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In this paper we establish weak convergence theorems for weighted
empirical processes of strong mixing, ρ-mixing and associated sequences.
We apply these results to obtain weak convergence of integral functionals
of empirical processes and of mean residual life processes in reliability
theory. To carry out the proofs, we develop two Rosenthal-type inequalities
for strong mixing and associated sequences.

1. Introduction. Let �Xn; n ≥ 1� be a sequence of random variables
with common distribution functionF. Then the empirical distribution function
Fn of X1; : : : ;Xn is defined by Fn�x� = n−1∑n

i=1 I�Xi ≤ x�; −∞ < x < ∞,
where I�A� is the usual indicator function of the set A. The nth empirical
process βn is defined by βn�x� = n1/2�Fn�x� −F�x��, −∞ < x <∞.

Let Q be the quantile function of F, defined by

Q�t� = F−1�t� = inf�xx F�x� ≥ t�; 0 < t ≤ 1:

Q�0� = Q�0+�:

That is, the quantile function Q as defined here is the left continuous inverse
of the right continuous distribution function F. If F is continuous, then Q
satisfies

Q�t� = F−1�t� = inf�xx F�x� = t�; F�Q�t�� = t ∈ �0;1�:(1.1)

Hence Un = F�Xn� for all n ≥ 1 are uniform �0;1� distributed. The uniform
empirical distribution function of U1; : : : ;Un is defined by

En�t� = Fn�Q�t�� =
1
n

n∑
i=1

I�Ui ≤ t�; 0 ≤ t ≤ 1;(1.2)

and the nth uniform empirical process is given by

�αn�t�; 0 ≤ t ≤ 1� = �n1/2�En�t� − t�; 0 ≤ t ≤ 1�; n = 1;2; : : : :(1.3)
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Thus, in terms of Ui = F�Xi�, i = 1; : : : ; n, we have for any continuous
distribution function F,

�βn�Q�t��; 0 ≤ t ≤ 1� = �αn�t�; 0 ≤ t ≤ 1�; n = 1;2; : : : :(1.4)

This implies that all theorems proved for αn will hold automatically for βn
as well, simply by letting y = F�x� in �1:4�. So, we will mainly be concerned
with the (weighted) uniform empirical process αn in this paper.

Let q be a positive weight function on �0;1�; that is, inf δ≤t≤1−δ q�t� >
0 for all 0 < δ < 1/2. Define the weighted uniform empirical process as
�αn�t�/q�t�; 0 < t < 1�. When �Un; n ≥ 1� is a sequence of independent r.v.’s
uniformly distributed on �0;1�, starting off with Rényi (1953), Chibisov (1964)
and O’Reilly (1974), there has been considerable interest in the asymptotic be-
havior of weighted uniform empirical processes. For an insightful view of this
subject we refer to Csörgő, Csörgő, Horváth and Mason (1986a), Shorack and
Wellner (1986) and Csörgő and Horváth (1993), as well as to the references in
these works. For the sake of easy reference, we restate a theorem of Csörgő,
Csörgő, Horváth and Mason (1986a) as follows. For a shorter and more direct
proof we refer to Csörgő and Horváth (1986), as well as to Csörgő and Horváth
[(1993), Chapter 4], where both proofs are presented in complete detail.

Theorem A. We assume that q is positive and continuous on �0;1�, and is
nondecreasing in a neighborhood of 0 and nonincreasing in a neighborhood
of 1. Then

I�q; λ� =
∫ 1

0

1
t�1− t� exp

(
− λq

2�t�
t�1− t�

)
dt <∞(1.5)

for all λ > 0 if and only if, as n→∞,

αn�·�/q�·� →D B�·�/q�·� in D�0;1�;(1.6)

where �B�t�; 0 ≤ t ≤ 1� is a Brownian bridge and D = D�0;1� is the usual D
space on �0;1� with the Skorokhod J1-topology [cf. Billingsley (1968)].

While the problem of weak convergence for weighted empirical processes of
independent sequences has been intensively studied in recent years, there are
only a few studies concerned with the counterpart for dependent sequences
[cf. Yu (1993a)]. In the latter case the limit process is changed from being a
Brownian bridge due to the appearance of covariances among observations.
Namely, under certain conditions, we have

αn�·� →D B
∗�·� in D�0;1�;(1.7)

where B∗�·� is a zero-mean Gaussian process specified by B∗�0� = B∗�1� = 1
and

EB∗�s�B∗�t� = s ∧ t− st

+
∞∑
k=2

{
Cov�I�U1 ≤ s�; I�Uk ≤ t��

+ Cov�I�Uk ≤ s�; I�U1 ≤ t��
}
:

(1.8)
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The main objective of this paper is to establish weak convergence for
weighted empirical processes of strictly stationary observations under mixing
and associated dependence assumptions and to apply the results to studying
the weak convergence of integral functionals of empirical processes and of
mean residual life processes in reliability. Our results on weak convergence
for weighted empirical processes of stationary associated sequences are par-
tially based on Yu (1993a), where they are successfully applied to obtain
weak convergence for weighted quantile processes of stationary associated
sequences as well as to establish a unified asymptotic theory for empirical
reliability and concentration processes of associated sequences. For such a
theory in the i.i.d. case we refer to Csörgő, Csörgő and Horváth (1986).

This paper is organized as follows. Section 2 presents a basic theorem and
its corollary for stationary sequences and the main results on weak conver-
gence for weighted empirical processes of stationary mixing and associated
sequences. The strong consistency and weak approximation for mean residual
life processes in reliability are given in Section 3. Two Rosenthal-type inequal-
ities for α-mixing and associated sequences are stated and proved in Section 4.
All other proofs are carried out in Section 5.

