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STRONG APPROXIMATION OF MAXIMA
BY EXTREMAL PROCESSES

BY I. FAHRNER AND U. STADTMÜLLER

Universität Ulm

Extending results by P. Deheuvels of 1981–1983 we give strong
approximation results for sample maxima by simple transformations of
extremal processes and discuss the quality of the approximations. The
limiting process becomes stationary after a transformation of the argument.

1. Introduction. Let {Xn,n ∈ N} be a sequence of independent and identi-
cally distributed (i.i.d.) random variables on some probability space. We denote
by Sn = ∑n

k=1 Xk, n ∈ N, their partial sums and by Mn = max1≤k≤n Xk, n ∈ N,
their partial maxima. Studying the almost sure behavior of partial sums or of func-
tionals of the partial sums a powerful tool is given by so-called strong invariance
principles. Under appropriate assumptions, the limiting process of partial sums
is a Wiener process. It is well known by now that provided we have E(X1) =
0, E(X2

1) = 1 and E(|X1|p) < ∞ (p ≥ 2) there exists a version {X̃n, n ∈ N} of
the original sequence and a Wiener process W on some probability space such that

S̃n − W(n) = oa.s.(
√

n log logn ) if p = 2,

S̃n − W(n) = oa.s.(n
1/p) if p > 2

holds. For further details see, for example, the book by Csörgő and Révész (1981).
Examples for applications of strong invariance principles can be found in Csörgő
and Révész (1981) or Stadtmüller (1986). For a concrete example, note that the
law of the iterated logarithm for Sn follows from that for W(n).

Here we are interested in the sequence {Mn,n ∈ N} instead of {Sn,n ∈ N} and
seek for a similar result for the sequence of maxima.

Suppose there exist an > 0 and bn ∈ R such that

lim
n→∞P

(
(Mn − bn)/an ≤ x

) = G(x) for all continuity points of G(1)

for some nondegenerate distribution function G(x). Then we can define a sequence
{Ỹn(t), n ∈ N} of stochastic processes in D(0,∞), the set of all right continuous
real functions on (0,∞) with finite left limits existing everywhere, by

Ỹn(t) :=
{

(M[nt] − bn)/an, t ≥ 1/n,

(X1 − bn)/an, 0 < t < 1/n,
(2)

where [x] denotes the greatest integer less or equal to x.
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For a distribution function F let YF (t) denote the extremal-F process in
D(0,∞) [see, e.g., Resnick (1987), Section 4.3] with finite-dimensional distri-
butions

Ft1,...,tk (x1, . . . , xk) = F t1

(
min

1≤i≤k
xi

)
F t2−t1

(
min

2≤i≤k
xi

)
· · ·F tk−tk−1(xk)(3)

for k ≥ 1, 0 < t1 < t2 < · · · < tk, xi ∈ R, i = 1, . . . , k.
It is a well-known fact first given by Lamperti (1964) that (1) is equivalent to

Ỹn(t) ⇒ YG(t) in D(0,∞),

where ⇒ denotes weak convergence.
In order to study the behavior of

∑n
k=1 k−1f ((Mk − bk)/ak) in the context of

a.s.-versions of weak limit theorems [see, e.g., Fahrner and Stadtmüller (1998),
Fahrner (2000a, b, 2001)] we want to have an almost sure version of the weak
invariance principle for maxima above.

Comparing with the strong invariance principle for sums we like to get a result
which corresponds to a relation like

S[nt]√
nt

= W(nt + v(nt))√
nt

+ r(nt)

with v(nt) = [nt]−nt and r(nt) = oa.s.(
√

log log(nt) ) as nt → ∞, which follows
from the result above.

Deheuvels (1981, 1982, 1983) proposed a method for deriving a strong
approximation for the sequence {Ỹn(t), n ∈ N}. He shows that there exists a
sequence {Y (n)

G (t), n ∈ N} of versions of YG(t) such that

Ỹn(t) ≤ Y
(n)
G

(
t + u1

n(t)
) + v1

n(t), Ỹn(t) ≥ Y
(n)
G

(
t − u2

n(t)
) − v2

n(t)

with random variables ui
n(t) and vi

n(t) where ui
n(t) tend pointwise to zero as

n tends to infinity with nonuniform rates. However, no rates for the convergence
of vi

n(t) to zero are discussed.
In this paper we will consider the strong approximation of the sequence {Yn(t),

n ∈ N} of stochastic processes in D(0,∞) given by

Yn(t) :=
{

(M[nt] − b[nt])/a[nt], t ≥ 1/n,

(X1 − b1)/a1, 0 < t < 1/n,
(4)

which also has a weak limit in D(0,∞) denoted by Y0,G(t). There are two
advantages in considering Yn(t) instead of Ỹn(t): in applications one usually meets
the maximum Mn together with the norming like in (4) rather than that in (2).
Moreover, Y0,G(t) is a simple transformation of the stationary process Y0,G(et ).
We will give an approximation of roughly the form

Yn(t) ≤ Y0,G

(
nt + v(nt)

) + R(nt), Yn(t) ≥ Y0,G

(
nt − v(nt)

) + R(nt).
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Note that here we approximate Yn(t) by a single process Y0,G(t) and not
a sequence of processes. There are two possibilities for stating the strong
approximation results. Either we consider the whole probability space, then v(nt)

depends on ω or we neglect a small set and Egorov’s theorem will yield a uniform
bound for v(nt) on the slightly smaller space. We will follow the latter path.
In applications this reduction into a smaller space can often be eliminated. The
random variables R(nt) will tend to zero in probability as nt tends to infinity. In
general this is the best possible outcome. But under some regularity conditions on
the distribution of X1 we can show almost sure convergence to zero for R(nt) as
nt tends to infinity.

We are dealing with two kinds of errors in this approximation. Yn(t) are pure
jump processes where jumps can occur only at times k/n, k ∈ N, whereas there
is no restriction for the jumps of Y0,G(t). These different behaviors are brought
together by the function v(nt). Note that the distribution of the interarrival times
of the jumps of an extremal-F process can be seen being invariant under the
choice of the distribution function F , compare Resnick (1987), Proposition 4.8.
Thus it is not surprising that v(nt) will not depend on the underlying distribution
of X1 either. The second error term is the random variable R(nt) which takes
care of different jump heights. This quantity naturally depends on the distribution
of X1.

