
(3.11) 0_ =min{n > 0: n, <0},
(3.12) o =min{n > 1: n, =0}.

According to Theorem 6.14 and Example 5.5(a) of Nummelin (1984), the
uniqueness of the stationary distribution and the exponential convergence
(3.3) and (3.4) follow from

(3.13) E(exp(C20)|no = 0) < oo,

with Cg > 0. So our goal is to prove (3.13). In the following expression we use
the fact that the Markov chain 7. does not jump more than one lattice step to
the left:

E(exp(C20)Ino = 0)

=exp(Cz) ) P(0, y) E(exp(C26-)[no = y)
y>0

+exp(C3) P(0,—1) ) " E(exp(C20.)1(no, = y)Ino = —1)
y=0

x E(exp(C26-)mo = ¥).

(3.14)

Next we use a special consequence of the structure (2.13) of the transition
kernel P. Namely, it is an easy computation to check that, given 7o = x < 0,
the random variables 6, and ny, are independent and, for y > 0,

E(exp(C264) 1(ng, = y)Ino = —1)
(3.15) P(0, y)

~1-P(0,-1) E(exp(C26.)|no = —1).
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From (3.14) and (3.15),
E(exp(Cz0) [no = 0)
=exp(Cz2) Y P(0, y)E(exp(C20_)|mo =y
(3.16) ? gg_o ( ? ’ )

P(0,-1)
14— C =-1)|.
x [ + 1= pro—1) E(exe(C20:)Imo 1)}
From a dominated convergence argument, we can see that

y+1

(3.17) P(-c0,y) = lim P(x,y)= [] p(2)q(y+1)
2=—00
is a probability distribution on Z. Let x; < x3. Then, for y > x5 — 1,
(3.18) P(x1, y) = [ ¥ P(xl,z)]P(xz, ),
z>x2—1

which implies that the distributions P(x, -) are stochastically ordered for x; <
xg2 and arbitrary yo,

(3.19) Y P(—00,y) < Y P(x1,y) < Y P(xz,9).
y=Yo y=Yo yzYo
From (3.19) it follows that
(3.20) PO, >n|mo=-1)<r", wherer= Z P(—00,y) < 1.
y<0
Hence
(3.21) E(exp(C36.)|mo = —1) < o0

for C3 < —logr.

On the other hand, since p(z) > p(z + 1) [see (2.11)], the distributions
P(x,x + -) are stochastically ordered in the opposite sense: for x; < x5 and
arbitrary yo > 0,

(8.22) Y P(xi,x1+y)= ﬁ p(x1+2) > ﬁ p(xz+2)= ) P(x,x2+y).
¥=¥o z=0 z=0 ¥=¥o

Hence, for y > 0,

(8:23) P(gpin,m=0Im=y)= P(OIP}BanL <)

where the ¢;’s are i.i.d. random variables with distribution

(8.24) P(¢; =x) = P(0, x).

Now, from (3.9) it easily follows that

(3.25) VaeR, > P(0,x)e™ <oo

X€ZL
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The map A — P,(0,-) is stochastically monotonic, too, in the sense that 0 <
A1 < A2 < 1 implies

y /\%Z-l-l y /\gz+1
Vyz0 Y Pu0x) =[] <[l e
(3.26) x>y 2=0 1 2=0 2
= Z P,,(0,x).
x>y
Hence,
o0 o0 1

(3.27) v Ae(0,1), x;I P(0,x)x < x=z_:1 gea® = 0.

From (3.23)—-(3.25) and (3.27), via a supermartingale argument, it follows that
ify >0,

(3.28) E(exp(C46_)Ino = y) < exp(By)

with some C4 > 0 and B < .
Now (8.13), with C3 = min{Cs, C4}, follows from (3.16), (3.21), (3.25) and
(3.28). O

The next lemma establishes a superexponential bound on the rate of decay
of the right tails of the distributions P*(0,-) and P"(—1,-), uniform in n. This
bound is much stronger than what we actually need in the proof of Theorem 1.

LEMMA 2. There exists a constant Cs < oo such that, for any n > 0 and
x>0,

(3.29) P*(0,x+1) < C5A*P*(0,x),
(3.30) P*(-1,x+1) < C5A*P"(—1,x).

REMARK. Similar bounds can be established for the left tails of the distri-
butions, too, but we do not need them in the proof of Theorem 1.

PROOF OF LEMMA 2. We prove the bound (3.29). The second one is proved in
an identical way. We apply induction on n and x. Inequality (3.29) clearly holds
for n = 0 and any x > 0. By (3.1) and (3.3) we have lim,_,,, P*(0,1)/P"(0,0) =
A% < 0o and hence

P"(0,1)
Thus, (3.29) holds for ¥V n > 0 and x = 0. We proceed now by induction. Given
an arbitrary probability distribution r on Z, the following identity holds:

p(x+1)

g(x +2)[rP)(x) + q(x +2)r(x +2).
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Assume that (3.29) holds for (n, x +2) and for (n + 1, x). Using (3.32) we get
p(x+2)
q(x+2)
+q(x+3)P*0,x + 3)
p(x+2)
g(x+2)
+q(x + 8)C5A**2P™(0, x + 2)

+1Aq(x +3) [p(x +1)
glx+2) Lglx+1)

PM1(0,x +2) = q(x +3)P"1(0,x + 1)

q(x + 3)C5A* P™1(0, x)

|

(3.33)

=CsA q(x +2)P"1(0, x)

+q(x+2)P*(0,x + 2)]

r+12q(x+3)

= Cs\
5 q(x +2)

P10, x 4+ 1).