2. Main results. We first give the following basic theorem for a stationary
sequence of uniform �0;1� random variables. By stationarity we mean that the
joint distribution of Ui+1; : : : ;Ui+m does not depend on i for any fixed positive
integer m.

Theorem 2.1. Let �Un; n ≥ 1� be a stationary sequence of uniform �0;1�
random variables. Assume that for all 0 ≤ s; t ≤ 1 and n ≥ 1 we have the
following conditions:

(A1) E�αn�t�−αn�s��p≤C1��t− s�p1 +n−p2/2�t− s�r1� for some C1>0; p>2;
p1>1; 0≤ r1 ≤ 1 and p2 > 1− r1;

(A2) E�αn�t� − αn�s��2 ≤ C2�t− s�r2 for some C2 > 0 and 0 < r2 ≤ 1:

If we have

αn�·� →D B
∗�·� in D�0;1�(2.1)

with the Gaussian process B∗�·� defined by �1:8�, then

αn�·�/q�·� →D B
∗�·�/q�·� in D�0;1�;(2.2)

where q is an arbitrary weight function such that, for some C > 0 and β > 1/2,

q�t� ≥ C�t�1− t��µ�log 1/�t�1− t���β for all 0 < t < 1(2.3)

and

µ = min
(
p1

p
;
r1 + p2

p+ p2
;
r2

2

)
:(2.4)

Remark 2.1. By using a standard argument [cf. Theorem 12.2 and (22.18)
in Billingsley (1968)], one can easily verify that �αn�t�; 0 ≤ t ≤ 1� is tight
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by the condition (A1). Hence to prove �2:1�, one only needs to show that any
finite dimensional distribution of �αn�t�; 0 ≤ t ≤ 1� will converge to that of
�B∗�t�; 0 ≤ t ≤ 1� and the series in �1:8� converges absolutely.

Remark 2.2. The weight function q used in Theorem A is usually called a
Chibisov–O’Reilly weight function. If we write q�t� = �t�1− t� log log�1/�t�1−
t����1/2g�t�, then, necessarily, g�t� → ∞ as t→ 0 or t→ 1. Thus our weight
function q of �2:3� can be compared to a Chibisov–O’Reilly weight function by
taking µ in �2:4� close to 1/2 or exactly 1/2 for properly chosen p; p1; p2; r1
and r2. In fact, Theorems 2.2, 2.3 and 2.4 show this possibility of taking µ =
1/�2 + ε� for some ε > 0 in cases of mixing and associated sequences. In
particular, our sharpest rate of µ = 1/2 is obtained for ρ-mixing under a
stronger mixing decay rate. In most cases, however, µ < 1/2. We note in
passing that if for a general weight function q we have

∫ 1
0 q
−2�t�dt <∞, then

we have �1:5� as well for all λ > 0. That is, q is then necessarily a Chibisov–
O’Reilly weight function.

Remark 2.3. If µ = �r1 + p2�/�p + p2� < min�p1/p; r2/2� in �2:4�, then
from the proof of Theorem 2.1, one can relax the restriction on β from β > 1/2
to β > 1/�p+p2� = �1−µ�/�p−r1�. Moreover, in the case of µ ≥ 1/�p+1−r1�,
one can use a simple sufficient condition

∫ 1
0 q
−1/µ�t�dt <∞ to replace �2:3�.

A direct application of Theorems 2.1 is to obtain weak convergence for in-
tegral functionals of αn. For example, we consider the integral functional

1n�t� =
∫ t

0
αn�s�dQ�s�; 0 ≤ t ≤ 1;

and its approximating Gaussian counterpart

1�t� =
∫ t

0
B∗�s�dQ�s�; 0 ≤ t ≤ 1:

This function plays a central role in weak approximation theory for empirical
total time on test, mean residual life, empirical Lorenz and Goldie concentra-
tion processes which are of interest in reliability and economic concentration
theories. The reader may refer to Csörgő, Csörgő, Horváth and Mason (1986b)
and Csörgő, Csörgő, and Horváth (1986).

Corollary 2.1. Under the conditions of Theorem 2.1, if
∫ 1

0
�t�1− t��µ�log 1/�t�1− t���β dQ�t� <∞;(2.5)

then

1n�·� →D 1�·� in D�0;1�:

Remark 2.4. Assume that F is the distribution function of a random vari-
able X. Then condition �2:5� is slightly stronger than the existence of the
�1/µ�th moment of X. Indeed, on extending the discussion in the Appendix
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of Hoeffding (1973), we see that �2:5� implies E�X�1/µ <∞. This is not neces-
sarily true conversely, but E�X�1/µ�log�1+�X����1+β�/µ+δ <∞, with any δ > 0,
implies �2:5�.

Theorem 2.1 enables us to establish weak convergence for weighted empiri-
cal processes of stationary mixing and associated sequences. We first introduce
the following dependence notions.

Let ��;F ;P� be a probability space and F1 and F2 be two σ-algebras con-
tained in F . Define the following measures of dependence between F1 and F2:

ρ�F1;F2� = sup
X∈L2�F1�
Y∈L2�F2�

�Cov�X;Y��
�Var X · Var Y�1/2

and

α�F1;F2� = sup
A∈F1
B∈F2

�P�A ∩B� −P�A�P�B��:

Let �Xn; n≥1� be a sequence of real-valued random variables on ��;F ;P�,
and let F m

n =σ�Xi; n≤ i≤m� be σ-algebras generated by the indicated ran-
dom variables and put

ρ�n� = sup
k≥1

ρ�F k
1 ;F

∞
n+k�; and α�n� = sup

k≥1
α�F k

1 ;F
∞
n+k�:

The sequence �Xn; n≥1� is said to be ρ-mixing or α-mixing, according as
ρ�n�→0 or α�n�→0 as n→∞, respectively. It is well known that α�n� ≤ ρ�n�.

