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ON TRANSITION SEMIGROUPS OF (A,�)-SUPERPROCESSES
WITH IMMIGRATION

BY WILHELM STANNAT

Universität Bielefeld

We study the global properties of transition semigroups (p
ν,�,A
t )

of (A,�)-superprocesses over compact type spaces with possibly nonzero
immigration ν in various function spaces. In particular, we compare the
different rates of convergence of (p

ν,�,A
t ) to equilibrium. Our analysis is

based on an explicit formula for the Gateaux derivative of p
ν,�,A
t F .

0. Introduction. Let us start with four observations concerning the transition
semigroup of one of the most elementary superprocesses. More precisely, assume
that the type space consists of only one type (so that the state space can be
identified with R+ := [0,∞)). Assume that the branching mechanism is given
by �(λ) = λ2 − θλ, θ > 0. Then the generator of the corresponding superprocess
with nonzero immigration q > 0 is given by

Lθ,qf (x) = xf̈ (x) + (q − θx)ḟ (x), x ∈ R+ := [0,∞), f ∈ C2
b(R+).

It is easy to see that the Gamma measure

�θ,q(dx) = θq

�(q)
xq−1e−θx dx

is a symmetrizing measure and that (Lθ,q,C
2
b(R+)) is essentially self-adjoint.

Moreover, the unique self-adjoint extension has a discrete spectrum with eigen-
values −θn, n ≥ 0 (independent of q), and corresponding eigenvectors

eθ,q
n (x) :=

n∑
k=0

�(n + q)

�(k + q)

θk(−x)k

k!(n − k)! , n ≥ 0.

The e
θ,q
n are nothing but the classical Laguerre polynomials (cf. [2], Chapter 6,

and [13], Chapter 5). A classical recurrence relation for the Laguerre polynomials

states that d
dx

e
θ,q
n = −θe

θ,q+1
n−1 , n ≥ 1. Hence, if we denote by p

θ,q
t := etLθ,q , t ≥ 0,

the semigroup generated by the self-adjoint extension of Lθ,q , this relation implies
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that

d

dx
p

θ,q
t eθ,q

n = d

dx
e−θnteθ,q

n = −e−θnt(θe
θ,q+1
n−1

)

= −e−θtp
θ,q+1
t

(
θe

θ,q+1
n−1

) = e−θtp
θ,q+1
t

(
d

dx
eθ,q
n

)
.

Hence,

d

dx
p

θ,q
t f = e−θtp

θ,q+1
t

(
d

dx
f

)
(0.1)

for all f ∈ span{eθ,q
n :n ≥ 0}. It is quite easy to see that (0.1) can be generalized

even further to all f ∈ C1
b(R+) and easily implies that∥∥pθ,q

t f
∥∥

Lip ≤ e−θt‖f ‖Lip(0.2)

for all bounded Lipschitz-continuous f . But, even more, p
θ,q
t , t > 0, maps

bounded measurable functions into Lipschitz-continuous ones. More precisely,
we have

∥∥pθ,q
t f

∥∥
Lip ≤ θe−θt

1 − e−θt
‖f ‖∞(0.3)

for all f ∈ Bb(R+). Note that, again, the constant is independent of q , but
only depends on θ . For our last observation, define �(f )(x) := xḟ 2(x) for all
f ∈ C1

b (R+). Then

�
(
p

θ,q
t f

) ≤ e−θtp
θ,q
t

(
�(f )

)
, f ∈ C1

b(R+), q ≥ 1
2 .(0.4)

The main purpose of this paper now is to study generalizations of (0.1)–(0.4)
to arbitrary superprocesses over compact type spaces. More precisely, the
generalization of (0.1) is contained in Theorem 2.1 and Corollaries 2.3 and 2.4,
the generalization of (0.2) can be found in Section 2.1; Section 2.2 contains
generalizations of (0.4) and Section 3 contains generalizations of (0.3).

In Section 4, we study the particular case of random Gamma processes in
more detail. For this particular class of process, it is possible to obtain explicit
formulas for the transition semigroup (cf. Section 4.1 for a series representation
(which generalizes the corresponding series representation obtained by Ethier
and Griffiths [7], Theorem 1.1, in the particular case of a constant branching
mechanism) and Section 4.2 for an integral representation). Since the process
is reversible, the analysis of the process simplifies considerably [cf., e.g., the
formula for the Gateaux derivative (2.7)] and some results can be strengthened
(cf. Section 4.3). Moreover, using a general result on the small-time asymptotics
of the heat kernel in symmetric Dirichlet spaces in [10] we study in Section 4.4 the
short-time asymptotics of heat kernels of random Gamma processes.
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In Section 1, we introduce our framework and provide some basic facts
about superprocesses with immigration and corresponding invariant measures. In
particular, as a generalization of a previous result obtained by Ethier and Griffiths
for random Gamma processes with type-independent branching mechanism ([7],
Corollary 1.2), we will derive in Theorem 1.7 explicit rates on the convergence of
superprocesses with immigration toward equilibrium in total variation norm. These
estimates are nonuniform, in contrast to the estimates obtained in the Lipschitz
norm and the L2-norms.

1. Superprocesses with immigration. Let us first introduce our framework,
which will be kept throughout the whole paper. Let S be a compact metric type
space and E := M+(S) the set of all finite positive Borel measures on S. Since
S is compact, it follows that E is locally compact w.r.t. the weak topology. Let
A be a Feller generator on C(S) and

�(x,λ) := −a(x)λ2

+
∫ ∞

0
(1 − e−λs − λs)n(x, ds) − b(x)λ, x ∈ S,λ ≥ 0,

(1.1)

where a, b ∈ C(S), a ≥ 0 and n is a kernel of positive measures n(x, ·) on R+ such
that

sup
x∈S

∫
s ∧ s2n(x, ds) < +∞,

(x, λ) �→
∫ ∞

0
(1 − e−λs − λs)n(x, ds) ∈ C(S × R+).

(1.2)

For f ∈ C(S)+ (the set of all strictly positive continuous functions on S), let
ψt : R+ → C(S)+ be the unique mild solution to the semilinear equation

∂ψt (f )

∂t
= Aψt(f ) + �

(·,ψt (f )
)
, ψ0(f ) = f.(1.3)

Given ν ∈ E, we denote by (p
ν,�,A
t ) the transition semigroup of the corresponding

(A,�)-superprocess M
�,A
ν with immigration ν. Note that (p

ν,�,A
t ) is uniquely

determined by

p
ν,�,A
t ϕf (µ)

= exp
(
−

∫ t

0
〈ψs(f ), ν〉ds

)
ϕψt(f )(µ), f ∈ C(S)+,µ ∈ E, t ≥ 0.

Here we used the notation ϕf (µ) = exp(−〈f,µ〉) and 〈f,µ〉 := 〈µ,f 〉 := ∫
f dµ.

It is well known that (p
ν,�,A
t ) induces a C0-semigroup on C∞(E) (the space of

all continuous functions vanishing at ∞). Moreover, p
ν,�,A
t (Cb(E)) ⊂ Cb(E) for
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all t ≥ 0. Its infinitesimal generator L�,A
ν can be obtained as the closure of

L�,A
ν F (µ) :=

∫
µ(dx)a(x)

∂2F

∂δx∂δx

(µ)

+
∫

µ(dx)

∫ ∞
0

n(x, ds)

(
F(µ + sδx) − F(µ) − s

∂F

∂δx

(µ)

)

+
∫ (

ν(dx) − µ(dx)b(x)
) ∂F

∂δx

(µ) +
∫

µ(dx)

(
A

∂F

∂δ·
(µ)

)
(x),

(1.4)

where

F ∈ F C2
0(D(A)+) := {

F(µ) = ϕ(〈f1,µ〉, . . . , 〈fn,µ〉) :

n ≥ 1, fi ∈ D(A) ∩ C(S)+, ϕ ∈ C2
0(Rn)

}
.

Here

∂F

∂δx

(µ) := dF

ds
(µ + sδx)

∣∣∣∣
s=0

denotes the Gateaux derivative of F at µ in direction δx . For general µ ∈ E,
let (∂F/∂µ)(µ) be the Gateaux derivative of F at µ in direction µ.

If b ∈ C(S)+, it follows that f �→ ∫ ∞
0 〈ψt(f ), ν〉dt is the log-Laplace

functional of a probability measure m�,A
ν that is invariant for M

�,A
ν and hence

for L�,A
ν . Note that in the particular case A = n = 0, hence �(x,λ) = −a(x)λ2 −

b(x)λ, thus

ψt(f )(x) = e−b(x)tf (x)

1 + a(x)/b(x)(1 − e−b(x)t )f (x)
,

it follows that
∫ ∞

0 〈ψt(f ), ν〉dt = ∫
log(1 + (a/b)f )a−1 dν is the log-Laplace

functional of a random Gamma measure. For this reason we will call the associated
superprocess M

�,0
ν a random Gamma process (cf. Section 4).

Using the method of a priori estimates, we will prove the following result
on the existence of exponential moments, which will be needed later. We will
use the following notation Jε(x) := ε−1 ∫

n(x, ds)(eεs − 1 − εs). Note that
limε↓0 ‖Jε‖∞ = 0 by Dini’s theorem, since Jε(x) ↓ 0 as ε ↓ 0 and Jε is continuous.

PROPOSITION 1.1. Assume that b0 := infx∈S b(x) > 0. Then∫
eε|µ|m�,A

ν (dµ) < +∞

for all ε < ‖a‖−1∞ (b0 − ‖Jε‖∞).
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PROOF. Let ε such that δ := (b0 − ‖Jε‖∞) − ‖a‖∞ε > 0 and V (µ) := eε|µ|.
Formally applying the generator L�,A

ν to V yields

L�,A
ν V (µ) = ε2〈a,µ〉V (µ) + ε〈Jε,µ〉V (µ) + ε(|ν| − 〈b,µ〉)V (µ)

≤ ε
(|ν| + (ε‖a‖∞ + ‖Jε‖∞ − b0)|µ|)V (µ)

≤ ε(|ν| − δ|µ|)V (µ).