2. The strong approximation results. As before, let {Xn,n ∈ N} be a
sequence of i.i.d. random variables with common distribution function F . If (1)
holds then G is of extreme value type, that is, there exist a > 0 and b ∈ R such that
G(ax + b) equals one of the following three distribution functions:

�(x) = exp(−e−x),

�α(x) = exp(−x−α)I(0,∞)(x) for some α > 0,

or
�α(x) = exp

(−(−x)α
)
I(−∞,0](x) + I(0,∞)(x) for some α > 0,

and we say that F belongs to the domain of attraction of G and write F ∈ D(G).
Defining F(x) := 1 − F(x), xF := sup{x :F(x) < 1} and F as the set of all
distribution functions, we can characterize the domains of attraction as follows:

D(�) = {
F ∈ F :∃a(x) > 0 s.t. lim

x→xF
F

(
x + ta(x)

)
/F(x) = e−t ∀ t ∈ R

}
,

D(�α) = {
F ∈ F :xF = ∞ and lim

x→∞F(tx)/F (x) = t−α ∀ t > 0
}
,

D(�α) = {
F ∈ F :xF < ∞ and

lim
x→∞F

(
xF − 1/(tx)

)
/F(xF − 1/x) = t−α ∀ t > 0

}
.
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There is a canonical way of choosing the normalizing constants and we will denote
those canonical constants by acan

n (resp. bcan
n ). These are given by

acan
n = a(V (n)), bcan

n = V (n), when G = �,

acan
n = V (n), bcan

n = 0, when G = �α,

acan
n = xF − V (n), bcan

n = xF , when G = �α,

(5)

where V (t) := (1/F)←(t) and H←(t) := inf{x :H(x) ≥ t} denotes the left
continuous inverse of a nondecreasing function H . We will also need the right
continuous inverse H→(t) := inf{x :H(x) > t}. By the convergence of types
theorem the normalizing constants can be replaced by an and bn obeying
an/a

can
n → a and (bn − bcan

n )/acan
n → b with some a > 0 and b ∈ R leading

to the limit distribution G(ax + b) in (1). More information about convergence
of normalized extremes can be found in the books of Haan (1970); Leadbetter,
Lindgren and Rootzen (1983); Galambos (1987) or Resnick (1987).

We can show the following invariance principle:

THEOREM 1. Let {Xn,n ∈ N} be a sequence of i.i.d. random variables and
suppose that (1) holds. Define Yn(t) by (4). Then (1) is equivalent to

Yn ⇒ Y0,G in D(0,∞)

where

Y0,G(t) :=




Y�(t) − log t, when G = �,

t−1/αY�α(t), when G = �α,

t1/αY�α(t), when G = �α.

Moreover, in any case {Y0,G(et ), t ∈ R} is a stationary Markov process.

Define log∗ x = log(max{e, x}) and log∗
2 x = log∗ log∗ x, log∗

n x =
log∗(log∗

n−1 x) for x > 0 and n ≥ 3.
Then we have the following strong approximation result:

THEOREM 2. Let {Xn,n ∈ N} be a sequence of i.i.d. random variables with
common distribution function F on some probability space such that (1) holds.

Then it is possible to reconstruct the sequence {Xn,n ∈ N} together with
an extremal-G process YG(u) in D(0,∞) and a family of random variables
{R(u), u ≥ 1} on a possibly enlarged probability space (�,�,P ) such that for
every ε > 0 there exists a set �ε ∈ � with P (�ε) ≥ 1 − ε and a constant Kε ≥ 1
independent of ω such that

Y0
(
u,−v(u)

) + R(u) ≤ M[u] − b[u]
a[u]

≤ Y0
(
u, v(u)

) + R(u)

∀u ≥ K2
ε , ∀ω ∈ �ε,
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holds with v(u) := Kε

√
log∗ u log∗

3 u and

Y0(u, v) :=




Y�(u + v) − logu, when G = �,

u−1/αY�α(u + v), when G = �α,

u1/αY�α(u + v), when G = �α.

Furthermore, R(u) tends to zero in probability as u tends to infinity and if F is
continuous we have

R(u) = (M[u] − b[u])/a[u] − G←(
Fu(M[u])

)
, u ≥ 1.

The shift v(u) is small compared to u and does not disturb the asymptotic
behaviour of the process too much. Note that if F is continuous we have
P (G←(F [u](M[u])) ≤ x) = G(x) for all real x, that is, R([u]) describes the error
obtained by approximating (M[u] − b[u])/a[u] by a certain random variable which
is distributed according to the limit distribution. This is why R(u) appears on both
sides of the inequality above. As already mentioned in the introduction, it is in
general not true that limu→∞ R(u) = 0 a.s. See Section 5 for a counterexample.
In order to give sufficient conditions for almost sure convergence of R(u) we have
to consider the cases �, �α and �α seperately and study the corresponding von
Mises conditions [cf. Resnick (1987), Section 1.4]. This will be done next.

We begin with the case G = �. Suppose that F has a negative second derivative
in some interval (z0, xF ). Define the function

a : (z0, xF ) → (0,∞), x �→ a(x) := F(x)

F ′(x)
.(6)

If the von Mises condition

lim
x→xF

F ′′(x)(1 − F(x))

(F ′(x))2 = −1(7)

holds, then F ∈ D(�). Note that taking the derivative of a(x) shows that (7) is
equivalent to

lim
x→xF

a′(x) = 0.(8)

On the other hand we have (7) iff F has the following representation:

F(x) = c exp
(
−

∫ x

z0

dt

a(t)

)
for all x ∈ (z0, xF )(9)

where c > 0 and a(t) > 0 is differentiable and satisfies (8). In this case a(t) is
given by (6); see, for example, Resnick [(1987), Section 1.4, Proposition 1.18c].

We need a condition on the speed of convergence in (7) [resp. (8)]. A similar
condition was considered by de Haan and Hordijk (1972) in connection with large
deviation results for extremes.
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THEOREM 3. Let {Xn,n ∈ N} be a sequence of i.i.d. random variables with
common distribution function F on some probability space. Suppose F has
a negative second derivative in some neighborhood of xF and let a(x) =
F(x)/F ′(x). If

lim
x→xF

a′(x)
(

log log
(
1/F(x)

))2 = 0,(10)

it is possible to reconstruct the sequence {Xn,n ∈ N} together with an extre-
mal-� process Y�(u) in D(0,∞) on a possibly enlarged probability space
(�,�,P ) such that for every ε > 0 there exists a set �ε ∈ � with P (�ε) ≥ 1 − ε,
a constant Kε ≥ 1 and a function rε(u) : [1,∞) → [0,∞) such that

Y�

(
u − v(u)

) − logu − rε(u) ≤ M[u] − bcan[u]
acan[u]

≤ Y�

(
u + v(u)

) − log u + rε(u)

(11)

holds for all u ≥ K2
ε and all ω ∈ �ε , with v(u) := Kε

√
log∗ u log∗

3 u and
limu→∞ rε(u) = 0.