A finite collection of random variables X1; : : : ;Xn is said to be associated
if for any two coordinatewise nondecreasing functions f;gx Rn→ R,

Cov�f�X1; : : : ;Xn�; g�X1; : : : ;Xn�� ≥ 0

whenever this covariance is defined. An infinite family of random variables
is associated if every finite subfamily is associated. This definition was intro-
duced by Esary, Proschan and Walkup (1967) and has found several applica-
tions in reliability theory [cf. Barlow and Proschan (1981) and Yu (1993a)].

Theorem 2.2. Let �Un; n ≥ 1� be a stationary α-mixing sequence of uni-
form �0;1� random variables. If

α�n� = O�n−θ−ε� for some θ ≥ 1+
√

2 and ε > 0;(2.6)

then we have

αn�·�/q�·� →D B
∗�·�/q�·� in D�0;1�

for any weight function q satisfying q�t� ≥ C�t�1− t���1−1/θ�/2 for some C > 0.
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Theorem 2.3. Let �Un; n ≥ 1� be a stationary ρ-mixing sequence of uni-
form �0;1� random variables. Suppose that the series in (1.8) converges abso-
lutely. If

∞∑
n=1

ρ�2n� <∞;(2.7)

then for any ε > 0 we have

αn�·�/q�·� →D B
∗�·�/q�·� in D�0;1�

for any weight function q satisfying q�t� ≥ C�t�1− t��1/�2+ε� for some C > 0.
If, in addition,

∞∑
n=1

ρ2/p�2n� <∞ for some p > 2;(2.8)

then we have

αn�·�/q�·� →D B
∗�·�/q�·� in D�0;1�

for any weight function q satisfying q�t� ≥ C�t�1− t��1/2�log 1/�t�1− t���β for
some C > 0 and β > 1/2.

Theorem 2.4. Let �Un; n ≥ 1� be a stationary associated sequence of uni-
form �0;1� random variables. If

Cov�U1;Un� = O�n−ν−ε� for some ν ≥
(
3+
√

33
)
/2 and ε > 0;(2.9)

then we have

αn�·�/q�·� →D B
∗�·�/q�·� in D�0;1�

for any weight function q satisfying q�t� ≥ C�t�1− t���1−3/ν�/2 for some C > 0.

Remark 2.5. If we choose ν = �3 +
√

33�/2 in �2:9�, then the covariance
restriction Cov�U1;Un� = O�n−4:373−ε� is weaker than that in Theorem 2.2 of
Yu (1993b), where Cov�U1;Un� = O�n−7:5−ε�.

Based on Theorems 2.2, 2.3 and 2.4, we have the following corollaries that
are Corollary 2.1-type analogs for mixing and associated sequences.

Corollary 2.2. Under the conditions of Theorem 2.2, if
∫ ∞
−∞
�x�2/�1−1/θ� dF�x� <∞;

then

1n�·� →D 1�·� in D�0;1�:
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Corollary 2.3. Let �Un; n ≥ 1� be a stationary ρ-mixing sequence of
uniform �0;1� random variables. If �2:7� holds and for some ε > 0 we have

∫ ∞
−∞
�x�2+ε dF�x� <∞;

then

1n�·� →D 1�·� in D�0;1�:
If, in addition, �2:8� holds and

∫ 1

0
�t�1− t��1/2�log 1/�t�1− t���β dQ�t� <∞;

then we have

1n�·� →D 1�·� in D�0;1�:

Corollary 2.4. Let �Un; n ≥ 1� be a stationary associated sequence of
uniform �0;1� random variables. Assume that �2:9� holds and

∫ ∞
−∞
�x�2/�1−3/ν� dF�x� <∞:

Then

1n�·� →D 1�·� in D�0;1�:

3. An application to mean residual life processes. In this section we
apply Theorems 2.2, 2.3 and 2.4 and Corollaries 2.2, 2.3 and 2.4 to obtain
the asymptotic normality of mean residual life processes of reliability theory.
In the following text we assume that X is a nonnegative random variable.
Its distribution function F (usually called the lifetime distribution function)
is assumed to be continuous and EX < ∞. In reliability theory the mean
residual the lifetime function at age x ≥ 0 is defined by

MF�x� = E�X− x�X > x� = 1
1−F�x�

∫ ∞
x
�1−F�t��dt:

The empirical counterpart of MF, denoted by Mn�s�, is defined by

Mn�x� =MFn
�x� = 1

1−Fn�x�
∫ ∞
x
�1−Fn�t��dt:

The strong consistency and normal approximation for the mean residual
life process Mn −MF based on i.i.d. random variables have been studied by
many authors. We refer to Yang (1978), Burke, Csörgő and Horváth (1981) and
Csörgő, Csörgő and Horváth (1986). However, the i.i.d. assumption may not be
realistic in reliability. As Barlow and Proschan (1981) pointed out, dependence
in reliability is frequently modeled in terms of associated random variables.
Thus it is natural to ask whether corresponding results hold for associated
sequences. Fortunately this turns out to be possible by using tend approaches
for weighted empirical processes of associated sequences. Here we should point
out that one may mistakenly think that the weak convergence of (normalized)



WEIGHTED EMPIRICAL PROCESSES 2105

mean residual life process [see �3:2�] can be obtained by using the continuous
mapping theorem in Billingsley (1968). In fact the mean residual life function
MF�x� in the second term of �3:2� will often tend to infinity as x approaches
inf�xx F�x� = 1�. Consequently, the continuous mapping theorem cannot be
applied.

Setting TF = inf�xx F�x� = 1�, we have the following strong consistency
result for Mn −MF.

Theorem 3.1. Let �Xn; n ≥ 1� be a sequence of associated random vari-
ables having the same distribution F. If T < TF and

∞∑
n=1

1
n2

Cov
(
Xn;

n∑
i=1

Xi

)
<∞;(3.1)

then we have, as n→∞,

sup
0≤x≤T

�Mn�x� −MF�x�� → 0 a.s.