Let ϕn ∈ C∞
b (R+) satisfying ϕn(t) = t if t ≤ n, ϕn(t) = n + 1 if t ≥ n + 2,

0 ≤ ϕ̇n ≤ 1 and ϕ̈n ≤ 0. By approximation, it is then easy to see that Vn(µ) :=
ϕn(V (µ)) is in the domain of the closure of (L�,A

ν ,F C2
0(D(A)+)) in L2(m�,A

ν )

and

L�,A
ν Vn(µ) = ϕ̇n

(
V (µ)

)
L�,A

ν V (µ) + ϕ̈n

(
V (µ)

)
�(V,V )(µ)

≤ ϕ̇n

(
V (µ)

)
ε(|ν| − δ|µ|)V (µ).

Here

�(F,G)(µ) =
〈
µ,a

∂F

∂δ·
(µ)

∂G

∂δ·
(µ)

〉

+
〈
µ,

∫ ∞
0

n(·, ds)
(
F(µ + sδ·) − F(µ)

)(
G(µ + sδ·) − G(µ)

)〉
.

In particular, �(F,F ) ≥ 0. The invariance of m�,A
ν now implies that

δ

∫
ϕ̇n

(
V (µ)

)|µ|V (µ)m�,A
ν (dµ)

≤ |ν|
∫

ϕ̇n

(
V (µ)

)
V (µ)m�,A

ν (dµ)

≤ |ν|
∫
{|µ|≤2|ν|/δ}

V (µ)m�,A
ν (dµ)

+ δ

2

∫
{|µ|>2|ν|/δ}

ϕ̇n

(
V (µ)

)|µ|V (µ)m�,A
ν (dµ)

or, equivalently,∫
ϕ̇n

(
V (µ)

)|µ|V (µ)m�,A
ν (dµ) ≤ 2

δ
|ν| exp

(
ε

2

δ
|ν|

)
.

Taking the limit n → ∞, we obtain∫
|µ| exp(ε|µ|)m�,A

ν (dµ) ≤ 2

δ
|ν| exp

(
ε

2

δ
|ν|

)
,

and thus the assertion. �
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Convergence to equilibrium in total variation norm. Recall that for any finite
signed measure µ on S its total variation norm is defined by∥∥µ∥∥

var = sup{〈f,µ〉|f measurable and ‖f ‖∞ ≤ 1}.
In particular, if |S| = d contains only d points, the norm coincides with one-half of
the usual �1-norm on R

d (identifying the space of finite signed measures with R
d ).

In [7], Corollary 1.2, Ethier and Griffiths have proved in the particular case of
zero mutation and type-independent branching mechanism �(x,λ) = −1

2λ2 − bλ

the following estimate:∥∥pν,�,0
t (µ, ·) − m�,0

ν

∥∥
var

≤
(

1 − exp
(
−2b

e−bt

1 − e−bt
|µ|

))
+ (

1 − (1 − e−bt )2|ν|)
on the rate of convergence of (p

ν,�,0
t ) in total variation norm. The purpose of

this section is to generalize their result to arbitrary nonzero mutation and possibly
type-dependent branching mechanism.

To this end, fix ν ∈ E and let m
�,A
t,ν and n

�,A
t,ν be the probability measures with

Laplace transform∫
exp(−〈f,µ〉)m�,A

t,ν (dµ) = exp
(
−

∫ t

0
〈ψs(f ), ν〉ds

)
and ∫

exp(−〈f,µ〉)n�,A
t,ν (dµ) = exp

(
−

∫ ∞
t

〈ψs(f ), ν〉ds

)
.

Then

p
ν,�,A
t (µ, ·) = m

�,A
t,ν ∗ p

0,�,A
t (µ, ·) and m�,A

ν = m
�,A
t,ν ∗ n

�,A
t,ν .

PROPOSITION 1.2.∥∥pν,�,A
t (µ, ·) − m�,A

ν

∥∥
var ≤ ∥∥p0,�,A

t (µ, ·) − n
�,A
t,ν

∥∥
var

≤ p
0,�,A
t (µ,E \ {0}) + n

�,A
t,ν (E \ {0}).

PROOF. For the proof of the first inequality, observe that∫
F dp

ν,�,A
t (µ, ·) −

∫
F dm�,A

ν

=
∫

m
�,A
t,ν (dµ1)

(∫
p

0,�,A
t (µ, dµ2)F (µ1 + µ2)

−
∫

n
�,A
t,ν (dµ2)F (µ1 + µ2)

)

≤
∫

m
�,A
t,ν (dµ1)

∥∥p0,�,A
t (µ, ·) − n

�,A
t,ν

∥∥
var‖F‖∞.
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The second inequality follows from the fact that, for any probability measure m,

‖m − δ0‖var = m(E \ {0}). �

In the next step, we will estimate the right-hand side in the proposition using
the simple observation contained in the following lemma.

LEMMA 1.3. Let m be a finite nonnegative measure on E with log-Laplace
functional L. Let f ∈ C(S)+. Then

m

({
µ ∈ E :

∫
f dµ = 0

})
= lim

λ→∞ exp
(−L(λf )

)
.

In particular,

m({0}) = lim
λ→∞ exp

(−L(λ1S)
)
.

PROOF. Clearly,

lim
λ→∞ exp(−λ〈f,µ〉) = 1{µ̃∈E :

∫
f dµ̃=0}(µ)

for all µ ∈ E. Consequently, by Lebesgue’s theorem,

lim
λ→∞ exp

(−L(λf )
)

= lim
λ→∞

∫
exp(−λ〈f,µ〉)m(dµ) = m

({
µ ∈ E :

∫
f dµ = 0

})
. �

Combining the last two results, we obtain∥∥pν,�,A
t (µ, ·) − m�,A

ν

∥∥
var ≤ lim

λ→∞
(
1 − exp

(−〈ψt(λ1S),µ〉))

+
(

1 − exp
(
−

∫ ∞
t

〈ψs(λ1S), ν〉ds

))
.

(1.5)

REMARK 1.4. In the case of a type-independent branching mechanism
and a, b > 0, the two quantities on the right-hand side of (1.5) can be easily
estimated from above. Indeed, since

∫ ∞
0 e−λs − 1 + λsn(ds) ≥ 0, it follows that

�(λ) ≤ −aλ2 − bλ and, consequently,

ψt(λ) ≤ e−btλ

1 + (a/b)(1 − e−bt )λ
.

Thus,

p
0,�,A
t (µ, {0}) = lim

λ→∞ exp
(−〈ψt(λ1S),µ〉) ≥ exp

(
−b

a

e−bt

1 − e−bt
|µ|

)
.
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Similarly,

n
�,A
t,ν ({0}) ≥ (1 − e−bt )|ν|/a,

and therefore∥∥pν,�,A
t (µ, ·) − m�,A

ν

∥∥
var

≤
(

1 − exp
(
−b

a

e−bt

1 − e−bt
|µ|

))
+ (

1 − (1 − e−bt )|ν|/a)
.

(1.6)

In the particular case a = 1
2 , n = 0 and A = 0, we recover the result of Ethier and

Griffiths.

We will show next that the same estimate (1.6) is true in the nonconstant case if
we replace a and b by

a0 := inf
x∈S

a(x) and b0 := inf
x∈S

b(x),(1.7)

respectively. To this end, we need the following lemma containing an upper bound
of ψt(f ). Since we could not find a reference in the literature, a proof is included
here for the reader’s convenience. Note that we cannot expect that ψt(f ) is a strong
solution, so that the standard comparison principle does not work.

LEMMA 1.5. Assume that b0 > 0. Let f ∈ C(S)+ and let ψt(f ), t ≥ 0, be the
unique mild solution of (1.3). Then

ψt(f ) ≤ exp(−b0t)ptf

1 + (a0/b0)(1 − exp(−b0t))ptf
, t ≥ 0.

Here a0 and b0 are defined by (1.7) and (pt ) is the semigroup generated by A.

PROOF.

Step 1.

ptf ≥ exp(b0t)ψt (f ) + a0

∫ t

0
exp(b0s)pt−sψs(f )2 ds, t ≥ 0.

Proof of Step 1. Clearly, it suffices to prove by induction that, for all n ≥ 0,

ptf ≥
n∑

k=0

(b0t)
k

k! ψt(f ) + a0

n∑
k=0

∫ t

0

(b0s)
k

k! pt−sψs(f )2 ds

+ bn+1
0

n!
∫ t

0
snpt−sψs(f ) ds.

(1.8)
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If n = 0, the assertion follows from the fact that �(x,λ) ≤ −a0λ
2 − b0λ and thus

ptf = ψt(f ) −
∫ t

0
pt−s�

(·,ψs(f )
)
ds

≥ ψt(f ) + a0

∫ t

0
pt−sψs(f )2 ds + b0

∫ t

0
pt−sψs(f ) ds, t ≥ 0.

Suppose now that (1.8) is proved for n. Then, using (1.3) again, we obtain∫ t

0
snpt−sψs(f ) ds

≥
∫ t

0
snψt−s

(
ψs(f )

)
ds + a0

∫ t

0
sn

∫ t−s

0
pt−s−rψr

(
ψs(f )

)2
dr ds

+b0

∫ t

0
sn

∫ t−s

0
pt−s−rψr

(
ψs(f )

)
dr ds

=
∫ t

0
snψt (f ) ds + a0

n + 1

∫ t

0
sn+1pt−sψs(f )2 ds

+ b0

n + 1

∫ t

0
sn+1pt−sψs(f ) ds

and, consequently,

ptf ≥
n+1∑
k=0

(b0t)
k

k! ψt(f ) + a0

n+1∑
k=0

∫ t

0

(b0s)
k

k! pt−sψs(f )2 ds

+ bn+2
0

(n + 1)!
∫ t

0
sn+1pt−sψs(f ) ds.