Furthermore, if there exists an increasing function r : (0,∞) → (0,∞) such
that

lim
x→∞ r(x) = ∞, lim

x→∞ r(x)
log x

x
= 0,

lim
x→xF

a′(x)
(

log log
(
1/F (x)

))2
r
(
1/F(x)

) = 0

(12)

holds then limu→∞ rε(u)r(u) = 0.
If in addition for some positive sequence (ak) and some real sequence (bk)

lim
k→∞

((
acan
k

ak

− 1
)

log logk + (bcan
k − bk)/ak

)
r(k) = 0(13)

holds, then the canonical constants in (11) can be replaced by ak (resp. bk).

The case G = �α can be attacked either directly or by a suitable embedding into
the �-case. Both methods yield about the same results, however, with the second
method less technical difficulties arise.

Let F have a second derivative on (z0,∞) for some real z0. The von Mises
condition

lim
x→∞

xF ′(x)

F (x)
= α > 0(14)

implies F ∈ D(�α). Defining ε(x) := xF ′(x)/F(x) − α, condition (14) can be
rewritten as limx→∞ ε(x) = 0. Moreover, equation (14) is equivalent to the fact
that F has representation

F(x) = x−αc exp
(
−

∫ x

1

ε(t)

t
dt

)
for all x ≥ z0,(15)
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for some z0 ∈ R where c > 0 and limx→∞ ε(x) = 0 [cf. Resnick (1987),
Section 1.5]. Since F has a second derivative ε(· ) is differentiable as well.

The transformed distribution function F #(x) := F(ex) is an element of D(�)

but it does not necessarily satisfy the von Mises condition (7). But under the
additional assumption limx→∞ ε′(x)x = 0 it does.

Again as in the �-case we need sufficiently fast convergence in (14).

THEOREM 4. Let {Xn,n ∈ N} be a sequence of i.i.d. random variables with
common distribution function F on some probability space. Suppose F has a
second (not necessarily negative) derivative in some neighborhood of infinity and
let ε(x) = xF ′(x)/F (x) − α. If

lim
x→∞ε(x) log logx = 0 and lim

x→∞ ε′(x)x(log logx)2 = 0,(16)

it is possible to reconstruct the sequence {Xn,n ∈ N} together with an extremal-�α

process Y�α(u) in D(0,∞) on a possibly enlarged probability space (�,�,P )

such that for every ε > 0 there exists a set �ε ∈ � with P (�ε) ≥ 1 − ε, a constant
Kε ≥ 1 and a function rε(u) : [1,∞) → [0,∞) such that

u−1/αY�α

(
u − v(u)

) − rε(u) ≤ M[u] − bcan[u]
acan[u]

≤ u−1/αY�α

(
u + v(u)

) + rε(u)(17)

holds for all u ≥ K2
ε and all ω ∈ �ε , with v(u) := Kε

√
log∗ u log∗

3 u and we have

limu→∞ rε(u)(logu)−β = 0 for all β > 1/α.
Furthermore, if there exists an increasing function r : (0,∞) → (0,∞) such

that

lim
x→∞ r(x) = ∞, lim

x→∞ r(x)
logx

x
= 0,

lim
x→∞ ε(x)(log logx)r

(
1/F(x)

) = 0,(18)

lim
x→∞ ε′(x)x(log log x)2r

(
1/F(x)

) = 0(19)

holds then limu→∞ rε(u)(logu)−βr(u) = 0 for all β > 1/α.
If in addition for some positive sequence (ak) and some real sequence (bk),

lim
k→∞

((
acan
k

ak

− 1
)
(logk)β − bk/ak

)
r(k) = 0 for some β > 1/α

holds, then the canonical constants in (17) can be replaced by ak (resp. bk).

The case G = �α is similar to the �α-case. Use the embedding F #(x) :=
F(xF − e−x) ∈ D(�). Thus we can formulate:
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THEOREM 5. Let {Xn,n ∈ N} be a sequence of i.i.d. random variables with
common distribution function F on some probability space. Suppose F has a
second (not necessarily negative) derivative in some neighborhood of xF < ∞
and let δ(x) = ((xF − x)F ′(x))/F (x) − α. If

lim
x→∞ δ(xF − 1/x) log logx = 0 and

lim
x→∞ δ′(xF − 1/x)x−1(log log x)2 = 0,

(20)

it is possible to reconstruct the sequence {Xn,n ∈ N} together with an extremal-�α

process Y�α(u) in D(0,∞) on a possibly enlarged probability space (�,�,P )

such that for every ε > 0 there exists a set �ε ∈ � with P (�ε) ≥ 1 − ε, a constant
Kε ≥ 1 and a function rε(u) : [1,∞) → [0,∞) such that

u1/αY�α

(
u − v(u)

) − rε(u) ≤ M[u] − bcan[u]
acan[u]

≤ u1/αY�α

(
u + v(u)

) + rε(u)(21)

holds for all u ≥ K2
ε and all ω ∈ �ε , with v(u) := Kε

√
log∗ u log∗

3 u and we have
limu→∞ rε(u)(log log u)−β = 0 for all β > 1/α.

Furthermore, if there exists an increasing function r : (0,∞) → (0,∞) such
that

lim
x→∞ r(x) = ∞, lim

x→∞ r(x)
log x

x
= 0,

lim
x→∞ δ(xF − 1/x)(log logx)r

(
1/F(xF − 1/x)

) = 0,(22)

lim
x→∞ δ′(xF − 1/x)x−1(log log x)2r

(
1/F(xF − 1/x)

) = 0(23)

holds then limu→∞ rε(u)(log logu)−βr(u) = 0 for all β > 1/α.
If in addition for some positive sequence (ak) and some real sequence (bk),

lim
k→∞

((
acan
k

ak

− 1
)
(log logk)β + (xF − bk)/ak

)
r(k) = 0 for some β > 1/α,

holds, then the canonical constants in (21) can be replaced by ak (resp. bk).

3. Proof of the invariance principle. By Lamperti’s result (1) implies
Ỹn(t) ⇒ YG(t) in D(0,∞), therefore [Resnick (1987), Proposition 4.18] Ỹn(t) ⇒
YG(t) in D[a, b] for all 0 < a < b < ∞. Note that YG(t) is stochastically
continuous for all t > 0.