Next, we present the weak approximation results for the normalized mean
residual life process zn�·�, which is defined by

zn�x� = n1/2�Mn�x� −MF�x��

= n1/2�1−Fn�x��−1
(
−
∫ ∞
x
�Fn�t� −F�t��dt+MF�x��Fn�x� −F�x��

)

= �1−Fn�x��−1
(
−
∫ 1

F�x�
αn�t�dQ�t� +MF�x�αn�F�x��

)
(3.2)

for 0 ≤ x < max1≤i≤n Xi. Hence its approximating Gaussian process will be

Z�x� = �1−F�x��−1
(
−
∫ 1

F�x�
B∗�t�dQ�t� +MF�x�B∗�F�x��

)
; 0 ≤ x < TF:

Theorem 3.2. Let �Xn; n ≥ 1� be a stationary associated sequence of ran-
dom variables. Assume that

Cov�F�X1�;F�Xn�� = O�n−ν−ε� for some ν ≥
(
3+
√

33
)
/2 and ε > 0:

(i) If T < TF and EX2/�1−3/ν� <∞, then

zn�·� →D Z�·� in D�0;T�:
(ii) If EX2/�1−3/ν� <∞, then

�1−Fn�Q�·��� · zn�Q�·�� →D �1−F�Q�·��� ·Z�Q�·�� in D�0;1�:

The results of Theorem 3.2 hold also for α-mixing sequences by applying
Theorem 2.2 and Corollary 2.2, and for ρ-mixing sequences by applying The-
orem 2.3 and Corollary 2.3. In the following we present these results without
proof.
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Theorem 3.3. Let �Xn; n ≥ 1� be a stationary α-mixing sequence of ran-
dom variables. Assume that

α�n� = O�n−θ−ε� for some θ ≥ 1+
√

2 and ε > 0:

(i) If T < TF and EX2/�1−1/θ� <∞, then

zn�·� →D Z�·� in D�0;T�:
(ii) If EX2/�1−1/θ� <∞, then

�1−Fn�Q�·��� · zn�Q�·�� →D �1−F�Q�·��� ·Z�Q�·�� in D�0;1�:

Theorem 3.4. Let �Xn; n ≥ 1� be a stationary ρ-mixing sequence of ran-
dom variables. Assume that �2:7� holds and EX2+ε < ∞ for some ε > 0, or
�2:8� holds and EX2�log�1+X��δ <∞ for some δ > 3.

(i) For T < TF we have

zn�·� →D Z�·� in D�0;T�:
(ii) We have

�1−Fn�Q�·��� · zn�Q�·�� →D �1−F�Q�·��� ·Z�Q�·�� in D�0;1�:

4. Moment inequalities. Moment inequalities of partial sums play a
very important role in various proofs of limit theorems, for example, in the
proofs of our theorems given in Sections 2 and 3. We have the Marcinkiewicz–
Zygmund inequality and the Rosenthal inequality for independent random
variables and the Burkholder inequality for martingales. Some nice moment
inequalities are also available for dependent random variables. One can re-
fer to Yokoyama (1980) for α-mixing sequences, Shao (1995) for ρ-mixing se-
quences and Birkel (1988a) for associated sequences. However, the known
moment inequalities for α-mixing and associated sequences do not meet our
need for proofs related to empirical processes. In this section we develop two
Rosenthal-type inequalities for α-mixing and associated sequences, which are
of their own interest.

Theorem 4.1. Let 2 < p < r ≤ ∞, 2 < v ≤ r and �Xn; n ≥ 1� be
an α-mixing sequence of random variables with EXn = 0 and �Xn�r x=
�E�Xn�r�1/r <∞. Assume that

α�n� ≤ Cn−θ for some C > 0 and θ > 0:(4.1)

Then, for any ε > 0, there exists K =K�ε; r;p; v; θ;C� <∞ such that

E�Sn�p ≤K
(
�nCn�p/2 max

i≤n
�Xi�pv + n�p−�r−p�θ/r�∨�1+ε�max

i≤n
�Xi�pr

)
;(4.2)

where Cn = �
∑n
i=0�i+ 1�2/�v−2�α�i���v−2�/v. In particular, for any ε > 0,

E�Sn�p ≤K
(
np/2 max

i≤n
�Xi�pv + n1+ε max

i≤n
�Xi�pr

)
(4.3)
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if θ > v/�v− 2� and θ ≥ �p− 1�r/�r− p�, and

E�Sn�p ≤Knp/2 max
i≤n
�Xi�pr(4.4)

if θ ≥ pr/�2�r− p��.

Theorem 4.2. Let 2 < p < r ≤ ∞, let f be an absolutely continuous func-
tion satisfying supx∈R �f′�x�� ≤ B and let �Xn; n ≥ 1� be a sequence of asso-
ciated random variables with Ef�Xn� = 0 and �f�Xn��r x= �E�f�Xn��r�1/r <
∞: Let

u�n� = sup
i≥1

∑

jx �j−i�≥n
Cov�Xj;Xi� <∞; n ≥ 0:

Assume that

u�n� ≤ Cn−θ for some C > 0 and θ > 0:(4.5)

Then, for any ε > 0, there exists K =K�ε; r;p; θ� <∞ such that

E

∣∣∣∣
n∑
i=1

f�Xi�
∣∣∣∣
p

≤K
(
n1+ε max

i≤n
E�f�Xi��p

+
(
nmax

i≤n

n∑
j=1

�Cov�f�Xi�; f�Xj���
)p/2

+ n�r�p−1�−p+θ�p−r��/�r−2� ∨ �1+ε�

×max
i≤n
�f�Xi��

r�p−2�/�r−2�
r �B2C��r−p�/�r−2�

)
:

(4.6)

In particular, we have

E

∣∣∣∣
n∑
i=1

f�Xi�
∣∣∣∣
p

≤K
(
n1+ε max

i≤n
E�f�Xi��p

+
(
nmax

i≤n

n∑
j=1

�Cov�f�Xi�; f�Xj���
)p/2

+ n1+ε max
i≤n
�f�Xi��

r�p−2�/�r−2�
r �B2C��r−p�/�r−2�

)
(4.7)

if θ ≥ �r− 1��p− 2�/�r− p� and

E

∣∣∣∣
n∑
i=1

f�Xi�
∣∣∣∣
p

≤K
(
n1+ε max

i≤n
E�f�Xi��p

+
(
nmax

i≤n

n∑
j=1

�Cov�f�Xi�; f�Xj���
)p/2

+ np/2 max
i≤n
�f�Xi��

r�p−2�/�r−2�
r �B2C��r−p�/�r−2�

)
(4.8)

if θ ≥ r�p− 2�/�2�r− p��.
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Remark 4.1. Equation �4:4� coincides with the result of Yokoyama (1980),
but with a less restrictive mixing rate.

Remark 4.2. Equation �4:8� is a generalization of Theorems 1 and 2 of
Birkel (1988a). Note that by Example 1 of Birkel (1988a), the condition θ ≥
r�p− 2�/�2�r− p�� cannot be improved.

Let us first give the so-called Cr inequality as follows:

∀ x; y ≥ 0; �x+ y�r ≤ Cr�xr + yr�; r > 0;

where Cr = max�1;2r−1�. In the following text, we will use this inequality all
the time without mentioning it. To prove Theorem 4.1, we need the following
lemma.

Lemma 4.1. Let �ξi; 1 ≤ i ≤ n� be a sequence of random variables and let
Fi = σ�ξj; j ≤ i�. Then, for any p ≥ 2, there exists a constant D = D�p� such
that

E

∣∣∣∣
n∑
i=1

ξi

∣∣∣∣
p

≤ D
(( n∑

i=1

Eξ2
i

)p/2
+

n∑
i=1

E�ξi�p + np−1
n∑
i=1

E�E�ξi�Fi−1��p

+ np/2−1
n∑
i=1

E�E�ξ2
i �Fi−1� −Eξ2

i �p/2
)
:

(4.9)

Proof. Let ηi = ξi −E�ξi�Fi−1� for 1 ≤ i ≤ n. Then �ηi;Fi; 1 ≤ i ≤ n� is
a martingale difference sequence. By the Burkholder (1973) inequality, there
is a D = D�p� <∞ such that

E

∣∣∣∣
n∑
i=1

ηi

∣∣∣∣
p

≤ D
(
E

( n∑
i=1

E�η2
i �Fi−1�

)p/2
+

n∑
i=1

E�ηi�p
)

≤ 2pD
(( n∑

i=1

Eξ2
i

)p/2
+

n∑
i=1

E�ξi�p

+E
( n∑
i=1

�E�ξ2
i �Fi−1� −Eξ2

i �
)p/2)

≤ 22pD

(( n∑
i=1

Eξ2
i

)p/2
+

n∑
i=1

E�ξi�p

+ np/2−1
n∑
i=1

E�E�ξ2
i �Fi−1� −Eξ2

i �p/2
)
:

(4.10)

On the other hand, it is easy to see that

E

∣∣∣∣
n∑
i=1

ξi

∣∣∣∣
p

≤ 2p
(
E

∣∣∣∣
n∑
i=1

ηi

∣∣∣∣
p

+ np−1
n∑
i=1

E�E�ξi�Fi−1��p
)
:

This proves �4:9� by the inequalities above. 2
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Proof of Theorem 4.1. For the sake of convenience of statement, we as-
sume that �X;Xn; n ≥ 1� is a strictly stationary sequence of strong mixing
random variables. By a recent result of Rio (1993) [cf. also Peligrad (1994)],
there is D1 = D1�v� such that

ES2
n ≤ D1 nCn�X�2v:(4.11)

We shall prove �4:2� by induction on n. Suppose that, for each 1 ≤ k < n,

E�Sk�p ≤K
(
�kCk�p/2�X�pv + k�p−�r−p�θ/r� ∨ �1+ε��X�pr

)
:(4.12)

We now prove that �4:12� is still true for k = n. Let a, 0 < a < 1/2, be a
constant that will be specified later and let m = �an� + 1. Define

ξi =
n∧�2i−1�m∑

j=1+2�i−1�m
Xj and ηi =

n∧2im∑

j=1+�2i−1�m
Xj for 1 ≤ i ≤ kn x= 1+�n/�2m��:

Clearly, we have

E�Sn�p ≤ 2p−1
(
E

∣∣∣∣
kn∑
i=1

ξi

∣∣∣∣
p

+E
∣∣∣∣
kn∑
i=1

ηi

∣∣∣∣
p)
x= 2p−1�I1 + I2�:

Let Fi = σ�ξj; j ≤ i�. It follows from Lemma 4.1 that there is D2 such that
D2 ≥ �2D1�p/2 and

I1 ≤ D2

( kn∑
i=1

E�ξi�p +
( kn∑
i=1

Eξ2
i

)p/2
+ kp−1

n

kn∑
i=1

E�E�ξi�Fi−1��p

+ kp/2−1
n

kn∑
i=1

E�E�ξ2
i �Fi−1� −Eξ2

i �p/2
)

x= D2

( kn∑
i=1

E�ξi�p + I1;1 + I1;2 + I1;3

)
:

(4.13)