Step 2.

ptf ≥
∞∑

k=0

(
a0

b0

)k

exp(b0t)
(
exp(b0t) − 1

)k
ψt (f )k+1

= exp(b0t)ψt (f )

1 − (a0/b0)(exp(b0t) − 1)ψt(f )
.

Proof of Step 2. This time, it suffices to show that

ptf ≥
n∑

k=0

(
a0

b0

)k

exp(b0t)
(
exp(b0t) − 1

)k
ψt (f )k+1(1.9)

for all n ∈ N0. If n = 0, this follows from Step 1 since ptf ≥ eb0tψt (f ). Suppose
now that (1.9) is proved for n and for all f ∈ C(S)+ and t ≥ 0. Step 1 and Jensen’s
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inequality then imply that

ptf ≥ exp(b0t)ψt (f ) + a0

∫ t

0
exp(b0s)pt−sψs(f )2 ds

≥ exp(b0t)ψt (f ) + a0

∫ t

0
exp(b0s)

(
pt−sψs(f )

)2
ds.

Using the assumption, the second term on the right-hand side can be estimated
from below by

a0

∫ t

0
exp(b0s)

(
n∑

k=0

(
a0

b0

)k

exp(b0(t − s))

× (
exp(b0(t − s)) − 1

)k
ψt−s

(
ψs(f )

)k+1
)2

ds

= a0

n∑
k,l=0

(
a0

b0

)k+l

exp(b0t)

×
∫ t

0
exp(b0(t − s))

(
exp(b0(t − s)) − 1

)k+l
ds ψt (f )k+l+2

≥
n∑

k=0

(
a0

b0

)k+1

exp(b0t)
(
exp(b0t) − 1

)k+1
ψt(f )k+2.

Combining the last two inequalities now implies

ptf ≥
n+1∑
k=0

(
a0

b0

)k

exp(b0t)
(
exp(b0t) − 1

)k
ψt (f )k+1.

Clearly, Step 2 is equivalent to the assertion; hence, the lemma is proved. �

REMARK 1.6. In the same manner as above, one can show that if b0 = 0, then

ψt(f ) ≤ ptf

1 + a0tptf
, t ≥ 0.

To this end, note that Step 1 is trivial and in Step 2 the assertion has to be replaced
by

ptf ≥
∞∑

k=0

ak
0 tkψt (f )k+1,

which can be shown exactly in the same way as above.
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THEOREM 1.7. Assume that a0 > 0 and b0 > 0. Then, for each t > 0 and
µ ∈ E, ∥∥pν,�,A

t (µ, ·) − m�,A
ν

∥∥
var

≤
(

1 − exp
(
−b0

a0

exp(−b0t)

1 − exp(−b0t)
|µ|

))

+
(
1 − (

1 − exp(−b0t)
)|ν|/a0

)
.

PROOF. Lemma 1.5 implies that

p
0,�,A
t (µ, {0}) = lim

λ→∞ exp
(−〈ψt(λ1S),µ〉)

≥ exp
(
−b0

a0

exp(−b0t)

1 − exp(−b0t)
|µ|

)
.

Similarly,

n
�,A
t,ν ({0}) ≥ (

1 − exp(−b0t)
)|ν|/a0,

and therefore∥∥pν,�,A
t (µ, ·) − m�,A

ν

∥∥
var

≤
(

1 − exp
(
−b0

a0

exp(−b0t)

1 − exp(−b0t)
|µ|

))
+ (

1 − (
1 − exp(−b0t)

)|ν|/a0
)
.

�

Note that all the estimates obtained above are nonuniform in µ. Uniform
estimates on the exponential rate of convergence will be obtained below in spaces
of Lipschitz-continuous functions and L2-spaces.

2. The derivative of the transition semigroup and applications. Assume
from now on that a0 > 0 and b0 > 0. Since, for any µ ∈ E, f �→ 〈µ,ψt(f )〉 is
the log-Laplace functional of an infinitely divisible probability measure, it follows
from the canonical representation theorem that there exist uniquely determined
νt,µ ∈ E and mt,µ ∈ M1(E) with mt,µ({0}) = 0 such that

〈µ,ψt(f )〉 = 〈νt,µ, f 〉 +
∫ (

1 − exp(−〈f,µ〉))mt,µ(dµ)

(cf. [5], Theorem 3.3.1, or [6], Theorem 1.28). We call mt,µ the canonical measure.
Lemma 1.5 now implies that, for a0 > 0 and b0 > 0,

lim
λ→∞

1

λ
ψt(λ1S) ≤ lim

λ→∞
1

λ

exp(−b0t)λ

1 + (a0/b0)(1 − exp(−b0t))λ
= 0,

and therefore νt,µ = 0.
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THEOREM 2.1. Let F ∈ Cb(E), µ,µ ∈ E and t > 0. Then p
ν,�,A
t F is

Gateaux differentiable at µ in direction µ and

∂p
ν,�,A
t F

∂µ
(µ) =

∫
mt,µ(dµ1)

∫
p

ν,�,A
t (µ, dµ2)

(
F(µ1 + µ2) − F(µ2)

)
.

Here mt,µ is the canonical measure corresponding to f �→ 〈µ,ψt(f )〉. In
particular,

(i) µ �→ ∂p
ν,�,A
t F

∂µ
(µ) ∈ Cb(E),

(ii)
∂p

ν,�,A
t F

∂µ
(µ) =

∫
µ(dx)

∂p
ν,�,A
t F

∂δx

(µ).

REMARK. A similar representation for the Gateaux derivative has been
obtained independently by Jacka and Tribe in the particular case of binary
branching with constant rate (cf. [9]).

PROOF OF THEOREM 2.1. Clearly, for all F ∈ Bb(E) and h > 0,

p
ν,�,A
t F (µ + hµ) =

∫
p

ν,�,A
t (µ, dµ1)

∫
p

0,�,A
t (hµ,dµ2)F (µ1 + µ2),

since

p
ν,�,A
t ϕf (µ + hµ) = exp

(
−

∫ t

0
〈ψs(f ), ν〉ds

)
exp

(−〈ψt(f ),µ + hµ〉)
= p

ν,�,A
t ϕf (µ)p

0,�,A
t ϕf (hµ).

It follows that

1

h

(
p

ν,�,A
t F (µ + hµ) − p

ν,�,A
t F (µ)

)
= 1

h

∫
p

ν,�,A
t (µ, dµ1)

∫
p

0,�,A
t (hµ,dµ2)

(
F(µ1 + µ2) − F(µ1)

)
.

(2.1)

We will show next that, for all F ∈ Cb(E) with F(0) = 0,

lim
h↓0

1

h

∫
p

0,�,A
t (hµ,dµ)F (µ) =

∫
F dmt,µ.(2.2)

To this end, define for h > 0 the measure

�h = 1

h

(
p

0,�,A
t (hµ, ·) − p

0,�,A
t (hµ, {0})δ0

)
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and note that

lim
h↓0

∫
exp(−〈f,µ〉)�h(dµ)

= lim
h↓0

1

h

(
exp

(−h〈µ,ψt(f )〉) − p
0,�,A
t (hµ, {0})

)

= lim
h↓0

1

h

(
exp

(−h〈µ,ψt(f )〉) − 1
) + lim

h↓0

1

h
p

0,�,A
t (hµ,E \ {0}).

(2.3)

We claim that

lim
h↓0

1

h
p

0,�,A
t (hµ,E \ {0}) = mt,µ(E \ {0}) (= mt,µ(E)

)
.(2.4)

Indeed, note that

1

h
p

0,�,A
t (hµ,E \ {0}) = lim

λ→∞
1

h

∫
1 − exp(−λ|µ|)p0,�,A

t (hµ,dµ)

= lim
λ→∞

1

h

(
1 − exp

(−h〈µ,ψt(λ1S)〉))

= lim
λ→∞

∫ 〈µ,ψt (λ1S)〉
0

exp(−hr) dr.

Since
∫ 〈µ,ψt (λ1S)〉

0 e−hr dr is increasing for increasing λ and decreasing h, it
follows that

lim
h↓0

1

h
p

0,�,A
t (hµ,E \ {0}) = lim

h↓0
lim

λ→∞

∫ 〈µ,ψt (λ1S)〉
0

e−hr dr

= lim
λ→∞ lim

h↓0

∫ 〈µ,ψt (λ1S)〉
0

e−hr dr

= lim
λ→∞〈µ,ψt(λ1S)〉

= lim
λ→∞

∫
1 − e−λ|µ|mt,µ(dµ)

= mt,µ(E \ {0}).

(2.5)

Hence, (2.4) is proved. Inserting (2.4) into (2.3), we obtain

lim
h↓0

∫
e−〈f,µ〉�h(dµ) = −〈µ,ψt(f )〉 + mt,µ(E \ {0})

=
∫

e−〈f,µ〉mt,µ(dµ).

Dawson [5], Theorem 3.2.6, now implies that limh↓0 �h = mt,µ weakly. In
particular, for F ∈ Cb(E) with F(0) = 0,

lim
h↓0

1

h

∫
p

0,�,A
t (hµ,dµ)F (µ) = lim

h↓0

∫
F d�h =

∫
F dmt,µ,
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hence, (2.2) is proved.
Fix F ∈ Cb(E). Inserting (2.2) into (2.1), we obtain

lim
h↓0

1

h

∫
p

0,�,A
t (hµ,dµ2)F (µ1 + µ2) − F(µ1)

=
∫

mt,µ(dµ2)F (µ1 + µ2) − F(µ1)

for all µ1 ∈ E. Since, by (2.5),∣∣∣∣1

h

∫
p

0,�,A
t (hµ,dµ2)F (µ1 + µ2) − F(µ1)

∣∣∣∣
≤ 2

h
p

0,�,A
t (hµ,E \ {0})‖F‖∞

the dominated convergence theorem now implies that

lim
h↓0

1

h

(
p

ν,�,A
t F (µ + hµ) − p

ν,�,A
t F (µ)

)

=
∫

p
ν,�,A
t (µ, dµ1)

∫
mt,µ(dµ2)

(
F(µ1 + µ2) − F(µ1)

)
.