In the case G = � we have

lim
n→∞

an

a[nt]
= 1 and lim

n→∞
b[nt] − bn

an

= log t
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uniformly in t ∈ [a, b]. This is true since a ◦ V [for V see below (5)] is slowly
varying and V belongs to the function class � [see, e.g., Bingham, Goldie and
Teugels (1989)], arbitrary normalizing constants differ from the canonical choices
just by the relations given below (5). Note that uniform convergence implies
convergence in the metric of D[a, b]. Thus Slutzky’s theorem yields

Yn(t) = Ỹn(t)
an

a[nt]
− b[nt] − bn

an

an

a[nt]
⇒ Y�(t) − log t in D[a, b].

Since this is true for all 0 < a < b < ∞, the claim follows in the case G = �. The
other cases are similar.

The fact that Y0,G(et ) is a stationary Markov process follows since YG(t)

is a Markov process [Resnick (1987), Proposition 4.7] and stationarity can be
seen easily by writing down the one-dimensional and transition distributions of
Y0,G(et ). Recall the identities

�b(a) = �(a − logb), �b
α(a) = �α(b−1/αa) and �b

α(a) = �α(b1/αa).

These and Proposition 4.7 in Resnick (1987) yield, for example, in case G = �

P
(
Y0,�(es) ≤ x

) = P
(
Y�(es) ≤ x + s

) = �es

(x + s) = �(x)

and

P
(
Y0,�(et+s) ≤ y

∣∣Y0,�(es) = u
)

= P
(
Y�(et+s − es + es) ≤ y + t + s

∣∣Y�(es) = u + s
)

=

�(et+s−es )(y + t + s), if y + t + s ≥ u + s,

0, otherwise

=
{

�(et−1)(y + t), if y + t ≥ u,

0, otherwise,

similarly in the other cases. Hence we have the desired stationarity. �

4. Proof of the strong approximation results. The method of proof is based
on arguments by Deheuvels (1981, 1982), however, in comparison to the original
result, we want to end with one and not a sequence of approximating extremal
processes and more important we want to get uniform error bounds which need
more care. In order to make the paper self-contained we repeat with minor changes
parts of the proof which were already given by Deheuvels.

Assume that XE
1 ,XE

2 , . . . are i.i.d. standard exponential [XE
1

d= Exp(1)] random
variables on some probability space, set ME

0 = 0, ME
n := max1≤k≤n XE

k and
define recursively the record times

L(1) := 1, L(n + 1) := inf
{
j > L(n) :XE

j > XE
L(n)

}
, n ≥ 1,
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and the time when ME
j exceeds the level t by

E(t) := inf
{
j ≥ 0 :ME

j > t
}
.

As a shorthand write zn := XE
L(n) = ME

L(n), n ≥ 1. It is well known that if XE
n

d=
Exp(1) then the sequence (zn)

∞
n=1 forms a homogeneous Poisson point process

with unit intensity on (0,∞). Denote its counting process by N(t); that is,
N(t) = #{k ∈ N : zk ≤ t}, t ≥ 0.

The following result was proved in Deheuvels (1982). For a proof of the result
as stated here, see Fahrner (2000b).

THEOREM 6. It is possible to complete {zk,1 ≤ k < ∞} to a homogeneous
Poisson point process {zk,−∞ < k < ∞} with unit intensity on R and to
reconstruct it together with the sequence {XE

n ,n ∈ N} and a sequence {Ek,−∞ <

k < ∞} of i.i.d. unit exponential random variables, independent of the Poisson
process, on a possibly enlarged probability space (�,�,P ) such that

lim sup
n→∞

1√
2n log logn

∣∣∣∣∣L(n + 1) −
n∑

k=−∞
Eke

zk

∣∣∣∣∣ < ∞ a.s.(24)

Actually the limit superior was shown to be a constant. Let ε > 0 be given and
define the process

Z(t) :=
N(t)∑

k=−∞
Eke

zk , 0 < t < ∞.

It is well known that Z(t) has the same finite-dimensional distributions as Y→
� (t);

see Resnick [(1987), page 195f ] or Fahrner [(2000b), Appendix A]. In the next
lemma we approximate E(t) by Z(t).

LEMMA 1. On the probability space (�,�,P ) of Theorem 6 there exists
a positive constant C2 and an event A2 ∈ � with P (A2) ≥ 1 − ε/2 as well as
processes φ(t) and ψ(t) on (0,∞) such that

Z(t) − φ(t) < E(t) ≤ Z(t) + ψ(t) ∀ t > 0, ∀ω ∈ A2(25)

and:

(i) φ(t) and ψ(t) are constant except for jumps. Like E(t) and Z(t) these
functions are constant on intervals of the form (zn, zn+1),

(ii) Z(t) − φ(t) and Z(t) + ψ(t) are integers for every t > 0 and all ω ∈ A2,

(iii) 0 ≤ φ(t), ψ(t) ≤ C2 max{1,
√

t log∗
2 t} ∀ t > 0, ∀ω ∈ A2.
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PROOF. Denote the lim sup in (24) by s and write (24) as∣∣∣∣∣L(n + 1) −
n∑

k=−∞
Eke

zk

∣∣∣∣∣ ≤
√

2n log logn (s + Bn) for n ≥ 3

where limn→∞ Bn = 0 a.s. Note that E(t) = L(n + 1) where n + 1 =
min{k :XL(k) ≥ t} = N(t) + 1 a.s. ∀ t ∈ R. Thus

|E(t) − Z(t)| ≤
√

2N(t) log logN(t) (s + BN(t)) for N(t) ≥ 3.(26)

We will use Egorov’s theorem to get a nonrandom bound in (26) for large t .
Since limn→∞ Bn = 0 a.s. there exists an event A ∈ � with P (A) ≤ ε/6 and
limn→∞ Bn = 0 uniformly on Ac. Furthermore, since limt→∞ N(t)/t = 1 a.s.
there exists an event Ã ∈ � with P (Ã) ≤ ε/6 and limt→∞ N(t)/t = 1 uniformly
on Ãc. Set A1 := (A∪ Ã)c, then P (A1) ≥ 1−ε/3 and there exists a t0 independent
of ω such that 3 ≤ N(t) ≤ 2t and |BN(t)| ≤ 1 ∀ t ≥ t0, ∀ω ∈ A1; that is, there exists
a C1 such that

|E(t) − Z(t)| ≤
√

4t log log(2t)(s + 1)

≤ C1 max
(
1,

√
t log∗

2 t
)

∀ t ≥ t0, ∀ω ∈ A1.

Hence there exist functions φ(t) and ψ(t) which satisfy the requirements of the
lemma for t ≥ t0. Next we want to extend the functions for all t > 0, that is, for
some event A2 ⊂ A1 we want to have

Z(t) − φ(t) < E(t) ≤ Z(t) + ψ(t) ∀0 < t ≤ t0, ∀ω ∈ A2.