In terms of �4:11�, we have

I1;1 ≤ �D1 knmCm �X�2v�p/2

≤ �2D1 nCn�p/2�X�pv ≤ D2�nCn�p/2�X�pv :
(4.14)

To estimate I1;3, we write

Yi = E�ξ2
i �Fi−1� −Eξ2

i :

Then, by the Davydov (1970) inequality

E�Yi�p/2 = E�Yi�p/2−1 sgn�Yi�Yi = E
(
�Yi�p/2−1 sgn�Yi��ξ2

i −Eξ2
i �
)

=
∑

2�i−1�m<j; l≤n∧�2i−1�m
E�Yi�p/2−1 sgn�Yi��XjXl −EXjXl�

≤ 12
∑

2�i−1�m<j; l≤n∧�2i−1�m
α1−�p−2�/p−2/r�m��E�Yi�p/2��p−2�/p�XjXl�r/2

≤ 12m2α2/p−2/r�m��E�Yi�p/2��p−2�/p�X�2r
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and hence

E�Yi�p/2 ≤ 12p/2mpα1−p/r�m��X�pr ;(4.15)

which, together with �4:1�, yields

I1;3 ≤ kp/2n 12pmpα1−p/r�m��X�pr
≤ 24pnpα1−p/r�m��X�pr
≤ C24p npm�p−r�θ/r �X�pr
≤ C24p a�p−r�θ/r np+�p−r�θ/r �X�pr
≤ C24p a�p−r�θ/r n�p+�p−r�θ/r� ∨ �1+ε� �X�pr :

(4.16)

Similar to �4:15�, we have

E�E�ξi�Fi−1��p ≤ 12pmpα1−p/r�m��X�pr :(4.17)

Therefore

I1;2 ≤ kpn 12pmpα1−p/r�m��X�pr
≤ C24p a�p−r�θ/r n�p+�p−r�θ/r� ∨ �1+ε� �X�pr :

(4.18)

Putting the inequalities above together yields

I1 ≤ D2

( kn∑
i=1

E�ξi�p +D2�nCn�p/2�X�pv

+ 2C24p a�p−r�θ/r n�p+�p−r�θ/r� ∨ �1+ε� �X�pr
)
:

Similarly,

I2 ≤ D2

( kn∑
i=1

E�ξi�p +D2�nCn�p/2�X�pv

+ 2C24p a�p−r�θ/r n�p+�p−r�θ/r� ∨ �1+ε� �X�pr
)
:

Consequently, we have

E�Sn�p ≤ 2p−1D2

( kn∑
i=1

E�ξi�p +
kn∑
i=1

E�ηi�p + 2D2�nCn�p/2�X�pv

+ 4C24p a�p−r�θ/r n�p+�p−r�θ/r� ∨ �1+ε� �X�pr
)
:

(4.19)

Now we let

a = �2p+4D2�−1/ε−p/�p−2� and K = 2p+1D2�D2 + 2C24p a�p−r�θ/r�:
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By �4:19� and induction hypothesis �4:12�, we get

E�Sn�p

≤ 2pD2
(
knK

(
�mCm�p/2�X�pv +m�p+�p−r�θ/r�∨�1+ε��X�pr

)

+D2�nCn�p/2�X�pv + 2C24p a�p−r�θ/r n�p+�p−r�θ/r�∨�1+ε� �X�pr
)

≤ 2pD2 �n/m�K
(
�mCn�p/2�X�pv +m�p+�p−r�θ/r�∨�1+ε��X�pr

)

+ 2pD2
(
D2 + 2C24p a�p−r�θ/r

)

×
(
�nCn�p/2�X�pv + n�p+�p−r�θ/r�∨�1+ε� �X�pr

)

≤ 2pD2K
(
a�p−2�/2�nCn�p/2�X�pv + aεn�p+�p−r�θ/r�∨�1+ε��X�pr

)

+ �1/2�K
(
�nCn�p/2�X�pv + n�p+�p−r�θ/r�∨�1+ε� �X�pr

)

≤ �1/2�K
(
�nCn�p/2�X�pv + n�p+�p−r�θ/r�∨�1+ε��X�pr

)

+ �1/2�K
(
�nCn�p/2�X�pv + n�p+�p−r�θ/r�∨�1+ε��X�pr

)

=K
(
�nCn�p/2�X�pv + n�p+�p−r�θ/r�∨�1+ε��X�pr

)
:

This proves that (4.12) remains valid for k = n, as desired. 2

The proof of Theorem 4.2 is based on the following lemmas.

Lemma 4.2. Let �Xi; 1 ≤ i ≤ n� be associated random variables and let
M and J be two subsets of �1;2; : : : ; n�. If gx R#M → R and hx R#J → R are
partially differentiable with bounded partial derivatives, then

�Cov�g�Xi; i ∈M�; h�Xj; j ∈ J���
≤
∑
i∈M

∑
j∈J
�∂g/∂ti�∞�∂h/∂ti�∞ Cov�Xi;Xj�:(4.20)

For the proof, see Lemma 3.1 of Birkel (1988b).

Lemma 4.3. Let 2 ≤ p < r ≤ ∞, let f be an absolutely continuous function
satisfying supx∈R �f′�x�� ≤ B and let �Xi; 1 ≤ i ≤ n� be associated random
variables with �f�Xi��r = �E�f�Xi��r�1/r < ∞: Then, for any two subsets M
and J of �1;2; : : : ; n�,

∣∣∣∣Cov
(∣∣∣∣
∑
i∈M

f�Xi�
∣∣∣∣;
∣∣∣∣
∑
j∈J

f�Xj�
∣∣∣∣
p−1)∣∣∣∣

≤ p
(
E

∣∣∣∣
∑
j∈J

f�Xj�
∣∣∣∣
p)�r−1��p−2�/rp( ∑

i∈M
�f�Xi��r

)r�p−2�/rp

×
(
B2 ∑

i∈M

∑
j∈J

Cov�Xi;Xj�
)�r−p�/rp

;

(4.21)

where rp = r�p− 1� − p.