Since

Ag(x+3)  A(1+A%H5)

(3.34) q(x+2) 14 A2x47

<1,
(3.33) yields (3.29) for (n +1,x+1). O

4. Proof of Theorem 1. In the proofs we use only some of the qualita-
tive features (formulated in the lemmas of the previous section) and not the
explicit form of the transition probabilities of the random walk S hm (+). We are
going to formulate and prove Theorem 4, below, in these more general terms.
Theorem 1 will follow directly from Theorem 4, as a concrete application.

As in Section 1, A > 0 will denote the scaling parameter. For A > 0 let

!
(4.1) Sa(l)=8a(0)+ ) ¢€a()), leN,

J=1

be a space—time inhomogeneous random walk on Z, with the following law:

(4.2) P(£a(l) =x|Sa(l — 1) =n) = ma(x|n,l),
(4.3) Z ma(x|n,l) =1.

REMARK. Compare (4.2) and (4.3) with (2.20)—(2.23). The time inhomogene-
ity and dependence on A of the law of the random walk is just a nuisance we
have to live with. As all the estimates below will be uniform in ! and A, this
will cause no real trouble.
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For r € R, we define the following stopping time of the random walk S4(-):
(4.4) W[Ar] = inf{l > [Ar]: SA(l) = O}.

Now we formulate some conditions on the behavior of the step distributions
7 a(+|n,1). All the constants arising in various inequalities below are absolute
constants not depending on A or I.

CONDITION 1 (Existence of an asymptotic step distribution). The step dis-
tributions m4(:|n,l) converge in £;(Z), exponentially fast as n — oo, to an
asymptotic distribution 7. That is, there are two constants C1 < oo and Cz > 0
such that
(4.5) Y Ima(zin, 1) — w(2)] < Cyexp(~Can).

x€Z

The asymptotic distribution is symmetric,

(4.6) m(—x) = m(x),
and its moments of any order are assumed finite. We denote by o2 its variance:
(4.7) > xPw(x) = o® € (0,00).

xeZ

REMARK. Relation (4.5) should be compared with (3.3) and (3.4); (4.6) and
the moment conditions with the explicit form (3.6). This condition will hold
(uniformly in [ and A) for all but one exceptional step. See Remark (i) following
Theorem 4. The symmetry condition (4.6) is not really needed; >, x7(x) =0
would be sufficient. We assume (4.6) only for shortening the argument [see the
observation after (4.28) and the rightmost inequality in (A4.2)].

CONDITION 2 (Uniform decay of the tails of the step distributions). The
tails of the distributions 7 4(+|n,[) are uniformly exponentially bounded. That
is, there are two constants Cg < oo and C7 > 0 such that

(4.8) ma(xln,l) < Ceexp(—Crlx|), leN.

For technical purposes we formulate an even stronger condition on the decay
of the right tail of the distributions 7 4(-|n,[): there is an xy € Z such that,
for x > xo,

(4.9) wa(x +1|n,l) < exp(—Cq)ma(x|n,l).
REMARK. Compare (4.8) with (3.9), and (4.9) with (3.29) and (3.30).

CONDITION 3 (Uniform nontrapping condition). The random walk is not
trapped in a bounded domain or in a domain away from the origin. That is,
there is a constant Cg > 0 such that

(4.10) Yn>0, Z malx|n,l) > Cg > 0,
x>0
(4.11) Vrn>0, Y mwalxln,l)>Cg>0.

x<0
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REMARK. Strictly speaking, in our concrete case, (4.10) does not hold for
l > [Ar] and n = 0. However, as the walk is stopped at wj4,], this fact does
not make any difference.

Denote by 6; the exit time from the interval I Cc Z,:
(4.12) 0;r =min{l > 0: Sx(l) ¢ I}.

LEMMA 3. Let S4(-) be a random walk on Z, for which all conditions (4.5)—
(4.11) hold.

(1) There exists a constant Cy < oo such that, for any 0 < n < b in Z,,
b—n

(ii) There exists a constant C19 < oo such that, for any 0 <n <bin Z,,
(4.14) E(0[0) | Sa(0) = n) < C1ob®.

Since the proof of this lemma is a rather standard application of submartin-
gale techniques and the optional sampling theorem [see Breiman (1968)] and
has no relevance to the rest of the proofs, we postpone it to the appendix at
the end of this section. We should remark here that in (4.14) a better bound
~b? can be proved with some more work. However, this bound is sufficient for
our purposes.

PROPOSITION 2. Under the same conditions,
(4.15) P(w[A,.] < OO) = 1.