By definition we have E(t) > 0, therefore we may define φ(t) := Z(t) ≤ Z(t0) for
t ≤ t0. It is also possible to find a function ψ(t) with E(t0) ≤ ψ(t) ≤ E(t0)+ 1 for
0 ≤ t ≤ t0 such that Z(t) + ψ(t) is an integer for every t and since Z(t) ≥ 0 and
E(t) is nondecreasing Z(t) + ψ(t) ≥ ψ(t) ≥ E(t0) ≥ E(t). Let z̃ denote the time
of the first jump after t0. Defining φ(t) = φ(t0) and ψ(t) = ψ(t0) for t ∈ (t0, z̃),
we have (i) and (ii).

Now recall that Z(t0)
d= Y→

� (t0). Thus by Proposition 4.8(iv) of Resnick (1987)

Z(t0)
d= Exp(− log�(t0)). Furthermore E(E(t0)) < ∞ since

∞∑
n=0

P
(
E(t0) > n

) =
∞∑

n=0

P (ME
n ≤ t0) =

∞∑
n=0

(1 − e−t0)n < ∞.

Thus Z(t0),E(t0) are proper random variables, that is, there exists a C2 > 0 such
that

P
(
max{C1,Z(t0),E(t0)} > C2

) ≤ ε/6.

Setting A2 = A1 ∩ {max{C1, |Z(t0)|,E(t0)} ≤ C2} completes the proof. �
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Inverting (25) we can approximate our maxima by an extremal-Exp(1)

process:

LEMMA 2. On the probability space (�,�,P ) of Theorem 6 there exists an
extremal-Exp(1) process YExp(1)(s) in D(0,∞), an event A3 ∈ � with P (A3) ≥
1 − 5ε/6 and a positive constant C4 such that

ME
[s−ṽ(s)] ≤ YExp(1)(s) ≤ ME

[s+ṽ(s)] ∀ω ∈ A3, ∀ s > C2
4(27)

where ṽ(s) := C4

√
log∗ s log∗

3 s.

PROOF. Note that by definition of E

E(t) > n �⇒ ME
n ≤ t, E(t) ≤ n �⇒ ME

n > t ∀ t > 0, ∀n ∈ N.

Let E(t−) denote the left-hand limit of E at t . We will show

E(t−) ≤ n �⇒ ME
n ≥ t.

For this, take a sequence {tk, k ∈ N} with tk < t and tk ↑ t , k → ∞. By
monotonicity of E we get E(tk) ≤ E(t−) ≤ n, thus ME

n > tk for all k ∈ N and
therefore ME

n ≥ t .
Since E(t−) ≤ Z(t−) + ψ(t−) by (25), setting t = Z→(x) and noting

that we have Z(Z→(x)−) ≤ x, we get E(Z→(x)−) ≤ [x + ψ(Z→(x))], thus
ME[x+ψ(Z→(x))] ≥ Z→(x).

Since also Z(Z→(x)) ≥ x for x > 0, we get E(Z→(x)) > x − φ(Z→(x)) ≥
[x − φ(Z→(x))] and thus

ME[x−φ(Z→(x))] ≤ Z→(x) ≤ ME[x+ψ(Z→(x))] ∀x > 0.(28)

Define S(s) := �←(1 − e−s) = − log(− log(1 − e−s)). Using the inequalities
y ≥ − log(1 −y) ≥ 1/(1 −y)−1, 0 ≤ y < 1, we find putting S(s) = s +h(s) that
−e−s/(1 − e−s) ≤ h(s) ≤ 0 and {Z→(S(s)), s > 0} is a version of an extremal-
Exp(1) process [cf. Resnick (1987)] which we will denote by YExp(1)(s). Note that
this process is right continuous and thus an element of D(0,∞), and we have
(Y→

Exp(1))
→(s) = YExp(1)(s).

It is easy to see that lims→∞ YExp(1)(s)/ log s = 1 a.s. Hence, by Egorov’s
theorem there exists an event B with P (B) ≤ ε/6 and a s0 independent of ω ∈ Bc

with YExp(1)(s) ≤ 2 log s ∀ s ≥ s0, ∀ω ∈ Bc . Obviously there is a constant C3 > 0
with P (YExp(1)(s0) > C3) ≤ ε/6. Set A3 := A2 ∩ {YExp(1)(s0) ≤ C3} ∩ Bc . Then
P (Ac

3) ≤ 5ε/6 and

YExp(1)(s) ≤ 2C3 log∗ s ∀ s > 0, ∀ω ∈ A3.
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By setting x = S(s) in (28) the claim follows by observing

x − φ(Z→(x))

= s + h(s) − φ
(
YExp(1)(s)

)
≥ s −

(
e−s/(1 − e−s) + C2 max

{
1,

√
YExp(1)(s) log∗

2
(
YExp(1)(s)

) })
≥ s − C4

√
log∗ s log∗

3 s for some C4 > 0 and all s > C2
4 .

The proof of the upper bound is even simpler. �

REMARK. Note that the construction of YExp(1)(s) = Z→(S(s)) does not de-
pend on the choice of ε.

PROOF OF THEOREM 2. Let {Xn,n ∈ N} be a sequence of random variables
distributed according to F on some probability space as in the statement of
Theorem 2. Assume that F is continuous except for jumps at {xj : j ∈ J } for
some at most countable set J . Without loss of generality we can define a sequence
{U ′

n, n ∈ N} of i.i.d. uniformly on (0,1) distributed random variables independent
of {Xn,n ∈ N} on this probability space. Define

Un = I (Xn /∈ {xj : j ∈ J })F (Xn)

+ ∑
j∈J

I (Xn = xj )
(
F(xj−) + (

F(xj ) − F(xj−)
)
U ′

n

)
and observe that Un are i.i.d. uniformly on (0,1) distributed random variables and
Xn = F←(Un) a.s.

Writing FE(x) := (1 − e−x)I[0,∞)(x) the random variables XE
n := F←

E (Un)

have an unit exponential distribution. Let MU
n := max1≤k≤n Uk and ME

n :=
max1≤k≤n XE

k = F←
E (MU

n ). Then by Lemma 2 applied to the sequence {XE
n ,

n ∈ N} we get an enlarged probability space (�,�,P ) and an extremal-Exp(1)

process YExp(1)(s) such that (27) holds. Define

YG(s) := G←(
FE

(
YExp(1)(s)

))
.(29)

By writing down the finite-dimensional distributions, we see that YG(s) is a version
of an extremal-G process in D(0,∞). Let T (u) = (M[u] − b[u])/a[u] and

R(u) := T (u) − G←(
Fu

E

(
ME[u]

))
, u ≥ 1.