For the proof of (i), it suffices now to note that

µ �→
∫

mt,µ(dµ1)

∫
p

ν,�,A
t (µ, dµ2)

(
F(µ1 + µ2) − F(µ2)

)
is clearly continuous on E and bounded. Part (ii) follows from the fact that∫

1 − e−〈f,µ〉mt,µ(dµ) = 〈µ,ψt(f )〉 =
∫

µ(dx)

∫
1 − e−〈f,µ〉mt,δx (dµ)

and therefore mt,µ = ∫
µ(dx)mt,δx by uniqueness of the canonical measure. �

For the next corollary, let us assume that A = 0. Then ψt(f )(x) = ψt(x, f (x)),
where ψt(x,λ), t ≥ 0, is the solution of the ordinary differential equation
ψ̇t (x, λ) = �(x,ψt (x,λ)), t ≥ 0, ψ0(x, λ) = λ. It follows, in particular, that
the support of the canonical measure mt,δx corresponding to f �→ ψt(f )(x) is
contained in {hδx | h ∈ R+} and thus mt,δx can be identified with the canonical
measure mt,x corresponding to the Bernstein function λ �→ ψt(x,λ), λ > 0.

We will need the following notion of differentiability.

DEFINITION 2.2. A function F ∈ Cb(E) belongs to the class C1
b(E) if,

for any differentiable curve γ : [0,1] → E, t �→ F(γ (t)) is differentiable with
derivative

dF ◦ γ

dt
(t) = 〈

γ̇ (t),DF
(·, γ (t)

)〉
with a bounded measurable function DF :S × E → R.
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Clearly, F ∈ C1
b(E) implies that F is Gateaux differentiable in direction δx

with (∂F/∂δx)(µ) = DF(x,µ). Note that our definition differs from the definition
given in [11] to the extent that we consider the weak topology instead of the strong
topology on E. However, we will need the stronger notion in Section 4.4.

COROLLARY 2.3. Assume in addition to the last theorem that A = 0 and
F ∈ C1

b(E). Let mt,x be the canonical measure corresponding to the Bernstein
function λ �→ ψt(x,λ). Then

∂p
ν,�,0
t F

∂δx

(µ) =
∫ ∞

0
mt,x

([h,∞)
)
dh

∫
p

ν,�,0
t (µ, dµ)

(
∂F

∂δx

)
(µ + hδx).(2.6)

In the case of a random Gamma process [i.e., �(x,λ) = −a(x)λ2 − b(x)λ],
(2.6) reduces to

∂p
ν,�,0
t F

∂δx

(µ) = e−b(x)tp
ν+aδx,�,0
t

(
∂F

∂δx

)
(µ).(2.7)

PROOF. Theorem 2.1 implies that

∂p
ν,�,0
t F

∂δx

(µ) =
∫

p
ν,�,0
t (µ, dµ1)

∫ ∞
0

mt,x(ds)
(
F(µ1 + sδx) − F(µ1)

)

=
∫

p
ν,�,0
t (µ, dµ1)

∫ ∞
0

mt,x(ds)

∫ s

0

∂F

∂δx

(µ1 + hδx) dh

=
∫

p
ν,�,0
t (µ, dµ1)

∫ ∞
0

mt,x

([h,∞)
) ∂F

∂δx

(µ1 + hδx) dh,

which gives (2.6).
In the case of a random Gamma process,

ψt(x,λ) = e−b(x)tλ

1 + (a(x)/b(x))(1 − e−b(x)t )λ
.

Hence, if we let ct (x) = (a(x)/b(x))(1 − e−b(x)t ), then mt,x = (e−b(x)t/ct (x)) ×
�

c−1
t (x),1. Note that∫ ∞

0
mt,x

([h,∞)
)
dh

∫
p

ν,�,0
t (µ, dµ)ϕf (µ + hδx)

= e−b(x)t

1 + ct (x)f (x)

(
p

ν,�,0
t ϕf

)
(µ)

= e−b(x)tp
ν+aδx,�,0
t ϕf (µ).

Hence,

mt,x

([h,∞)
)
dh ∗ p

ν,�,0
t (µ, ·) = e−b(x)tp

ν+aδx,�,0
t (µ, ·)
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by uniqueness of the Laplace transform. Consequently, (2.6) implies (2.7) in this
case. �

In the finite-dimensional case S = {1, . . . , d}, the strong topology and the weak
topology on E ∼= R

d+ coincide with the usual topology. Hence, the last corollary
implies the following result.

COROLLARY 2.4. Let S = {1, . . . , d} be finite, so that we can identify E

with R
d+. Let F ∈ C1

b (Rd+). Then

∂ip
ν,�,0
t F (x)

=
∫ ∞

0
mt,i

([h,∞)
)
dh

∫
p

ν,�,0
t (x, dy) ∂iF (y + hei), 1 ≤ i ≤ d.

In particular,

∂ip
ν,�,0
t F (x) = exp(−bit)p

ν+aiei ,�,0
t (∂iF )(x), 1 ≤ i ≤ d,

in the case of a random Gamma process.

2.1. Convergence in spaces of Lipschitz-continuous functions.

NOTATION. Let d be a metric on E. For any function F :E → R, let

‖F‖Lip(d) := sup
µ �=µ

|F(µ) − F(µ)|
d(µ,µ)

be its Lipschitz norm w.r.t. d . Finally, denote by Lip(d) the space of all bounded
d-Lipschitz-continuous functions.

We will study in the following Lipschitz constants of p
ν,�,A
t F w.r.t. the distance

dvar induced by the total variation norm ‖ · ‖var.

THEOREM 2.5. Let (p
ν,�,A
t ) be the transition semigroup of the (A,�)-

superprocess with immigration ν. Let b0 := infx∈S b(x). Then∥∥pν,�,A
t F

∥∥
Lip(dvar)

≤ exp(−b0t)‖F‖Lip(dvar)

for all F ∈ Cb(E).

We need the following result.

LEMMA 2.6. Let F ∈ Cb(E), t > 0 and µ,µ ∈ E. Then

p
ν,�,A
t F (µ) − p

ν,�,A
t F (µ) =

∫ 1

0

〈
µ − µ,

∂p
ν,�,A
t F

∂δ·
(
µ + s(µ − µ)

)〉
ds.
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PROOF. To simplify the notation, let G := p
ν,�,A
t F . Theorem 2.1 clearly

implies that for arbitrary µ1 ∈ E the mapping s �→ G(µ + sµ1), s ∈ (0,1), is
continuously differentiable and

dG

ds
(µ + sµ1) =

〈
µ1,

∂G

∂δ·
(µ + sµ1)

〉
.

To prove the assertion, it is now sufficient to generalize the last equality to
µ1 = s(µ − µ) for s ∈ (0,1). To this end, note that for small h with s +h ∈ (0,1),
we have

1

h

(
G

(
µ + (s + h)(µ − µ)

) − G
(
µ + s(µ − µ)

))

= 1

h

(
G

((
1 − (s + h)

)
µ + (s + h)µ

)
−G

((
1 − (s + h)

)
µ + sµ

))

− 1

h

(
G

(
(1 − s)µ + sµ

) − G
(
(1 − s)µ + sµ − hµ

))

=
∫ 1

0

〈
µ,

∂G

∂δ·

((
1 − (s + h)

)
µ + (s + rh)µ

)〉
dr

−
∫ 1

0

〈
µ,

∂G

∂δ·
(
(1 − s)µ + sµ + (1 − r)hµ

)〉
dr

→
〈
µ − µ,

∂G

∂δ·
(
µ + s(µ − µ)

)〉
, h → 0,

by the dominated convergence theorem, since µ �→ (∂G/∂δx)(µ) ∈ Cb(E). �

PROOF OF THEOREM 2.5. Let mt,δx be the canonical measure corresponding
to f �→ ψt(f )(x). Theorem 2.1 now implies that, for F ∈ Cb(E),

∂p
ν,�,A
t F

∂δx

(µ) =
∫

p
ν,�,A
t (µ, dµ1)

∫
mt,δx (dµ2)

(
F(µ1 + µ2) − F(µ1)

)

≤
∫

p
ν,�,A
t (µ, dµ1)

∫
mt,δx (dµ2)|µ2|‖F‖Lip(dvar).

Since ψt(h1S) ≤ e−b0t h, by Lemma 1.5 it follows that∫
mt,δx (dµ2)|µ2| = lim

h↓0

1

h

∫
1 − exp(−h|µ2|)mt,δx (dµ2)

= lim
h↓0

1

h
ψt(h1S)(x) ≤ exp(−b0t).
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Hence,

∣∣∣∣∂p
ν,�,A
t F

∂δx

(µ)

∣∣∣∣ ≤ exp(−b0t)‖F‖Lip(dvar).

Since the last inequality holds for all µ ∈ E and all x ∈ S, the assertion now follows
from Lemma 2.6 since

p
ν,�,0
t F (µ) − p

ν,�,0
t F (µ) =

∫ 1

0

〈
µ − µ,

∂p
ν,�,0
t F

∂δ·
(
µ + s(µ − µ)

)〉
ds

≤ exp(−b0t)‖µ − µ‖var‖F‖Lip(dvar).

(2.8)

�

Since in the finite-dimensional case the total variation norm can be identified
with one-half of the �1-norm and since the set C1

b(Rd+) is dense in the space of
bounded Lipschitz-continuous functions, we obtain the following result:

COROLLARY 2.7. Assume in addition to Theorem 2.4 that S = {1, . . . , d} is
finite, so that we can identify E with R

d+. Then

∥∥pν,�,A
t F

∥∥
Lip(�1)

≤ exp(−b0t)‖F‖Lip(�1)

for all bounded �1-Lipschitz-continuous F .