PROOF. Given (4.13), this is evident. This statement also yields (1.19) and
(1.20) and thus completes the proof of Proposition 1. O

The following theorem is the natural general formulation of Theorem 1.

THEOREM 4. Let Sa(-), A > 0, be random walks on Z,. Assume that the
following hold:

(a) Conditions (4.5)—(4.11) hold for all but one exceptional step, say, l4.
(b) The tail estimate (4.8) holds for the exceptional step, too.

If
Sa(0)

(4.16) — h,
ovA
then
<w[Ar] SA([Ay]): 0<y< w[Ar])
(4.17) A’ oJA -TT A

= (0f,IWy|: 0 <y <ol ||Wo|l=h)
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in Ry x D[0,00), as A — oo; o2 is the variance of the asymptotic step distri-
bution given in (4.7).

REMARKS. (i) The existence of the exceptional step at time I, is just an-
other minor nuisance. We have to include it since in our concrete application
the single step &1, (%) has slightly different behavior than the rest. Condition
(4.8) [which follows from (2.21), (3.2) and (3.9)] ensures that this single step
will have no effect on the limiting procedure. Actually we could easily include
much more, 0o(A1/2-¢), exceptional steps.

(ii) The outline of the proof is quite simple. We consider the walk S4(l) in
the (very long!) time interval € [0, A1*¢). Due to the exponential convergence
(4.5) of the step distributions, as long as S(-) stays above the threshold

(4.18) ba =[A%],

the trajectory will be that of a homogeneous random walk with step distri-
bution 7, with very high probability. On the other hand, with the help of
(4.14), we prove that in the time interval considered (of length Alt¢), the
total amount of time spent by Sa(-) below the threshold b4 will be rather
small, of o(Al/2+5¢) with overwhelming probability. Joining these two argu-
ments, we couple to our original random walk S,(-) a reflected homogeneous
random walk, Y 4(-), with constant step distribution 7, so that the supremum
distance of the two processes is o(AY**3¢) and the difference of their w,q
stopping times is o( AY/2*5¢)  with probability converging to 1.

PROOF OF THEOREM 4. From (4.5) it follows that we can couple to our ran-
dom walk S4(-) a sequence of i.i.d. random variables {4(l), { = 1,2,..., with
distribution 7, so that

(4.19) P(la(l+1)# €a(l+1)[8Sa(l) = n) < Crexp(—Can).

We denote by 0 4(/) the amount of time spent above the threshold level by,
before time [, less the exceptional moment:

(4.20) cal)=#H0=<j <l [j#LalA[Sa(j) > bal}.
We define the following sequence of sampling times:

TA(_I) = _1’
(4.21) TA(l) =min{j > 741 —1): [j#1a]lA[Sa(Jj) > bal},

0<l < o0
Note that 74 is the inverse function of o4 in the sense that

(4.22) ga(ta(l))=1 for0<! < 0.
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Let
(4.23) Ea(l) = éa(ral-1)+1)
and
(4.24) {al) =la(ra(l=1)+1).

As the { z’s are selected according to an increasing sequence of sampling times,
they are still i.i.d. random variables with the common distribution 7. On the
other hand, (4.19) and (4.18) imply

(4.25) VIeN, P(a(l) # {a(l)) < Crexp(—C2A®).

We define two “truncated” processes S A(+) and Y NOE

(4.26)  54(0)=(54(0)=ba) V0,  Sa(l)=(Sall—1)+£Ea()) VO,
(4.27)  Ya(0)=(Sa(0)—ba)VvO0, Ya(l)=(Yal-1)+a))VO.
Finally, let the random walk Y 4 be defined as follows:

(428)  Ya(0)=(S4(0)=ba) VO,  Ya(h)=IYall-1)+Za)]

Due to the symmetry of the distribution 7, Y 4(-) is a homogeneous random
walk reflected at the origin and Y 4(-) differs from Y 4(-) only by the cutoffs of
the overshootings of the origin: using the constructions (4.27) and (4.28) one
can easily check

(4.29) 0= Yal)=¥a() < max |£a())]

We also need the w4, stopping times of the processes Y A(-)yand Y A(-):
(4.30) wf o) =1inf{l > [Ar]: Y (1) =0},

(4.31) w4,y =1inf{l > [Ar]: Ya(l) = 0}.
The standard invariance principle holds for Y 4(-) [see Billingsley (1968) and
Lindvall (1973)], and, consequently,
w//
( [ar] YA([Ay]): 0<y< oo)
(4.32) A ovA
= (0], |Wy|: 0<y <oo||Wo|=~h) inR x D[0,00).

Due to the closeness of the ¥ a(+) and Y 4(-) paths, (4.29), the same conver-
gence in distribution is easily proved for the process Y 4(-):
! %
( [Ar) YA([Ay]): 0<y< oo)
(4.33) A ovA
= (o] ,IW,|: 0< y <oo||Wo|=h) inR x D[0,00).