Note that if F is continuous R(u) = T (u) − G←(F u(M[u])) as claimed in the
statement of Theorem 2, since then Un = F(Xn) and ME

n = F←
E (F (Mn)).

We have for ω ∈ A3 and for s > C2
4

T
(
s − ṽ(s)

) = G←(
F

s−ṽ(s)
E

(
ME

[s−ṽ(s)]
)) + R

(
s − ṽ(s)

)
≤ G←(

F
s−ṽ(s)
E

(
YExp(1)(s)

)) + R
(
s − ṽ(s)

)
by (27)

= Y0
(
s − ṽ(s), ṽ(s)

) + R
(
s − ṽ(s)

)
.
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Indeed, using the identities

�←(ab) = �←(a) − log b, �α(ab) = b−1/α�←
α (a) and

�←
α (ab) = b1/α�←

α (a)
(30)

we get the a.s. equations

�←(
F

s−ṽ(s)
E

(
YExp(1)(s)

)) = Y�(s) − log
(
s − ṽ(s)

)
,

�←
α

(
F

s−ṽ(s)
E

(
YExp(1)(s)

)) = (
s − ṽ(s)

)−1/α
Y�α(s),

�←
α

(
F

s−ṽ(s)
E

(
YExp(1)(s)

)) = (
s − ṽ(s)

)1/α
Y�α(s),

where the processes Y�(s), Y�α(s) and Y�α(s) are defined by (29). Let g(s) :=
s − ṽ(s). Eventually this is a strictly increasing differentiable function and without
loss of generality we may therefore assume C2

4 ≥ ee. Then

sup
s≥C2

4

ṽ(s)

s
≤ C4 sup

s≥C2
4

log∗ s

s
= log∗(C2

4)

C4
=: C5 < 1.

Thus g(s) ≥ (1 − C5)s ∀ s ≥ C2
4 or equivalently g←(u) ≤ u/(1 − C5) ∀u ≥ C2

4 .
For every u > C2

4 there exists a unique s > C2
4 with u = g(s), namely s = g←(u).

Therefore

T (u) = T (g(s)) ≤ Y0
(
s − ṽ(s), ṽ(s)

) + R
(
s − ṽ(s)

)
= Y0

(
u, ṽ(g←(u))

) + R(u) ∀u ≥ C2
4

and

ṽ(g←(u)) ≤ ṽ

(
u

1 − C5

)
≤ C4

√
log∗

(
u

1 − C5

)
log∗

3

(
u

1 − C5

)

≤ C6

√
log∗ u log∗

3 u ∀u ≥ C2
6

for some C6 > 0. The proof of the lower bound is similar. Thus we may set
�ε = A3 of Lemma 2 and Kε = max{C4,C6, e

1/2}.
Next we prove R(u) → 0 in probability as u → ∞. It suffices to show R(k) → 0

in probability as k → ∞, k ∈ N, since using the identities (30) we get for
k ≤ u < k + 1

R(k) ≤ R(u) ≤




R(k) + log(1 + 1/k), when G = �,

R(k) + (
1 − (1 + 1/k)−1/α

)
�←

α

(
Fk

E(ME
k )

)
, when G = �α,

R(k) + (
1 − (1 + 1/k)1/α

)
�←

α

(
Fk

E(ME
k )

)
, when G = �α.

Note that �←
α (F k

E(ME
k )) and �←

α (F k
E(ME

k )) are both stochastically bounded and
|1 − (1 + 1/k)±1/α| ∼ 1/(αk).
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Define Vk := (MU
k )k . Then Vk is uniformly distributed on (0,1) and since

Mk = F←(MU
k ) a.s.

R(k) = Mk − bk

ak

− G←(
Fk

E(ME
k )

)

= F←(V
1/k
k ) − bk

ak

− G←(Vk) a.s.

By inversion of Fk(akt + bk) → G(t) as k → ∞ we get [Resnick (1987)
Proposition 0.1] (F←(t1/k) − bk)/ak → G←(t) as k → ∞, and since F is
increasing and G is continuous, the convergence is locally uniform in (0,1). Given
δ > 0 choose k0 such that

sup
δ/2≤t≤1−δ/2

∣∣(F←(t1/k) − bk

)
/ak − G←(t)

∣∣ ≤ δ ∀ k ≥ k0

whence

P
(|R(k)| > δ

) ≤ P
(|R(k)| > δ;Vk ∈ [δ/2,1 − δ/2]) + P

(
Vk /∈ [δ/2,1 − δ/2])

≤ 0 + δ ∀ k ≥ k0.

This completes the proof of Theorem 2. �

PROOF OF THEOREM 3. Consider the construction of Theorem 2. Since

|R(u) − R(k)| ≤ 1/k for k ≤ u < k + 1, k ∈ N,

it suffices to show R(k)r(k) → 0 a.s. as k → ∞, k ∈ N, where we set r(k) ≡ 1
for the first part of the theorem. If we have shown this, by Egorov’s theorem, there
exists a �ε ⊆ A3 such that P (�ε) ≥ 1−ε and R(k)r(k) → 0 uniformly in ω ∈ �ε,
and we may take rε(u) = supω∈�(ε) |R(u)|. In the case of canonical constants we
have

R(k) = (Mk − bk)/ak − �←(
Fk(Mk)

)
=

∫ Mk

bk

dt

a(bk)
+ log

(− log
(
1 − F(Mk)

)) + logk.

From F(bk) = 1/k and (9) we get − logk = log c − ∫ bk
z0

dt/a(t). Now F(Mk) =
exp(log c − ∫ Mk

z0
dt/a(t)) and − log(− log(1 − e−t )) = t +O(e−t ) as t → ∞, thus

R(k) =
∫ Mk

bk

(
1

a(bk)
− 1

a(t)

)
dt + O

(
F(Mk)

)
.(31)

Theorem 3.5.2 of Embrechts, Klüppelberg and Mikosch (1997) implies F(Mk) ≤
log k/k a.s. for all sufficiently large k, hence substituting u = (t − bk)/(Mk − bk)
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and writing xk := (Mk − bk)/a(bk) we get

R(k) = xk

∫ 1

0

(
1 − a(bk)

a(bk + xka(bk)u)

)
du + O(logk/k).