2112 Q-M. SHAO AND H. YU

Proof. Let A > 0 be fixed. Put g�ti; i ∈M� = �
∑
i∈M f�ti�� and

h�tj; j ∈ J� =
∣∣∣∣
∑
j∈J

f�tj�
∣∣∣∣
p−1

I��∑j∈J f�tj��≤A� +A
p−1I��∑j∈J f�tj��>A�:

It is easy to see that
∣∣∣∣Cov

(∣∣∣∣
∑
i∈M

f�Xi�
∣∣∣∣;
∣∣∣∣
∑
j∈J

f�Xj�
∣∣∣∣
p−1)∣∣∣∣

≤ �Cov�g;h�� +
∣∣∣∣Cov

(
g;

∣∣∣∣
∑
j∈J

f�Xj�
∣∣∣∣
p−1

− h
)∣∣∣∣;

(4.22)

�∂g�ti�/∂ti�∞ ≤ B and �∂h�tj�/∂tj�∞ ≤ �p− 1�Ap−2B:

Therefore, by Lemma 4.2,

�Cov�g;h�� ≤ �p− 1�Ap−2B2 ∑
i∈M

∑
j∈J

Cov�Xi;Xj�:(4.23)

As for the second term on the right-hand side of �4:22�, by Hölder’s inequality,
∣∣∣∣Cov

(
g;

∣∣∣∣
∑
j∈J

f�Xj�
∣∣∣∣
p−1

− h
)∣∣∣∣

=
∣∣∣∣Cov

(
g;

(∣∣∣∣
∑
j∈J

f�Xj�
∣∣∣∣
p−1

−Ap−1
)
I��∑j∈J f�Xj��>A�

)∣∣∣∣

≤ max
{
E

(
g

∣∣∣∣
∑
j∈J

f�Xj�
∣∣∣∣
p−1

I��∑j∈J f�Xj��>A�

)
;

EgE

∣∣∣∣
∑
j∈J

f�Xj�
∣∣∣∣
p−1

I��∑j∈J f�Xj��>A�

}

≤ max
{ ∑
i∈M

E

(
�f�Xi��

∣∣∣∣
∑
j∈J

f�Xj�
∣∣∣∣
p−1

I��∑j∈J f�Xj��>A�

)
;

∑
i∈M

E�f�Xi��E
∣∣∣∣
∑
j∈J

f�Xj�
∣∣∣∣
p−1

I��∑j∈J f�Xj��>A�

}

≤
∑
i∈M
�f�Xi��r

(
E

∣∣∣∣
∑
j∈J

f�Xj�
∣∣∣∣
�p−1�r/�r−1�

I��∑j∈J f�Xj��>A�

)�r−1�/r

≤ A�p−r�/r
∑
i∈M
�f�Xi��r

(
E

∣∣∣∣
∑
j∈J

f�Xj�
∣∣∣∣
p)�r−1�/r

:

(4.24)

Then, by choosing

A =
( ∑
i∈M
�f�Xi��r

(
E

∣∣∣∣
∑
j∈J

f�Xj�
∣∣∣∣
p)�r−1�/r/

B2 ∑
i∈M

∑
j∈J

Cov�Xi;Xj�
)r/rp

;

�4:22�, �4:23� and �4:24� imply �4:21�. 2
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Lemma 4.4. Let 0 < α < 1, 0 < β < 1 and x; a; b; c be nonnegative num-
bers. If

x ≤ a+ bx1−α + c x1−β;(4.25)

then

x ≤ 2a+ �4b�1/α + �4c�1/β:(4.26)

Proof. It is well known that

sθt1−θ ≤ s+ t for any s ≥ 0; t ≥ 0 and 0 ≤ θ ≤ 1:(4.27)

Thus, by �4:25�
x ≤ a+ b1/α 4�1−α�/α + x/4+ c1/β 4�1−β�/β + x/4;

which yields �4:26� immediately. 2

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. Let

Tn =
n∑
i=1

f�Xi� and rp = r�p− 1� − p:

For the sake of convenience of statement, we assume that �X;Xn; n ≥ 1� is
a strictly stationary sequence of associated random variables. We shall prove
�4:6� by induction on n. Suppose that, for each 1 ≤ k < n,

E�Tk�p ≤K
(
k1+εE�f�X��p +

(
nmax

i≤k

k∑
j=1

�Cov�f�Xi�; f�Xj���
)p/2

+ k�rp+θ�p−r��/�r−2� ∨ �1+ε��f�X��r�p−2�/�r−2�
r �B2C��r−p�/�r−2�

)
:

(4.28)

We now prove that �4:28� is still true for k = n. Let a, 0 < a < 1/2, be a
constant that will be specified later and let m = �an� + 1. Define

ξl =
n∧�2l−1�m∑

j=1+2�l−1�m
f�Xj�;

ηl =
n∧2lm∑

j=1+�2l−1�m
f�Xj� for 1 ≤ l ≤ kn x= 1+ �n/�2m��;

T1; n =
kn∑
l=1

ξl and T2; n =
kn∑
l=1

ηl:

Clearly, we have

E�Tn�p ≤ 2p−1(E�T1; n�p +E�T2; n�p
)
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and

E�T1;n�p ≤
kn∑
l=1

E�ξl��T1; n�p−1

≤ 2p−2
kn∑
l=1

E�ξl�p + 2p−2
kn∑
l=1

E�ξl��T1; n − ξl�p−1

x= 2p−2(I1;1 + I1;2
)
:

(4.29)