We omit the details of this straightforward step.
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We shall prove the theorem by proving

(4.34) A-1/20 max |Sa(l) - Ya)l—»p0
and
(4.35) A opar) — @4, > 0.

Consider first (4.34):
max [Sa(l) — Ya(l)|

0§l§A1+€
< max |Sa(l)- Sa(oa(l))]
(4.36) T - -
4 0<lm<3‘)$+e 1Sa(oa(l)) —Yalaoa(l))l

+ max 1Y a(oa(l)) =Y )l

O<I<Alt+

In order to estimate the three terms on the right-hand side of (4.36), we define
the following events:

437 o= max 1£a(0)] < A7),

438)  Ba={Ea(D) = £a(), 11 < A},
(4.39) & = {AFe — oa(ATTe) < AV2+5e)

P4 = {max{|¥a(j) = Ya(D)l: 0<j, 1 < Al*e, |j— 1| < AV/2+5}

(440) < A1/4+38 },

(4.41) &y = {#{l 0< l < Al+8’ YA(l) — O} < Al/2+s}’

The proof will consist of showing that the probabilities of these events converge
to 1 as A — oo. [Four more auxiliary events will be introduced later, when
proving (4.35).] By construction of the process Sa(-) for 0 <1 < Al** we have

1Sa(l) = Sa(oa(d)] <ba+ {E?fl(fA(j) v O0)+1éa(la)l

(4.42) .
<bs+2 max [E4())I.
1<j<Al+e

So the first term on the right-hand side of (4.36) is easily evaluated:

(4.43) P( max [S() —Sa(ca(l)l < 3A‘9) >P(oZs) > 1
O<l<Al+e

as A — oo. The convergence on the right-hand side of (4.43) follows from the
uniform bound (4.8) on the decay of the tails of step distributions.
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The second term on the right-hand side of (4.36) is even simpler:

(4.44) P( max 1Sa(0a(1) = Ya(ea)=0) = P(4) > 1
0<l<Alte

as A — oo, by the exponential closeness (4.25).
To estimate the last term on the right-hand side of (4.36), notice that

(445)  €anZac | max [Ta(eal)) - TaD)] < A4,
so the estimates

(4.47) P(24) > 1,

as A — oo, are still wanted. The convergence (4.47) and

(4.48) P(&4) > 1,

as A — oo, are well established facts about homogeneous random walks: The
proof of (4.47) is based on an adaptation of the method of proof of Theorem 8.3
of Billingsley (1968) (the finiteness of high moments of the distribution 7 is
needed here), and (4.48) follows from an estimate on the number of crossings
of the origin by a recurrent homogeneous random walk [for more details on
this, see, e.g., Spitzer (1964), Section 17]. As the proofs of (4.47) and (4.48) are
quite standard, we do not give the details here.
Finally

(4.49) P(EalEaNPBa)—>1 as A — oo

is a consequence of Lemma 3(ii), (4.14): notice that in &4 N %4 there are
altogether less than Al/2*+¢ visits of Sa(l), 0 < I < A!*¢, to the interval
[0,b4) and (4.14) provides an upper bound on the expectation of the duration
of each of these visits. In consequence, the conditional expectation of the total
time spent below the threshold level b4 is bounded as follows:

E(Al+e _ UA(A1+8) | éoA N @A)
(4.50) < AY** max E(004,)|Sa(0) = n)

0<n<by
< ClOA1/2+4€-

Hence (4.49) follows from Markov’s inequality.
Equations (4.36) and (4.43)—(4.49) imply (4.34).
Now we prove (4.35). First let us define the event

A1+e
S
From the weak convergence of w’[ ar)/A in (4.33) it clearly follows that

(4.52) P(74) - 1,
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as A — oo. Using (4.22) we easily get

(4.53) Fan €a C {140 ) — w4,y < AVZ | gy
and hence
(4.54) P(fA) g ]-)

as A — oo. Let
(4.55) Hp = {logar) — 0 4] < 24725},
We partition # in the following way:
Hi = (#; N {oaloran) < 0ar < 0py,))
(4.56) U (5 N {wpa, = Talo)y,,) < wrar})
U (4 N {04, < ©1ar1 < Tal@f4,7)}):

The last two events in (4.56) are denoted as follows:

(4.57) Ko = {0 4,1 — o a(wpan) < 241245},
(4.58) Za = {oran — 7a(0]y,) < AV}
The following inclusions clearly hold:

(4.59) K5 N {oalwrar) < 0ar < 04} C Hf,
(4.60) Ky N {wpar) < Tal0p4,) < wiar} C F5U L5,
(4.61) Hx N {0 4,) < w1ar) < Ta(w]4,))} C F4.
Given (4.54), in order to prove

(4.62) P(H#4) — 1,

we have to show that

(4.63) P(xy) — 0,

(4.64) P(£5) — 0,

as A — oco. Note that on o74 N #Ba N €4 N Fa N K we have w4, < A1+, and
so using the arguments of (4.43) and (4.44) we get

(4.65) MAD%’AOKAOFAOJZX
' C{Ya(oa(war)) <3A°)N {4, > galwparn) + 242454},
For very similar reasons,