REMARK 2.8. Theorem 2.5 implies, in particular, convergence of p
ν,�,A
t F

with exponential rate b0 in Lp(m�,A
ν ), p ≥ 1, for F ∈ Cb(E) with F dvar-Lipschitz

continuous, since∥∥pν,�,A
t F − 〈F 〉∥∥p

Lp(m
�,A
ν )

≤
∫ ∫ ∣∣pν,�,A

t F (µ1) − p
ν,�,A
t F (µ2)

∣∣pm�,A
ν (dµ1)m�,A

ν (dµ2)

≤ exp(−pb0t)‖F‖p
Lip(dvar)

∫ ∫
‖µ1 − µ2‖p

var m
�,A
ν (dµ1)m�,A

ν (dµ2)

≤ 2p
∫

|µ|p m�,A
ν (dµ) exp(−pb0t)‖F‖p

Lip(dvar)
.

Since m�,A
ν has finite exponential moments (cf. Proposition 1.1), the assertion now

follows.

2.2. Uniform pointwise gradient estimates and L2-convergence. Using an
explicit representation of the heat kernel in the Gamma case which will be
proved in Section 4, we will obtain next pointwise gradient estimates on the
transition semigroup of the (A,�)-superprocess in the finite-dimensional case
under additional assumptions on the immigration.
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THEOREM 2.9. Assume that n = 0, S = {1, . . . , d} and min1≤i≤d(ν(i)/

a(i)) ≥ 1
2 . Let Pi : Rd+ → R+, x �→ xi . Then:

d∑
i=1

xi

(
∂ip

ν,�,A
t f

)2
(x) ≤ exp(−b0t)p

ν,�,A
t

(
d∑

i=1

Pi(∂if )2

)
(x)

for all f ∈ C1
b (Rd+).

PROOF. To simplify the notation, let pt := p
ν,�,A
t , ai := a(i), bi := b(i) and

νi := ν(i). Let us first assume that A = 0 and qi/ai = 1
2 , 1 ≤ i ≤ d . Proposition 4.4

(cf. also Remark 4.5) implies that pt(x, ·) is absolutely continuous and that its
density pt(x, y) admits the representation

pt(x, y) =
d∏

i=1

√
bi

ai

1

1 − exp(−bit)

1√
π

√
yi

×E

[
exp

(
−

d∑
i=1

bi

ai

(exp(−bit/2)
√

xi − Zi
√

yi )
2

1 − exp(−bit)

)]
,

where (Zi)1≤i≤d are i.i.d. with P [Zi = +1] = P [Zi = −1] = 1
2 . To further

simplify the notation, let

c :=
d∏

i=1

√
bi

ai

1

1 − exp(−bit)

1√
π

.

Then

∂iptf (x)

= −cE

[∫ exp(−bit/2)√
xi

bi

ai

exp(−bit/2)
√

xi − Zi
√

yi

1 − exp(−bit)
f (y)

d∏
j=1

1√
yj

× exp

(
−

d∑
j=1

bj

aj

(exp(−bj t/2)
√

xj − Zj
√

yj )2

1 − exp(−bj t)

)
dy

]

= −exp(−bit/2)√
xi

× cE

[
Zi

∫
f (y)

∏
j �=i

1√
yj

∂yi

× exp

(
−

d∑
j=1

bj

aj

(exp(−bj t/2)
√

xj − Zj
√

yj )2

1 − exp(−bj t)

)
dy

]
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= exp(−bit/2)√
xi

× cE

[
Zi

∫ √
yi ∂if (y)

d∏
j=1

1√
yj

× exp

(
−

d∑
j=1

bj

aj

(exp(−bj t/2)
√

xj − Zj
√

yj )2

1 − exp(−bj t)

)
dy

]

≤ exp(−b0t/2)√
xi

pt

(√
Pi |∂if |)(x).

Here the third equality follows from integration by parts, using the fact that

E

[
Zi

∫
R

d−1+
g(x1, . . . , xi−1,0, xi, . . . , xd−1) dx

]
= 0

for all integrable g. Hence, Jensen’s inequality yields

xi(∂iptf )2(x) ≤ exp(−b0t)pt (Pi(∂if )2)(x).

Summation over 1, . . . , d proves the assertion in this case.
In the next step, assume again that νi/ai = 1

2 , 1 ≤ i ≤ d , and denote by (p0
t )

the semigroup of the corresponding superprocess with zero mutation. Let (qt ) be
the Markovian semigroup generated by the mutation A and let Rtf (x) := f (q̂tx).
Clearly, (Rt ) induces a C0-semigroup of contractions on C∞(Rd+) and, for any
g ∈ C1

b(Rd+),

d∑
i=1

xi(∂iRtg)2(x) =
d∑

i=1

xi

(
d∑

j=1

qt(i, j)(∂j g)(q̂tx)

)2

≤
d∑

i=1

xi

d∑
j=1

qt(i, j)(∂j g)2(q̂tx)

= Rt

(
d∑

j=1

Pj (∂jg)2

)
(x).

Since (L�,A
ν ,C2

0 (Rd+)) is maximal (cf. [12]), the Trotter–Kato product formula
implies that

pt = lim
n→∞

(
p0

t/n ◦ Rt/n

)n
in the strong operator topology (cf. [4]). Fix f ∈ C∞

0 (Rd+), x ∈ R
d+ and g ∈ R

d .
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Then

ptf
(
exp(hg)x

) − ptf (x)

= lim
n→∞

(
p0

t/n ◦ Rt/n

)n
f

(
exp(hg)x

) − (
p0

t/n ◦ Rt/n

)n
f (x)

= lim
n→∞

∫ h

0

〈
g exp(sg)x,∇(

p0
t/n ◦ Rt/n

)n
f

(
exp(sg)x

)〉
ds

≤ lim
n→∞

∫ h

0

(
d∑

i=1

g2
i exp(sgi)xi

)1/2

×
(

d∑
i=1

exp(sgi)xi

(
∂i

(
p0

t/n ◦ Rt/n

)n
f

)2(
exp(sg)x

))1/2

ds

≤ exp(−b0t/2) lim
n→∞

∫ h

0

(
d∑

i=1

g2
i exp(sgi)xi

)1/2

×
((

p0
t/n ◦ Rt/n

)n(
d∑

i=1

Pi(∂if )2

)(
exp(sg)x

))1/2

ds

= exp(−b0t/2)

∫ h

0

(
d∑

i=1

g2
i exp(sgi)xi

)1/2

×
(
pt

(
d∑

i=1

Pi(∂if )2

)(
exp(sg)x

))1/2

ds.

Consequently,

〈gx,∇ptf (x)〉 = lim
h→0

1

h

(
ptf

(
exp(hg)x

) − ptf (x)
)

≤ exp(−b0t/2)

(
d∑

i=1

g2
i xi

)1/2(
pt

(
d∑

i=1

Pi(∂if )2

))1/2

(x),

which implies the assertion for f ∈ C∞
0 (Rd+) if we take g = ∇ptf (x).

The general case min1≤i≤d νi/ai ≥ 1
2 can be deduced from this case in a

similar way. Let (p0
t ) now denote the semigroup of the superprocess with

immigration ν̃i = 1
2ai , 1 ≤ i ≤ d , and mutation A. Let Rtf (x) = f (x + t (ν − ν̃)),

t ≥ 0. Then (Rt ) induces a C0-semigroup of contractions on C∞(Rd+) (here we
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use νi/ai ≥ 1
2 ) and

d∑
i=1

xi(∂iRtg)2(x) ≤ Rt

(
d∑

i=1

Pi(∂ig)2

)
(x)

for any g ∈ C1
b(Rd+). Using again the Trotter–Kato product formula in the same

way as above, we obtain the assertion for f ∈ C∞
0 (Rd+). The general case now

follows by approximation. �

REMARK 2.10. It seems that pointwise gradient estimates no longer hold
with constants independent of ν(i)/a(i) as soon as min1≤i≤d ν(i)/a(i) < 1

2 .
This might be related to the fact that the second iterated gradient �2(f, f ) :=
1
2 {L�,A

ν �(f,f ) − 2�(L�,A
ν f,f )} associated with the generator of the (A,�)-

superprocess with immigration ν, at least in the case A = 0, is neither positive def-
inite nor bounded from below in this case. Here �(f,g)(x) := ∑d

i=1 aixi ∂if (x)×
∂ig(x). Indeed, a direct calculation yields for f ∈ C2

b(Rd+)

�2(f, f )(x) =
d∑

i=1

a2
i xi ∂iif (x) ∂if (x) +

d∑
i,j=1

aiaj xixj

(
∂ij f (x)

)2

+
d∑

i=1

1
2aibixi

(
∂if (x)

)2 +
d∑

i=1

1
2νiai

(
∂if (x)

)2
.

Now it is easily verified that min1≤i≤d νi/ai ≥ 1
2 implies

�2(f, f )(x) ≥ min
1≤i≤d

bi

2
�(f,f )(x).

Note that the constant can be obtained independent of ν. For consequences [e.g.,
logarithmic Sobolev inequalities, hypercontractivity of (p

ν,�,A
t )], see [1]. On the

other hand, min1≤i≤d νi/ai < 1
2 implies that there is no constant K > −∞ such

that the inequality

�2(f, f )(x) ≥ K�(f,f )(x)(2.9)

holds for all f ∈ C2
b(Rd+). Indeed, by independence, it is enough to consider the

case d = 1 only. Let fε(x) := e−εx , ε > 0. Then

�2(fε, fε)(x) = (−a2ε3x + a2ε4x2 + 1
2aε2(ν + bx)

)
fε(x)2,

whereas, on the other hand,

�(fε, fε)(x) = axε2f 2
ε (x).

Consequently, inequality (2.9) would imply, in particular, the following inequality:

−axε + aε2x2 + 1
2 (ν + bx) ≥ Kx, x ∈ R+.
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Choosing xε := 1/2ε, we obtain that 1
2(ν − a/2) + b/4ε ≥ K(1/2ε) for all ε > 0,

which is clearly impossible if we let ε tend to ∞ since ν − a/2 < 0.

The last theorem also implies convergence of the semigroup toward its invariant
measure with exponential rate b0/2.