Note that under condition (12) we have xk = O(log log k) by Theorem 2 of de
Haan and Hordijk (1972) (the restriction xF = ∞ is removable) and following the
proof of Theorem 3 of de Haan and Hordijk (1972) from their equation (25) to
the end on page 1195 with φ(n) = log log n the first two parts of Theorem 3 are
proven. The last part follows, since

Mk − bk

ak

= Mk − bcan
k

acan
k

+
(

acan
k

ak

− 1
)

Mk − bcan
k

acan
k

+ bcan
k − bk

ak

and (Mk − bcan
k )/acan

k = O(log logk). �

PROOF OF THEOREM 4. Define X#
k := log(max{Xk,1}), M#

k := max1≤i≤k X#
i

and F #(x) := F(ex). Then P (X#
k ≤ x) = F #(x) for x > 0 and F # ∈ D(�), since

lim
k→∞P

(
α

(
M#

k − log V (k)
) ≤ x

) = lim
k→∞P

(
Mk/V (k) ≤ ex/α

)
= �α

(
ex/α

) = �(x) ∀x ∈ R.

We will apply Theorem 3 to {X#
k, k ∈ N}. Under (16) F has representation (15)

with

F ′(x) = F(x)
α(x)

x
and F ′′(x) = F(x)

x2

(
α′(x)x − α(x) − α2(x)

)
where α(x) = α + ε(x). From these identities it can be seen easily that
d2/dx2F #(x) < 0 for large x. Differentiating a(x) := F #(x)/F #′

(x) = 1/α(ex)

we see

a′(log x) = −α′(x)x

α2(x)
∼ −ε′(x)x

α2
.

Recall that F(x) is regularly varying, hence log log(1/F #(logx)) ∼ log log(1/

F (x)) ∼ log logx as x → ∞. Thus (16) implies (10) [resp. (19) implies (12)]
of Theorem 3 for F #. The canonical constants for F # are bcan

k = logV (k) and
acan
k = 1/α(V (k)). Again since V (k) is a regularly varying sequence we have

log log V (k) ∼ log logk as k → ∞ and under (18) we get (13) for ak = 1/α,
bk = bcan

k . An Application of Theorem 3 yields an extremal-� process Y�(u) such
that for given ε > 0 there is a set �ε with P (�ε) ≥ 1 − ε, a constant Kε ≥ 1 and a
function rε(u), u ≥ 1 such that

α log
M[u]

V ([u]) = α
(
M#[u] − logV ([u])) ≤ Y�

(
u + v(u)

) − logu + rε(u),(32)

α log
M[u]

V ([u]) = α
(
M#[u] − logV ([u])) ≥ Y�

(
u − v(u)

) − logu − rε(u)(33)
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for all u ≥ K2
ε and all ω ∈ �ε , where limu→∞ rε(u)r(u) = 0. (Without loss of

generality we may assume that M[u] > 1 ∀ω ∈ �ε and all u ≥ Kε. If not, increase
Kε and apply Egorov’s theorem to get uniformity in ω on a slightly smaller
set �′

ε .) Apply the function ex/α = (�←
α ◦ �)(x) = 1 + O(x) for x → 0 to the

inequalities (32) and (33). Recall that �←
α ◦ � ◦ Y�(u) is an extremal-�α process

denoted by Y�α(u). Therefore

M[u]
V ([u]) ≤ u−1/αY�α

(
u + v(u)

)(
1 + O(rε(u))

)
,

M[u]
V ([u]) ≥ u−1/αY�α

(
u − v(u)

)(
1 + O(rε(u))

)
.

To complete the proof of the theorem we need the following lemmas on the rate of
growth of Y�α(u) and Mn:

LEMMA 3. The constructed process Y�α(u) satisfies, for all β > 1/α,

lim
u→∞

u−1/αY�α(u)

(logu)β
= 0 and lim

u→∞(log logu)βu−1/αY�α(u) = ∞ a.s.

This is not true for β = 1/α.

PROOF. For the first claim it suffices to show that P (k−1/αY�α(k) >

η(log k)β i.o.) = 0 for all η > 0. Now

{Y�α(k), k ∈ N} d=
{

max
1≤j≤k

Yj , k ∈ N

}
in R∞,

where Yj are i.i.d. �α-distributed random variables Dwass (1964). Thus

P
(
k−1/αY�α(k) > η(log k)β i.o.

) = P
(
Yk > ηk1/α(log k)β i.o.

) = 0

by the Borel–Cantelli lemma. For the second claim apply Theorem 3.5.2 of
Embrechts, Klüppelberg and Mikosch (1997). �

It is an immediate consequence of Lemma 3 that for β > 1/α,

u−1/αY�α(u ± v(u))

(log u)β
→ 0 a.s. as u → ∞

and the result follows for the case of canonical constants. For the last claim we
need:

LEMMA 4. If F ∈ D(�α) then

lim
k→∞

Mk

V (k)
(log k)−β = 0 a.s. ∀β > 1/α.
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PROOF. Recall that V (k) is regularly varying with index 1/α. Define γ :=
(αβ − 1)/2 > 0 then 1 + γ < αβ and using Potter bounds [Bingham, Goldie and
Teugels (1989)] we see

V (k(log k)1+γ )

V (k)
≤ (logk)β/c

for k ≥ k0 and some 0 < c < 1. Thus for large k,

P
(
Xk > ηV (k)(logk)β

) ≤ P
(
Xk > cηV

(
k(log k)1+γ ))

= F(cηV (k(log k)1+γ ))

F (V (k(logk)1+γ ))
F

(
V

(
k(log k)1+γ

))

∼ (cη)−1/α

k(logk)1+γ
,

and the lemma follows from the Borel–Cantelli lemma. �

The proof of Theorem 5 is similar to that of Theorem 4, using the embedding
X#

k := log(max{1, (xF − Xk)
−1}).

5. Remarks and applications. We first discuss that some additional condi-
tions on the distribution function F are really needed to get almost sure conver-
gence of the error term R.

1. Let F(x) = exp(− ∫ x
e

dt
a(t)

) where a(t) = t/ log log t . We will see that

lim sup
k→∞

R(k) = ∞ a.s.

Let F(bk) = k−1 and ak = a(bk) be the canonical choices. Due to the inequality
−�←(xk) ≥ log(1 − x) + logk we get

R(k) = (Mk − bk)/ak − �←(
Fk(Mk)

)
≥ log logbk

bk

(Mk − bk) + logF(Mk) − logF(bk)

= log logbk

(
Mk

bk

− 1
)

+ log
F(Mk)

F(bk)
.

Moreover,

log
F(Mk)

F (bk)
= −

∫ Mk

bk

dt

a(t)
= (log bk)(log logbk −1)−(logMk)(log logMk −1).