MAO%AOKAOFAOJX

(4.66)
C {SA(TA((U/[A,])) < 3A£} n {w[Ar] > TA(w/[Ar]) + A1/2+58}.
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We prove that the probabilities of the events appearing on the right-hand
side of (4.65) and (4.66) go to zero. From the construction (4.24) and (4.27)
it follows that {{a(ca(war) +1), I = 1,2,...} are independent of {{a({),

1=1,2,...,04(wr4r)}, and thus from (4.65) we get
P(oAyNBaNE€sANFaNKS)
(4.67) . -
<P(min{l: Y4(l) =0} > 24125 | Y 4(0) < 3A°) —» 0

as A — oco. Hence (4.63). Also from the construction of the coupling we can
see that 7 A(w’[ Ar]) is a stopping time and from (4.66) we get now

P(ZaNBaNEAsNFaNLY)
< P(min{l: Sa(l) =0} > AY2¥5¢|S4(0) < BA®).
From Lemma 3, (4.13) and (4.14), it easily follows that
(4.69) P(0(0,00) < A7 84(0) <3A°) —> 1

as A — oo. Note that 69, is exactly the hitting time of 0 € Z,. Thus (4.64)
follows from (4.68) and (4.69).
So (4.62) [and consequently (4.35)] is proved now. O

(4.68)

PROOF OF THEOREM 1. Given the explicit form (2.20)—(2.23) of the transi-
tion probabilities and Lemmas 1 and 2 of Section 3, Theorem 1 becomes simply
a concrete case of Theorem 4. We apply Theorem 4 twice. First, take

(4.70) Sall) =8 a1 vaen (D 1=0,1,2,...,
r = x and the exceptional step at time I4 = [ Ax]. Second, take
(4.71) Sa(l) = S[Ax],[«/Zoh](_l)’ 1=0,1,2,...,

r = 0 and no exceptional step. Strictly speaking, the nontrapping condition
(4.10) does not hold for n = 0 and / > [ Ax] (respectively, [ > 0). However, as
the walk is stopped at w[a.] (respectively, at w[a0}), this does not make any
difference. O

Appendix to Section 4.

PROOF OF LEMMA 3. The proof of (4.13) and (4.14) is a standard application
of submartingale techniques and the optional sampling theorem [see Breiman

(1968)].
General ingredients of the proof. Conditions (4.5), (4.6) and (4.8) imply

Zﬂ'A(xln,l)x

xX€Z

with C]l < 0o and Clz = C2/2, and
(A4.2) liminfz ma(x|n,l) exp(—Ci2x) > Z 7(x) exp(—Ci2x) > 1.

n—-oo
x€Z xX€Z

(A4.1) < C11exp(—Cizn),
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Here once again we used the symmetry (4.6) of the asymptotic distribution .
Given (A4.2) we can choose a; € Z, and a finite constant Ci3 < oo such that,
for n > ay,

(A4.3) Cua( X maim, ) exp(~Caaw) ~1) = Cu.

x€eZ
It is straightforward to check that from (A4.3) and (A4.1) it follows that both
(A4.4) +8(l) + C13exp(=C12S(1)),  0=<1 <04,

are submartingales.

Using the strong exponential bound (4.9) on the decay rate of the right tails,
we can get the following bounds on the “overshoots” above any level b: for any
ne(a,b)CZy,

(A4.5) E(S(0(,5) 1 [S(0) =n]A[S(0(ap)) = b]) < (b+ Ci4),

(A4.6) E(S%(8(ap) 1[S(0) = n] A [S(8(ap)) > b]) < (b+ Crs)?,

with some C14 < 00.

PROOF OF (4.13). Let a; < m < b. Considering the submartingale
(A4.7) —8(I) + C13exp(—C128(1)) + b — Cizexp(=C12b), 0 =<1 < 6(a,0),
we get

b—m <b—m+ Ci3(exp(—Ciam) — exp(—C12b))
< E(—S(8(a,,5)) + C13exp(—C128(6(a, 5)))
+b— Cizexp(—C120) | S(0) = m)
< (C13 + b — Ci3exp(—C120)) P(S(0(a,5)) < a1|S(0) = m).

[In the last inequality we used the monotonicity of (A4.7).] From (A4.8), for
a; <m < b, we have

(A4.8)

b—m
(A4.9) P(S(o(al’b)) <a | S(O) = m) > Z)+—Cl3
Using this inequality, for 0 < n < a; we get
P(S(60p)) =0]S(0) =n)

> P(S(G(Oal]) =0|8S(0) = n) + P(S(O(() al]) >a1]S(0) = n)

(A4.10) ( Y P(S(8(0,0,1) = mI[S(0) = n] A[S(80.0:1) > a1])b 1 C, )

x min P(S(6(05)=0]S(0) = n').

0<n’'<a
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Inequalities (A4.5) and (A4.10) yield

P(S(6(05)) = 01 5(0) = n)
> P(S(0(0,4,7) = 015(0) = n)

A4.11 b _1_C
- +P(S(80,)) > a115(0) = n) =2 u

b+ Ci3
X Om,in P(S(0(0,5)) =0]8(0) =n’).
The nontrapping condition (4.11) implies
(A4.12) min P(S(O(O,al]) = 0|S(0) = n’) = 015 > 0.