COROLLARY 2.11. Let the assumptions be as in Theorem 2.9. Then the
bilinear form

E(f ) :=
d∑

i=1

∫
xi(∂if )2(x)m�,A

ν (dx), f ∈ C1
b (Rd+),

determines a Poincaré inequality with constant less than 2(‖a‖∞/b0). Moreover,

∥∥pν,�,A
t f − 〈m�,A

ν , f 〉∥∥
L2(m

�,A
ν )

≤ exp
(
− b0

‖a‖∞
t

2

)
‖f ‖

L2(m
�,A
ν )

.

PROOF. Let f ∈ C1
b(Rd+). Since limt→∞ p

ν,�,0
t f = 〈m�,A

ν , f 〉, it follows
from the invariance of m�,A

ν that∫
f 2 dm�,A

ν − 〈
m�,A

ν , f
〉2 = −

∫ ∞
0

d

dt

〈
m�,A

ν ,p
ν,�,A
t f

〉2
dt

= −2
∫ ∞

0

∫
L�,A

ν p
ν,�,A
t fp

ν,�,A
t f dm�,A

ν dt

≤ 2‖a‖∞
∫ ∞

0
E

(
p

ν,�,A
t f

)
dt

≤ 2‖a‖∞
∫ ∞

0
exp(−b0t)E(f ) dt = 2

‖a‖∞
b0

E(f ).

In particular, for f ∈ C2
b(Rd+), the last inequality implies that∫

f 2 dm�,A
ν − 〈

m�,A
ν , f

〉2 ≤ −2
‖a‖∞

b0

∫
L�,A

ν f f dm�,A
ν

and by L2-uniqueness of (L�,A
ν ,C2

b(Rd+)) the last inequality extends to all f ∈
D(L�,A

ν ). The rest of the assertion now follows from standard semigroup theory.
�

The result of the last corollary is not optimal. In the particular case of zero
mutation, explicit rates of convergence of (p

ν,�,0
t ) have been obtained in [12]

for arbitrary compact metric type spaces and arbitrary ν. In particular, it was
shown in [12], Theorem 3.1, that the semigroup of the random Gamma process
converges to equilibrium with exponential rate b0 (independent of a and ν)
(cf. also Section 4.2).
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3. Regularity of the transition semigroup.

3.1. Strong Feller property.

THEOREM 3.1. Let

s(t) := sup
x∈S

mt,δx (E\{0})
(
= sup

x∈S

lim
λ→∞ψt(λ1S)(x) ≤ b0

a0

e−b0t

1 − e−b0t

)
.

Let F ∈ Bb(E). Then ∥∥pν,�,A
t F

∥∥
Lip(dvar)

≤ 2s(t)‖F‖∞.

In particular, p
ν,�,A
t :Bb(E) → Lip(dvar) is continuous for t > 0.

PROOF. Theorem 2.1 implies, for F ∈ Cb(E),

∣∣∣∣∂p
ν,�,A
t F

∂δx

(µ)

∣∣∣∣ =
∣∣∣∣
∫

p
ν,�,A
t (µ, dµ1)

∫
mt,δx (dµ2)

(
F(µ1 + µ2) − F(µ1)

)∣∣∣∣
≤ 2mt,δx (E \ {0})‖F‖∞ ≤ 2s(t)‖F‖∞.

Thus, for all µ, µ ∈ E, by Lemma 2.6,

∣∣pν,�,A
t F (µ) − p

ν,�,A
t F (µ)

∣∣ =
∣∣∣∣
∫ 1

0

〈
µ − µ,

∂p
ν,�,A
t F

∂δ·
(
µ + s(µ − µ)

)〉
ds

∣∣∣∣
≤ 2s(t)‖µ − µ‖var‖F‖∞.

For arbitrary F ∈ Bb(E), fix µ and µ ∈ E. Since Cb(E) ⊂ L1(p
ν,�,A
t (µ, ·) +

p
ν,�,A
t (µ, ·)) dense, we can find a sequence (Fn) ⊂ Cb(E) converging to F

both p
ν,�,A
t (µ, ·)-a.e. and p

ν,�,A
t (µ, ·)-a.e. We may assume that ‖Fn‖∞ ≤ ‖F‖∞.

Then, by the dominated convergence theorem,∣∣pν,�,A
t F (µ) − p

ν,�,A
t F (µ)

∣∣ = lim
n→∞

∣∣pν,�,A
t Fn(µ) − p

ν,�,A
t Fn(µ)

∣∣
≤ lim

n→∞ 2s(t)‖µ − µ‖var‖Fn‖∞

≤ 2s(t)‖µ − µ‖var‖F‖∞. �

As a corollary to the last theorem, we now obtain the following result:

COROLLARY 3.2. The transition semigroup (p
ν,�,A
t ) of the (A,�)-super-

process with immigration ν is strong Feller w.r.t. the strong topology. In
particular, if S is finite, then (p

ν,�,A
t ) is strong Feller w.r.t. the usual topology.
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REMARK 3.3. (i) Theorem 3.1 becomes wrong in the linear case, that is, in
the case a = n = 0. Indeed, in this case, f �→ ψt(f ), t ≥ 0, is the linear semigroup
generated by A − b. It follows in the case of zero immigration that p

0,�,A
t F (µ) =

F(δ
ψ̂tµ

). In particular, p
0,�,A
t F is not Lipschitz for general F ∈ Bb(E).

(ii) Although the theorem looks like a strong regularity result on the transition
semigroup, it does not imply any additional compactness properties of (p

ν,�,A
t ),

since E equipped with the strong topology is no longer locally compact as soon
as S contains infinitely many points. What would be needed instead (e.g., for
the construction of invariant measures for models with interactive selection) is
the strong Feller property w.r.t. the weak topology or additional compactness
properties of the semigroup (e.g., in Lp-spaces induced by the invariant measures).
However, this cannot be expected unless additional assumptions on the mutation
are imposed.

3.2. Compactness. Recall that the Wasserstein metric dw on E is given by

dw(µ,µ) := sup
‖f ‖Lip(d)≤1,‖f ‖∞≤1

∫
f dµ −

∫
f dµ

and metrizes the weak topology on E.

THEOREM 3.4. Let (pt ) be the semigroup generated by A. Assume that there
exists d : (0,∞) → R+ such that

‖ptf ‖Lip(d) ≤ d(t)‖f ‖∞, f ∈ Bb(E).

For s > 0, let Bs(0) = {µ ∈ E | |µ| ≤ s} and denote by rs :C∞(E) → C(Bs(0)),
F �→ F |Bs(0), the natural restriction. Then rs ◦ p

ν,�,A
t :C∞(E) → C(Bs(0)) is

compact for all s > 0. Moreover, rs(D(L�,A
ν )) ⊂ C(Bs(0)) is compact, too.

PROOF. First, note that the assumption on (pt ) clearly implies that

dvar(p̂tµ, p̂tµ) ≤ d(t)dw(µ,µ), µ,µ ∈ E.(3.1)

Let RtF (µ) := F(p̂tµ). Then (Rt ) defines a C0-semigroup of contractions on
C∞(E) and

Sn
t := (

p
ν,�,0
t/n ◦ Rt/n

)n → p
ν,�,A
t

in the strong operator topology on bounded linear operators on C∞(E). Using
Theorem 3.1 and (3.1), we now obtain, for F ∈ Bb(E),∣∣pν,�,0

t/n ◦ Rt/nF (µ) − p
ν,�,0
t/n ◦ Rt/nF (µ)

∣∣
≤ 2s(t/n)‖F‖∞‖p̂t/n(µ − µ)‖var

≤ 2s(t/n) d(t/n)‖F‖∞ dw(µ,µ).
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Consequently, |Sn
t F (µ) − Sn

t F (µ)| ≤ 2s(t/n) d(t/n)‖F‖∞ dw(µ,µ) and thus
rs ◦ Sn

t (C∞(E)) is compactly embedded in C(Bs(0)) by Arzela-Ascoli. Since
limn→∞ Sn

t = p
n,�,A
t in the strong operator topology, we conclude that rs ◦

p
ν,�,A
t (C∞(E)) is compactly embedded in C(Bs(0)), too.
Finally, let Gα := ∫ ∞

0 e−αtp
ν,�,A
t dt be the α-resolvent of L�,A

ν , α > 0. Since
rs ◦ p

ν,�,A
t is compact for all t > 0, it follows that rs ◦ Gα is compact, too. Hence,

rs(D(L�,A
ν )) = rs ◦ Gα(C∞(E)) is compactly embedded in C(Bs(0)). �

4. Gamma processes.

NOTATION. For arbitrary θ ∈ Bb(S)+ and ν ∈ M+(S), denote by �θ,ν the
random Gamma measure with log-Laplace functional

∫
log(1 + θ−1f )dν. In

analogy to the classical Gamma measure, we call θ the scale parameter and ν

the shape parameter. Note that for θ ∈ C(S)+ the mapping ν �→ �θ,ν is weakly
continuous. Indeed, for f ∈ C(S)+ and limn→∞ νn = ν weakly, it follows that
limn→∞

∫
log(1 + θ−1f )dνn = ∫

log(1 + θ−1f )dν, so that limn→∞ �θ,νn = �θ,ν

weakly, by [5], Theorem 3.2.6.

Throughout this section, we assume that n = 0 [so that �(x,λ) = −a(x)λ2 −
b(x)λ] and that A = 0. We have already seen in Section 1 that in the particular case
n = 0 the invariant measure m�,0

ν of the (0,�)-superprocess with immigration ν

is the random Gamma measure �a−1b,a−1ν .

4.1. A series representation of p
ν,�,0
t . The following theorem was first proved

by Ethier and Griffiths in the case of a constant branching mechanism (cf. [7],
Theorem 1.1).

THEOREM 4.1. Let

ct := b

a

e−bt

1 − e−bt
.

Fix ν ∈ M+(S) and denote by (p
ν,�,0
t ) the semigroup of the (0,�)-superprocess

with immigration ν. Then

p
ν,�,0
t (µ, dµ)

= exp(−〈ct ,µ〉)�ebt ct ,a−1ν(dµ)

+
∞∑

n=1

exp(−〈ct ,µ〉) 1

n!