By Theorem 1 of de Haan and Hordijk (1972) lim supk→∞ Mk/bk = e a.s., thus
there exists for almost every ω a k0(ω) such that

13

5
≤ Mnk

(ω)

bnk

≤ e3/2
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for some subsequence {nk, k ∈ N} of N and all k ≥ k0(ω). Since for large x the
function (log x)(log logx − 1) is increasing, we get

(log Mnk
)(log logMnk

− 1) ≤ log
(
e3/2bnk

)(
log log

(
e3/2bnk

) − 1
)

= (3/2 + logbnk
)
(
log(3/2 + logbnk

) − 1
)
.

Writing x for logbnk
yields

R(nk) ≥ (logx)(13/5 − 1) + x(logx − 1) − (3/2 + x)
(

log(3/2 + x) − 1
)

= 3/2 + log
(

1 − 3/2

3/2 + x

)3/2+x

+ 1

10
logx ∼ 1

10
logx.

limk→∞ bnk
= ∞ implies R(nk) → ∞ a.s. as k → ∞.

2. In fact for the distribution discussed in 1, no extremal-� process Y�(u) can be
constructed such that (11) holds, because (11) implies (cf. Application 1 below)
that

lim sup
n→∞

Mn − bcan
n

acan
n log logn

= 1

which is not true; compare de Haan and Hordjik [(1972), page 1193].
3. The most general F ∈ D(�) has representation

F(x) = c(x) exp
(
−

∫ x

z0

dt

a(t)

)

where c(x) → c > 0 as x → xF and a(t) is absolutely continuous and
satisfies (8). Thus weakening our assumptions on the smoothness of F we may
need a nonconstant c(x). In this case if limx→xF

a′(x)(log log(1/F(x))2 = 0 we
still have limk→∞ R(k) = 0 a.s., but we cannot control the rate easily. Imitating
the proof of Theorem 3, the analog of equation (31) reads

R(k) =
∫ Mk

bk

(
1

a(bk)
− 1

a(t)

)
dt + log

c(bk)

c(Mk)
+ O

(
F(Mk)

)
.(34)

Since bk → xF and Mk → xF as k → ∞, log(c(bk)/c(Mk)) tends to zero with
an undetermined rate.

As an example consider F(x) = c(x)e−x with a continuous function c

which satisfies limx→∞ c(x) = 1. Here, a(t) ≡ 1 and bk = (1/F)←(k) =
log k + log c(bk), so

R(k) = MF
k − bF

k + log
(− log

(
1 − F(MF

k )
)) + logk

≥ MF
k + log F(MF

k ) + logk − bF
k = log c(MF

k ) − log c(bk)

by using log(− log(1 − x)) ≥ log x.
Using bk = logk + o(1) and Theorem 2 and Lemma 4 of de Haan and

Hordijk (1972) we see lim supk→∞(Mk − bk)/ log log k = 1; that is, Mk >

bk + 1/2 log log k along a subsequence. In order to get a rate on R(k) we would
have to control the function c over intervals [bk, bk + 1/2 log logk].
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EXAMPLES. Typical examples for F ∈ D(�) are the Weibull distribu-
tions given by F(x) = exp(−cx−τ ), x > 0, for some c, τ > 0. Here a(x) =
x1−τ /(cτ ), x > 0, and if τ �= 1, we may take r(x) = logx/(log logx)3. The case
τ = 1 corresponds to an exponential distribution with mean 1/c, for which we may
take any r(x) = o(x/ logx), since a′(x) ≡ 0. If F is the standard normal distrib-
ution, then also F ∈ D(�) and Mill’s ratio [Feller (1968), page 175] shows that
again r(x) = log x/(log log x)3 is a valid choice.

A typical example for F ∈ D(�α) is F(x) = c x−α(log x)γ (x ≥ x0) for
some real γ and some c, x0 > 0. If γ = 0, then ε(x) ≡ 0 and we may take any
r(x) = o(x/ logx), if γ �= 0 then ε(x) = −γ/ log x and a possible choice for r is
r(x) = (logx)η for any 0 < η < 1. Another example is F(x) = c x−α(1 + x−γ )

for some γ > 0, for which ε(x) = γ/(1 + xγ ) and we can take r(x) = xη with
0 < η < min{1, γ /α}.

The uniform distribution on (0,1) is an element of D(�1) with δ(x) ≡ 0
and thus r(x) = o(x/ logx). A further example is F(x) = (xF − x)α

× (− log(xF − x))γ ∈ D(�α) with some α > 0, γ �= 0 and xF ∈ R. We have
δ(xF − 1/x) = γ/ log x, therefore we may take r(x) = (logx)η for any 0 < η < 1.

APPLICATIONS.

1. As a first application of our invariance principle, recall that Resnick (1974)
proved

lim sup
t→∞

Y�(t) − ∑n
j=1 log∗

j t

log∗
n+1 t

= 1, lim inf
t→∞

Y�(t) − log∗ t

log∗
3 t

= −1 a.s.

for any n ∈ N. Thus for an i.i.d. sequence {Xk, k ∈ N} of random variables with
common distribution function F which satisfies (10), we get, for any n ∈ N,

lim sup
k→∞

(Mk − bcan
k )/acan

k − ∑n
j=2 log∗

j k

log∗
n+1 k

= 1,

lim inf
k→∞

Mk − bcan
k

acan
k log∗

3 k
= −1 a.s.

by our strong approximation result and the Hewitt–Savage zero–one law. This
is a refinement of Theorem 2 of de Haan and Hordijk (1972).

2. As mentioned in the Introduction our main motivation for developing a strong
approximation result with error bounds is the study of logarithmic averages of
sample maxima. More precisely, we want to have a strong invariance principle
of the form

n∑
k=1

1

k
f

(
Mk − bk

ak

)
− m log n = σW(logn) + oa.s.

(
(log n)1/2−η

)
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where m ∈ R, σ, η > 0, W is a Wiener process and f is some smooth function.
Suppose that Theorem 3 holds with r(x) = (logx)1/2+2η, η ∈ (0,1/4). Then it
can be shown that

n∑
k=1

1

k
f

(
Mk − bk

ak

)
=

∫ n

1

1

u
f

(
Y�(u) − log u

)
du + oa.s.

(
(logn)1/2−η

)

=
∫ logn

0
f

(
Y�(ev) − v

)
dv + oa.s.

(
(logn)1/2−η

)
and an invariance principle for the integral can be obtained with standard
methods, since the process {Y�(eu) − u,u ≥ 0} is a stationary strong Markov
process; see Fahrner (2001).
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