O<n’'<a;

From (A4.11) and (A4.12) we get

min P(S(@(O’b)) = 0|S(0) = n/)

O0<n'<a;
(A4.13) o C15(b+ Ci3)
T Cisb+Ci13+(1—Cys)(a1+1+Cua)’

Finally, (A4.9) and (A4.13) yield (4.13), with a suitably chosen Cy. O

PROOF OF (4.14). First we prove a sort of counterpart of (4.13). Namely,
there is a constant C1g > 0 such that, forany0 <a <n <bin Z,,

n—a

b—-a

(A4.14) P(Sa(8ep) =b18S4(0)=n) > Cys

Denote ag = max{a,Ci3}. Let as < a < b and now consider the submartingale
(A4.15) S(I)+ Cizexp(—C12S(1)) —a — Ci3exp(—Ciea), 0<1<0@p.
Then, using (A4.5) again,

n + Cizexp(—Cien) — a — C13exp(—Ciza)
<E(S(8(a) + C13exp(—C128(0(a,p))) — @
— Cizexp(—Ci2a) | S(0) = n)
<(b+Ciu+Ci3—a)P(S(0(ap) = b|S(0) =n),

(A4.16)

which implies (A4.14) with some constant C17 > 0 and az <a <n < b. In
the second inequality of (A4.16) we used the fact that (A4.15) is negative for
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S(l) < a. Changing the constant C17 to the smaller one,
(A4.17) Cis= min min P(S(8(s,q,1) > a2|S(0) = n')C17 > 0,

0<a’'<agz a’'<n’'<az
the inequality extends to any 0 < a < n < b and (A4.14) is proved.
Conditions (4.5) and (4.10) imply that there exists a positive constant o
such that

(A4.18) 0<o? <) malxln, Dzl
x€Z
Now choose a3 € Z, so that, for n > ag,

o

(A419) 2nCu exp(—Clgn) < _?

Then, (A4.1) ensures that, in the domain n > ag,

2 2
(A4.20) E(S%(1+1) - S (+1)1S() =n) = n? - =1
and consequently
2
(A4.21) S2(1) — %l 1=0,1,...,000;.0),

is a submartingale. Hence, with T' > 0 fixed,

2
(A4.22) E(S2(0(aa,b) AT) - %(0(a3,b) AT)|S(0) = n) >n?>0.
Now, using the “overshoot bound” (A4.6) we get
. 2
(A4.23) E(0(ayp) | S(0) =n) = Jim. E(0(450 A T18(0) =n) < —b+ C1s)2

Finally (A4.14) and (A4.23) lead directly to

E(G[o’b) | S(0) = n)

(A4.24) 1 , 4 2
< Cl6 b(omgx E(O[g’as] |S(0)=n ) + —0_2 (b+C) )
<n’'<as Lo

From the nontrapping condition (4.10) it follows that maxo<, <q; E(6[0,4,11S(0)
= n’) is finite. Thus (A4.24) proves (4.14), with a suitably chosen constant
Cp. O

5. Proof of Theorem 2. Throughout this section we shall use the nota-
tion of Revuz and Yor [(1991), Chapters XI and XII]. In particular, we denote
by (U, %) the space of excursions of Brownian motion with its natural o-
algebra; by e, s > 0, we denote the excursion process of Brownian motion; by
n(du), we denote Itd’s intensity measure on (U, %); and by p,(¢), ¢t € [0, 1],
we denote the standard Bessel bridge of index v [i.e., of dimension § = 2(v+1)]
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over the time interval [0,1]. We shall need the following two functionals of
excursions:

(5.1) R(u) =inf{s > 0 | u(s) = 0},

R(u)
(5.2) Au) = fo lu(s)| ds

and the area under the three-dimensional Bessel bridge:

1
(5.3) = /0 puj2(s) ds.

Changing the order of integration in (1.31) and (1.35), we easily get

/000</000 @(l;x,h)dh> dx

=/°°E</°°exp(—Tx)dxl|W0| - h) dh
0 0
(5.4) = “E(exp(~To)w? | [Wol = k) dh

+

/OOOE(exp(—TO) ||Wol = &) dh

« E(fooo exp(~T,) dax | |Wo| = 0).

In the second step we decomposed the integral with respect to x in two parts
(from 0 to w! and from w{ to co) and used the strong Markov property of
Brownian motion.

Using Bismut’s characterization and It6’s representation of the intensity
measure of Brownian excursions [Revuz and Yor (1991), Theorems XII.4.7

and XII1.4.2], we get

/Ooo E(exp(—To)w | |[Wo| = h) dh = %/URz(u)exp{—A(u)}n(du)

1 o0
5.5 = E —15%/2))b12 db
®5 7 |, Eert)
1
=—_E(r!
Wi
and

/Ooo E(exp(=To)||Wo| = h)dh = /U R(u)exp{—A(u)}n(du)

1 o0
. = E —1b3/2))p1/2
(5.6) Wr /0 (exp(—1b°'%))b db

= —F(1/3) E(r71/3).