×
∫
Sn

µn(dx1, . . . , dxn)ct (x1) · · · ct (xn)�ebt ct ,a−1ν+∑n
k=1 δxk

(dµ).

(4.1)
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PROOF. Denote by qt(µ, dµ) the right-hand side of (4.1). Since

p
ν,�,0
t

(
exp(−〈f, ·〉))(µ)

= exp
(
−

∫ t

0
〈ψs(f ), ν〉ds − 〈ψt(f ),µ〉

)

= exp
(
−

∫ t

0

〈
e−bsf

1 + (a/b)(1 − e−bs)f
, ν

〉
ds

−
〈

e−btf

1 + (a/b)(1 − e−bt )f
,µ

〉)

= exp
(
−

〈
1

a
log

(
1 + a

b
(1 − e−bt )f

)
, ν

〉

−
〈

e−btf

1 + (a/b)(1 − e−bt )f
,µ

〉)
,

(4.2)

it suffices to verify that the right-hand side of (4.2) coincides with the Laplace
transform of qt(µ, ·). To this end, note that

qt

(
exp(−〈f, ·〉))(µ)

= exp(−〈ct ,µ〉)
∫

exp(−〈f,µ〉)�ebt ct ,a−1ν(dµ)

+
∞∑

n=1

exp(−〈ct ,µ〉) 1

n!
∫
Sn

µn(dx1, . . . , dxn)ct (x1) · · · ct (xn)

×
∫

exp(−〈f,µ〉)�ebt ct ,a−1ν+∑n
k=1 δxk

(dµ)

= exp(−〈ct ,µ〉) exp
(
−

〈
a−1 log

(
1 + e−bt

ct

f

)
, ν

〉)

+
∞∑

n=1

exp(−〈ct ,µ〉) 1

n!
∫
Sn

µn(dx1, . . . , dxn)ct (x1) · · · ct (xn)

× exp

(
−

n∑
k=1

log
(

1 + e−b(xk)t

ct (xk)
f (xk)

))

× exp
(
−

〈
a−1 log

(
1 + e−bt

ct

f

)
, ν

〉)

= exp
(
−

〈
a−1 log

(
1 + e−bt

ct

f

)
, ν

〉)

× exp
(
−〈ct ,µ〉 +

〈
ct

1

1 + (e−bt/ct )f
,µ

〉)
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= exp
(
−

〈
a−1 log

(
1 + e−bt

ct

f

)
, ν

〉)

× exp
(
−

〈
e−btf

1 + (a/b)(1 − e−bt )f
,µ

〉)
,

which implies the assertion. �

In the finite-dimensional case, (4.1) reduces to the following series representa-
tion already contained in [8] in the case d = 1.

PROPOSITION 4.2. Assume that |S| = d , so that we can identify M+(S)

with R
d+, and that νi := ν(i) > 0, 1 ≤ i ≤ d . Then p

ν,�,0
t (x, ·) has a density

p
ν,�,0
t (x, y) w.r.t. the d-dimensional Lebesgue measure given by

p
ν,�,0
t (x, y) =

d∏
i=1

bi

ai

exp((bit/2)(νi/ai − 1))

1 − exp(−bit)
exp

(
−bi

ai

exp(−bit)xi + yi

1 − exp(−bit)

)

×
(

yi

xi

)νi/2ai−1/2

Iνi/ai−1

(
2
bi

ai

exp(−(bi/2)t)

1 − exp(−bit)

√
xiyi

)
.

(4.3)

Here

Iq(x) :=
∞∑

n=0

(x/2)2n+q

n!�(n + q + 1)
, q > −1,

denotes the modified Bessel function.

PROOF. The assertion follows from a straightforward calculation of the
Laplace transform of the right-hand side of (4.3). �

REMARK 4.3. Note that in the multidimensional case p
ν,�,0
t (x, y) may be

rewritten as

p
ν,�,0
t (x, y) =

d∏
i=1

(
bi

ai

1

1 − exp(−bit)

)νi/ai

y
νi/ai−1
i exp

(
−bi

ai

xi exp(−bit) + yi

1 − exp(−bit)

)

×
∞∑

n=0

∑
|k|=n

d∏
i=1

(
bi

ai

exp(−bit/2)

1 − exp(−bit)

)2ki (xiyi)
ki

ki !�(ki + νi/ai)
.

4.2. Integral representation in the finite-dimensional case. The series repre-
sentation of p

ν,�,0
t obtained in Theorem 4.1 clearly indicates the long-time behav-

ior of p
ν,�,0
t since ct → 0 exponentially, but it does not easily show the short-time

asymptotics. To this end, we will give below in the finite-dimensional case an alter-
native integral representation. This problem is equivalent to the classical problem
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of finding integral representations for products of (modified) Bessel functions. So
the main difficulty arises in the case min1≤i≤d νi/ai < 1

2 .
For α, β > 0, denote by να,β the Beta distribution on [0,1] with parameters α

and β . Recall that

να,β(du) = �(α + β)

�(α)�(β)
uα−1(1 − u)β−1 du.

PROPOSITION 4.4. Assume that min1≤i≤d νi/ai ≥ 1
2 . Then

p
ν,�,0
t (x, y) =

d∏
i=1

(
bi

ai

1

1 − exp(−bit)

)νi/ai y
νi/ai−1
i

�(νi/ai)

×E

[
exp

(
−

d∑
i=1

bi

ai

(exp(−bit/2)
√

xi − Zi

√
Ui

√
yi)

2

1 − exp(−bit)

)

× exp

(
−

d∑
i=1

bi

ai

yi(1 − Ui)

1 − exp(−bit)

)]
,

(4.4)

where Zi,Ui are independent, P [Zi = +1] = P [Zi = −1] = 1
2 and Ui

ν1/2,νi/ai−1/2 distributed, 1 ≤ i ≤ d . Here we let ν1/2,0 = δ1.

PROOF. It suffices to consider the case d = 1 only. Hence,

p
ν,�,0
t (x, y) =

(
b

a

1

1 − e−bt

)ν/a yν/a−1

�(ν/a)
h(x, y),

where

h(x, y) = exp
(
−b

a

e−btx + y

1 − e−bt

) ∞∑
n=0

(
b

a

e−bt/2

1 − e−bt

)2n (xy)n�(ν/a)

n!�(n + ν/a)
.

Using the fact that, for p > 1
2 ,

�(p)

n!�(n + p)
= 1

n!�(n + 1
2 )

�(p)

�(p − 1
2 )

∫ 1

0
un−1/2(1 − u)p−3/2 du ,

Legendre’s formula n!�(n + 1
2 ) = (

√
π/22n)(2n)! implies that

�(p)

n!�(n + p)
= 22n

(2n)!
∫ 1

0
unν1/2,p−1/2(du).
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The last formula also holds for p = 1
2 . Consequently,

h(x, y) = exp
(
−b

a

e−btx + y

1 − e−bt

)

×
∞∑

n=0

(
b

a

e−bt/2

1 − e−bt

)2n ∫ 1

0

22n(xyu)n

(2n)! ν1/2,ν/a−1/2(du)

= 1

2
exp

(
−b

a

e−btx + y

1 − e−bt

)

×
∫ 1

0
exp

(
2
b

a

e−bt/2

1 − e−bt

√
xyu

)

+ exp
(
−2

b

a

e−bt/2

1 − e−bt

√
xyu

)
ν1/2,ν/a−1/2(du)

= 1

2

∫ 1

0

(
exp

(
−b

a

(e−bt/2√x − √
yu )2

1 − e−bt

)

+ exp
(
−b

a

(e−bt/2√x + √
yu )2

1 − e−bt

))

× exp
(
−b

a

y(1 − u)

1 − e−bt

)
ν1/2,ν/a−1/2(du). �

REMARK 4.5. Let us mention as a particular example the case νi/ai = 1
2 ,

1 ≤ i ≤ d . In this case, (4.4) reduces to the simple formula

p
ν,�,0
t (x, y) =

d∏
i=1

√
bi

ai

1

1 − exp(−bit)

1√
π

√
yi

× E

[
exp

(
−

d∑
i=1

bi

ai

(exp(−bit/2)
√

xi − Zi
√

yi )
2

1 − exp(−bit)

)]

=
d∏

i=1

√
bi

ai

1

1 − exp(−bit)

1√
π

√
yi

1

2

×
(

exp
(
−bi

ai

(exp(−bit/2)
√

xi − √
yi )

2

1 − exp(−bit)

)

+ exp
(
−bi

ai

(exp(−bit/2)
√

xi + √
yi )

2

1 − exp(−bit)

))
.

This representation of the heat kernel very much reminds one of the heat kernel
of the Ornstein–Uhlenbeck process on R

d+ with reflecting boundary conditions. To
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understand this connection, let Lf (x) := ∑d
i=1 ai ∂

2
iif (x) − ∑d

i=1 bixi ∂if (x) be
the generator of the d-dimensional Ornstein–Uhlenbeck operator with diffusion
matrix diag(a1, . . . , ad) and linear drift −diag(b1, . . . , bd) and consider the trans-
formation T : Rd → R

d+, x �→ (x2
1 , . . . , x2

d). Then

L(f ◦ T )(x) =
d∑

i=1

4aiTi(x) ∂2
iif

(
T (x)

) +
d∑

i=1

(
2ai − 2biTi(x)

)
∂if

(
T (x)

)
,

which implies that the image of L under the transformation T is precisely
the generator of the superprocess on R

d+ with branching mechanism �(i, λ) =
−4aiλ

2 − 2biλ, λ ∈ R+, and immigration ν = 2(a1, . . . , ad). Similarly, the image
of the corresponding invariant measure of L [the Gaussian distribution with
mean 0 and covariance matrix diag(a1b

−1
1 , . . . , adb−1

d )] is precisely the Gamma
distribution �b/2a,1/2.

The integral representation of p
ν,�,0
t (x, y) immediately reveals the short-time

asymptotics. For simplicity, let us only consider the particular case νi/ai = 1
2 ,

1 ≤ i ≤ d (cf. Section 4.4 for the general case). In this case, it is easy to see that

lim
t↓0

t logp
ν,�,0
t (x, y) = −

d∑
i=1

1

ai

(√
xi − √

yi

)2
.(4.5)

Indeed, we may assume that d = 1. Then

lim
t↓0

t log p
ν,�,0
t (x, y)

= lim
t↓0

t

2
log

(
b

a

1

1 − e−bt

1

4πy

)

− t
b

a

(
(e−bt/2√x − √

y )2

1 − e−bt

)

+ t log
(

exp
(
−b

a

4e−bt/2√xy

1 − e−bt

)
+ 1

)
,

where we used log(r + s) = log(r) + log(s/r + 1), and, consequently,

lim
t↓0

t logp
ν,�,0
t (x, y) = −1

a

(√
x − √

y
)2

.

Equation (4.5) will be generalized in Section 4.4, replacing (
∑d

i=1 1/ai(
√

xi −√
yi )

2)1/2 by a weighted Kakutani–Hellinger distance.

REMARK 4.6. One can use Proposition 4.4 to obtain integral representations
of p

ν,�,0
t (x, y) also for small νi/ai . To this end, let us consider for simplicity the
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one-dimensional case only. Using the fact that, for p > 0,

∞∑
n=0

(
b

a

e−bt/2

1 − e−bt

)2n (xy)n�(p)

n!�(n + p)

=
∞∑

n=0

(
b

a

e−bt/2

1 − e−bt

)2n (xy)n�(p + 1)

n!�(n + p + 1)

+
(

b

a

e−bt/2

1 − e−bt

)2 xy

p(p + 1)

×
∞∑

n=0

(
b

a

e−bt/2

1 − e−bt

)2n (xy)n�(p + 2)

n!�(n + p + 2)
,

Proposition 4.4 now implies that

p
ν,�,0
t (x, y) =

(
b

a

1

1 − e−bt

)ν/a yν/a−1

�(ν/a)

× 1

2

∫ 1

0

(
exp

(
−b

a

(e−bt/2√x − √
yu )2

1 − e−bt

)

+ exp
(
−b

a

(e−bt/2√x + √
yu )2

1 − e−bt

))

× exp
(
−b

a

y(1 − u)

1 − e−bt

)

×
(
ν1/2,ν/a+1/2

+
(

b

a

e−bt/2

1 − e−bt

)2 xy

ν/a(ν/a + 1)
ν1/2,ν/a+3/2

)
(du).

4.3. Convergence in L2(�θ,ν). It is shown in [12], Theorem 3.1, that
�a−1b,a−1ν is a symmetrizing measure for (p

ν,�,0
t ) and (L�,0

ν ,F C2
0(C(S)+)) is

essentially self-adjoint in L2(�a−1b,a−1ν). The quadratic form associated to L�,0
ν

is given by the closure (E ,D(E)) of

E(F ) :=
∫ 〈

µ,a

(
∂F

∂δ·

)2

(µ)

〉
�a−1b,a−1ν(dµ), F ∈ F C2

0
(
C(S)+

)
,

in L2(�a−1b,a−1ν). Clearly, E is a symmetric Dirichlet form, that is, F+ ∧ 1 ∈
D(E) for F ∈ D(E) and E(F+ ∧ 1) ≤ E(F ) (cf. [3]). The following result has
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already been obtained in [12], Theorem 3.1. Using the explicit representation of
(∂p

ν,�,A
t F /∂δx)(µ) obtained in Corollary 2.3, we give an alternative proof here.

PROPOSITION 4.7. Let b0 := infx∈S b(x). Then E determines a Poincaré
inequality with constant less than b−1

0 . Moreover, the transition semigroup
of the (0,�)-superprocess with immigration ν converges to equilibrium in
L2(�a−1b,a−1ν) with exponential rate b0.

For the proof, we need the following remarkable feature of random Gamma
measures.

LEMMA 4.8. Let θ ∈ C(S)+ and ν ∈ E. Then∫
E

∫
S
µ(dx)F (x,µ)�θ,ν(dµ)

=
∫
S
ν(dx)θ−1(x)

(∫
E

F (x,µ)�θ,ν+δx (dµ)

)

for all F :S × E → R, F bounded and B(S × E)-measurable.

PROOF. By monotone class theorems, it suffices to consider F(x,µ) =
g(x)e−〈f,µ〉, g, f ∈ C(S)+. Then∫

E

∫
S
µ(dx)F (x,µ)�θ,ν(dµ)

= − d

dε

∫
E

exp(−ε〈g,µ〉 − 〈f,µ〉)�θ,ν(dµ)

∣∣∣∣
ε=0

= − d

dε
exp

(
−

∫
log

(
1 + θ−1(εg + f )

)
dν

)∣∣∣∣
ε=0

=
〈
ν,

g

θ(1 + θ−1f )

〉
exp

(
−

∫
log(1 + θ−1f )dν

)

=
∫
S
ν(dx)θ−1(x)

(∫
E

F (x,µ)�θ,ν+δx (dµ)

)
. �

PROOF OF PROPOSITION 4.7. Fix F ∈ F C2
0(C(S)+). Corollary 2.3 and

Jensen’s inequality imply that

E
(
p

ν,�,0
t F

) =
∫ 〈

µ,a

(
∂p

ν,�,0
t F

∂δ·

)2

(µ)

〉
�a−1b,a−1ν(dµ)

≤
∫
E

∫
S
µ(dx)a(x)e−2b(x)tp

ν+aδx,�,0
t

×
(

∂F

∂δx

)2

(µ)�a−1b,a−1ν(dµ).
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Using the last lemma and the �a−1b,a−1(ν+aδx)-invariance of p
ν+aδx,�,0
t , we obtain

E(p
ν,�,0
t F ) ≤ exp(−2b0t)

∫
S
ν(dx)

a2(x)

b(x)

×
(∫

E
p

ν+aδx,�,0
t

(
∂F

∂δx

)2

(µ)�a−1b,a−1(ν+aδx)(dµ)

)

= exp(−2b0t)

∫
S
ν(dx)

a2(x)

b(x)

(∫
E

(
∂F

∂δx

)2

(µ)�a−1b,a−1(ν+aδx)(dµ)

)

= exp(−2b0t)

∫ 〈
µ,a

(
∂F

∂δ·

)2

(µ)

〉
�a−1b,a−1ν(dµ)

= exp(−2b0t)E(F ).

Consequently, ∫
F 2 d�a−1b,a−1ν − 〈�a−1b,a−1ν,F 〉2

= −
∫ ∞

0

d

dt
‖pν,�,0

t F‖2
L2(�

a−1b,a−1ν
)
dt

= 2
∫ ∞

0
E(p

ν,�,0
t F ) dt

≤ 2
∫ ∞

0
exp(−2b0t) dt E(F )

= b−1
0 E(F ).

By density, the last inequality extends to all F in the domain of the closure of E , in
particular, to all F ∈ D(L�,0

ν ). The convergence to equilibrium with an exponential
rate b0 of (p

ν,�,0
t ) in L2(�a−1b,a−1ν) now follows from standard semigroup theory.

�

4.4. Short-time asymptotics. Since L�,0
ν is associated with a symmetric

Dirichlet form, we can apply the general result obtained in [10] to study the short-
time asymptotics of p

ν,�,0
t (A,B) for any measurable subsets A,B of E. To this

end, note that E admits a carré du champ

�a := D(E) × D(E) → L1(
�a−1b,a−1ν

)
,

given by

�a(F,G)(µ) = 2
〈
µ,a

∂F

∂δ·
(µ)

∂G

∂δ·
(µ)

〉
.
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For the terminology in this section, we refer to [3]. Clearly, �a is local. The
corresponding intrinsic metric da(A,B) associated with �a is defined by

da(A,B) = sup
F∈D(E),�a(F,F )≤1

inf
µ∈A,µ∈B

F (µ) − F(µ).

Here “sup” and “inf” are meant in the essential sense. Using Proposition 4.7 and
[10], Theorem 1.1 now imply that for any A and B with �a−1b,a−1ν(A) > 0 and
�a−1b,a−1ν(B) > 0 it follows that

lim
t↓0

2t log p
ν,�,0
t (A,B) = −d2

a(A,B).(4.6)

Here p
ν,�,0
t (A,B) := ∫

B p
ν,�,0
t 1A d�a−1b,a−1ν .

REMARK 4.9. Schied [11] identified the pointwise intrinsic metric da which
appears on the right-hand side of (4.6) in the particular case a ≡ 1

2 . To this end,
define the weighted Kakutani–Hellinger distance

dKH,a(µ,µ) =
(∫ (√

dµ

dη
−

√
dµ

dη

)2

a−1 dη

)1/2

for any µ,µ ∈ E. Here η ∈ E is any measure such that both µ and µ are absolutely
continuous w.r.t. η. Stated as his Theorem 1.2, Schied showed that

sup
F∈C1

b(E),�1/2(F,F )≤1

F(µ) − F(µ) = dKH,1/2(µ,µ).

Here C1
b(E) is defined as in Definition 2.2 if we replace the weak topology by

the strong topology. Note that in contrast to [11] we assume in addition that F is
bounded. This is possible since one can approximate any F by bounded G with
�a(G,G) ≤ �a(F,F ). It follows, for general a ∈ C(S)+,

sup
F∈C1

b(E),�a(F,F )≤1

F(µ) − F(µ) = dKH,a(µ,µ).

Indeed, since F ∈ C1
b(E) if and only if Fa(µ) := F(aµ) ∈ C1

b(E) and (∂Fa/

∂δx)(µ) = a(x)(∂F/∂δx)(aµ), it follows that 2�1/2(Fa,Fa)(µ) = �a(F,F )(aµ)

and, consequently,

sup
F∈C1

b(E),�a(F,F )≤1

F(µ) − F(µ) = sup
F∈C1

b(E),�1/2(F,F )≤1/2

F(a−1µ) − F(a−1µ)

= dKH,a(µ,µ).
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