32
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Next we express the second factor in the rightmost term of (5.4):

E(fooo exp(~T}) dx | [Wol = 0)

_ E(Zexp{ - ZA(e»}R(es)exp{—A(es)})

s>0 t<s

=/(;OOE(exp{—ZA(et)}) ds‘/UR(u)eXp{—A(u)}n(dU)

t<s

= /()“(exp{—s/[](l—exp(—A(u)))n(du)}) ds

x/ R(u)expl{—A(w)}n(du)
U

_ Ju B(u) exp{—A(u)}n(du)
- Jy(1- exp(—A(u)))n(du)

J& E(exp(—7b3/2))b-1/2 db
" JCE(1 — exp(—7b%72))b-32 db

_ I(1/3) E(=73)
~ 3T(2/3) E(+183)

The first equality is a simple transcription of the expression in terms of the
excursion process: In the second step we use the so-called master formula
for Poisson point processes [see Revuz and Yor (1991), Proposition XII.1.10].
In the third step we use the “exponential formula” for Poisson point processes
[see Revuz and Yor (1991), Proposition XII.1.12]. In the fourth step we perform
the integration over the variable s. In the fifth equality, It6’s representation
is used again. Finally, in the last step the integrations over the variable b are
performed.
Finally (5.4)—(5.7) yield

(5.7)

o 1 (1 ., 2T%(1/3)E*(r713)
(5.8) /_m¢(s,x)dx—E[3E(T '+ 5 T@/8) BT ]
Let the random variables X and Y be defined as follows:
1
(5.9) X = [(pra(s) 2 s,
2 1 23 2/3
5.0 Y= @[ oaterds) = @
0

According to Biane and Yor (1987) [see also Revuz and Yor (1991), Theo-
rem XI.3.5], for any measurable function f: R, — Ry,

21/6T'(1/2)

1/2
T(1/3) E(X/*f(X)).

(5.11) E(f(Y)) =
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Choosing f(y) = y%2, y1/2 and y~1/2, we get in turn

21/6F(1/2)

-1y _ 2
(5.12) E(r )_( ) s BEY,
13y 3) V3 91/6T(1/2)
(5.13) E(r )_(2 T B,
V32101 (1/2)
1/3y _
(5.14) E(r )_( ) S ITER

Inserting these expressions into (5.8) we get
[+ 22/3 F2( 1 /3 )
15 / B(s, %) dx = X% 4 2 E?

(5.15) [~ oo mdx = s [men + 200 )]

We sketch the lengthy calculations of E(X) and E(X?2). We shall use the
notation of Erdélyi, Magnus, Oberhettinger and Tricomi (1953): we denote by
J, the Bessel function of order v, by I, the modified Bessel function of order
v and by ®(a, c;-) the confluent hypergeometric function with indices a and c.
Let m:(x), t € (0,1), x > 0 and m,,(x, y), s,t € (0,1),s+¢ < 1, x, y > 0 be the
densities of the distribution of py/3(¢), respectively, of the joint distribution of
(p1/3(s), p1/3(1 —t)) [see Itd6 and McKean (1965) or Revuz and Yor (1991)]:

3 x5/3 x2
(5.16) mi(x) = 21/3F(1/3) [¢(1—¢)]473 eXp( 2t(1 — ))

( )_ 3 x 4/3 y 4/3 xz yz
Tt V) = oI (1/3) \s t) P\ 725 P\ Ty
1 x2 4 y2 xy
—— exp(- 1 :
% l—t—seXp( 2(1—t—s)) 1/3(1—t—s>

The first two moments and correlations of pI/23/ % will be denoted as follows:

(5.17)

(5.18) mi(t) = B((pys(t)23) = [0 " ,(x) dx,

(5.19) ma(t) = E((pys(£) %) = | " xB(x) dx,

c(s,t) = E((p1/3(5)) " (pr3(1 — £))73)

(5.20) 00 oo
- /0 /0 (xy) 23, (2, y) dx dy.
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Clearly
1
(5.21) E(X)= / ma(2) dt,
0
1 1-¢
(5.22) E(X2) =2 /0 fo c(s,t) dsdt.

Moments m1 and mg are easily computed:

_ 3 _ \1-1/3
(5.23) ma(t) = sp gyt D17
_3I(2/3) \1-2/3
(5.24) ma(t) = —_—_22/31“(1/3)“(1 t)]~=°.
From (5.21) and (5.23),
_ 9I'2(2/3)

The computation c(s,¢) is much more involved. Using identity (7.7.38) of
Erdélyi, Magnus, Oberhettinger and Tricomi [(1953), Volume 2], we first
rewrite 7.

3
ms(x,y) = m(sﬂ_ys

. (1 e V2 2
(5.26) X.[o [exp(—(l—;——t)—v>(x4/3exp(—;—s>J1/3(xv))

2
x (y4/3 exp(—%)JW(yv))v:l dv.

Next we use the Hankel transform (8.6.14) from Erdélyi, Magnus, Oberhet-
tinger and Tricomi [(1954), Volume 2] and the identity (6.3.7) from Erdélyi,
Magnus, Oberhettinger and Tricomi [(1953), Volume 1] to get (5.27) below
[note that the Erdélyi, Magnus, Oberhettinger and Tricomi volumes use both
notations ®(a,c,x) and Fi(a,c,x) for the same confluent hypergeometric
functions]:

(5.27) c(s,t) = —33——(.‘%)_1/3/‘Oo ulBe  d 1 é'su ® 1 é'tu du
‘ ) = 2emT3(1/3) 0 3°3’ 33’ ‘

In the following step we use the basic integral representation of the conflu-
ent hypergeometric function (6.5.1) from Erdélyi, Magnus, Oberhettinger and
Tricomi [(1953), Volume 1]:

S t
(528) (s, t) = (st)2/3 /0 fo (xy)"23(1 - x — y)*3 dy dx.

1
22/3T2(1/3)
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In the last expression the integration with respect to the y variable can be
performed:

9 13 8_2/3
sare(173)) | 3 &b

where the function F is defined on the domain {(s, ¢) € (0,1)x(0,1): s+¢ < 1}
as follows:

(530) F(S,t) _ /(;s x_2/3(1 _ x)—l(l - x)_1/3 dx.

(5.29) c(s,t) =

Integrating by parts with respect to the s variable, we are led to

/OI/OH c(s,¢) ds dt

1
(5.31) = 3/0 (1—t)e(l—¢,t)dt

9 1 p1-t
- 22/3F2(l/3)/0 [ s -9 1 - -9 dsdr,

Inserting c(1 —t,t) = ma(¢) from (5.24) and performing some straightforward
transformations in the last integral on the right-hand side of (5.31), we finally
get
9.2131(2/3)
r(1/3)
9.23 1
- T2(1/3) Jo
_9r@/3) 27 21/313(2/8)
T 923 I2(1/3)
Inserting E(X) from (5.25) and E(X?) from (5.32) into (5.15), we get (1.35)
indeed. O

1
E(X?) = f 231 — )3 d¢
0

1
(5.32) s13(1—5)72/3 ds/ £~13(1 — £)~13 4t
0

REMARK. According to Darling (1983) and Vervaat (1979) we can express
the moment generating function of 7 as

& )t2/30',,
(5.33) E(exp(—A7)) = Am;exp{——zm— }

where o, is the nth zero of the Airy function,
(534 Ai(=2) = JVET1a(32) + 132

[For properties of the Airy functions, see, e.g., Abramowitz and Stegun (1964).]
Using the formula

(5.35) E(r?) = %p) fo T AlE(eM)dA, p >0,
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we get expressions for the negative moments of 7:

ra/2)ri3(p+1)/2) & _
2 o-3(p+1)/2
['(p) ,{2 "
As a by-product of the proof of Theorem 2, from (5.13), (5.25) and (5.36) [re-

spectively, from (5.12), (5.32) and (5.36)], we get the following two identities
valid for the zeros of the Airy function Ai(—z):

(5.36) E(r7P)=3.27/

= r(2/3)\*
2 _ q2/3 _
(5.37) n§=1j 0;2=3 (r( 1/3)> — 0.531457 ...,
o~ 3 _ 1 (Mf_
(5.38) n§=ljon =53 frsy ) =0112561....

6. Proof of Theorem 3. We shall prove (1.41) for x > 0. For x < 0 the
same proof holds with slightly changed notation.
To prove Theorem 3 we note first that

(61)  P(n,k)=P(X,=k) = 3 [P(T}, = n)+ P(Tf,, = n)].

m=0
On the other hand, from the definition of ¢4,
(6.2) pals,x) = 1= g ie‘”s/AP(n [A%3%])
. ’ S/A ~ ’ .
Combining (6.1) and (6.2), we are led to
54 (5, %) = 1 —exp(-s/A)
oals, = S/A
o0
(6.3) x sA"1/3 ZO[E(eXP(_ST[)AMx]”"/A))
m=
+ E(exp(—sTpz,1,,/ A))]-
Defining
(6.4) 6% (53%, h) = SE(exp(=5T gusy avsony/ (27 A))),
(6.3) reads
n 1—es/41 oo N
(6.5) Pals,x) = (63(20s;x,h) + 05(20s; x, h)) dh.

s/A 2 Jo
From Corollary 2 of Theorem 1 it follows that, for any s > 0, x € [0,00) and
h >0,

(6.6) 0u(s;x,h) — 0(s;x,h)
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as A — oo. Relations (6.5) and (6.6) imply, for any x € R,
(6.7) liminf ¢4 (s, x) > /0 " 6(20s; 1x], h) dh = 0¥33(s, 0¥3x).
On the other hand, by Theorem 2,

(6.8) f°° bals,x)dx=1= /°° (s, x) dx.

The statement of Theorem 3 follows from (6.7) and (6.8). O
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