From Lemma 4.3, it follows that

I1;2 ≤
kn∑
l=1

E�ξl�E�T1; n − ξl�p−1

+
kn∑
l=1

p�E�T1; n − ξl�p��r−1��p−2�/rp

× �m �f�X��r�r�p−2�/rp�B2mu�m���r−p�/rp

≤ 2p−2
kn∑
l=1

E�ξl�p + 2p−2E�T1; n�p−1
kn∑
l=1

E�ξl�

+ pmC1

kn∑
l=1

�E�T1; n − ξl�p�1−�r−2�/rp

≤ 2p−2I1;1 + 2p−2�E�T1; n�p��p−1�/p
kn∑
l=1

E�ξl�

+ p2p−1mC1

kn∑
l=1

�E�ξl�p�1−�r−2�/rp

+ p2p−1mknC1 �E�T1;n�p�1−�r−2�/rp;

(4.30)

where C1 = �f�X��
r�p−2�/rp
r �B2 u�m���r−p�/rp . By �4:27�, we have

mC1

kn∑
l=1

(
E�ξl�p

)1−�r−2�/rp ≤
kn∑
l=1

E�ξl�p + kn �mC1�rp/�r−2�;

which, together with �4:30�, yields

I1;2 ≤ p2pI1;1 + 2p−2�E�T1; n�p��p−1�/p
kn∑
l=1

E�ξl�

+ p2p−1 �mknC1�rp/�r−2� + p2p−1 �mknC1� �E�T1; n�p�1−�r−2�/rp :

(4.31)

In what follows D stands for a generic positive constant that depends only
on p and r; however, it may take different values in each appearance. From
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�4:29�, �4:31� and Lemma 4.4, it follows that

E�T1; n�p ≤ D
{
I1;1 +

( kn∑
l=1

�Eξ2
l �1/2

)p
+ �mknC1�rp/�r−2�

}
:

Put

C2 = �f�X��
r�p−2�/�r−2�
r �B2C��r−p�/�r−2�:

Note that

ET2
n =

n∑
i=1

n∑
j=1

Cov
(
f�Xi�; f�Xj�� ≤ n max

i≤n

n∑
j=1

�Cov�f�Xi�; f�Xj��� x= nan:

Then, by �4:5�,

E�T1;n�p ≤ D
{ kn∑
l=1

E�ξl�p + kpn�man�p/2

+ �mkn�rp/�r−2��f�X��r�p−2�/�r−2�
r �B2 u�m���r−p�/�r−2�

}

≤ D
{ kn∑
l=1

E�ξl�p + kpn�man�p/2 + �mkn�rp/�r−2�mθ�p−r�/�r−2�C2

}
:

Similarly, we have

E�T2;n�p ≤ D
{ kn∑
l=1

E�ηl�p + kpn�man�p/2 + �mkn�rp/�r−2�mθ�p−r�/�r−2�C2

}
:

Therefore,

E�Tn�p ≤ D
{ kn∑
l=1

E�ξl�p +
kn∑
l=1

E�ηl�p + kpn�man�p/2

+ �mkn�rp/�r−2�mθ�p−r�/�r−2�C2

}
:

(4.32)

Without loss of generality, we assume 0 < ε < min�1; p/2− 1�. Let

a = �16D�−1/ε and K = 2D
(
�1+ 1/a�p + 2rp/�r−2� aθ�p−r�/�r−2�):

By �4:32� and the induction hypothesis �4:28�, we have

E�Tn�p ≤ 2DknK
(
m1+εE�f�X��p + �man�p/2 +m�rp+θ�p−r��/�r−2� ∨ �1+ε�C2

)

+D
{
kpn�man�p/2 + �mkn�rp/�r−2�mθ�p−r�/�r−2�C2

}

≤ 2D �4a�εK
(
n1+εE�f�X��p + �nan�p/2 + n�rp+θ�p−r��/�r−2� ∨ �1+ε�C2

)

+D�1+ 1/a�p�nan�p/2

+D2rp/�r−2�aθ�p−r�/�r−2� n�rp+θ�p−r��/�r−2� ∨ �1+ε�C2
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≤ �K/2�
(
n1+εE�f�X��p + �nan�p/2 + n�rp+θ�p−r��/�r−2� ∨ �1+ε�C2

)

+ �K/2�
(
�nan�p/2 + n�rp+θ�p−r��/�r−2� ∨ �1+ε�C2

)

≤K
(
n1+εE�f�X��p + �nan�p/2 + n�rp+θ�p−r��/�r−2� ∨ �1+ε�C2

)
:

This proves that �4:28� holds for k = n. The proof is now complete. 2

5. Proofs.

Proof of Theorem 2.1. By Theorem 4.2 in Billingsley (1968), it is suffi-
cient to prove that for any ε > 0,

lim
θ→0

lim sup
n→∞

P
{

sup
0<t≤θ

�αn�t�/q�t�� ≥ ε
}
= 0;(5.1)

lim
θ→0

lim sup
n→∞

P
{

sup
1−θ≤t<1

�αn�t�/q�t�� ≥ ε
}
= 0;(5.2)

lim
θ→0

P
{

sup
0<t≤θ

�B∗�t�/q�t�� ≥ ε
}
= 0(5.3)

and

lim
θ→0

P
{

sup
1−θ≤t<1

�B∗�t�/q�t�� ≥ ε
}
= 0:(5.4)

Note that

P
{

sup
0<t≤θ

�αn�t�/q�t�� ≥ ε
}
≤
∞∑
j=1

P
{

sup
θ2−j<t≤θ2−j+1

�αn�t�/q�t�� ≥ ε
}

≤
∞∑
j=1

P
{

sup
θ2−j<t≤θ2−j+1

�αn�t�� ≥ εq�θ2−j�
}
:

Hence, �5:1� can be rewritten as

lim
θ→0

lim sup
n→∞

P
{

sup
0<t≤θ

�αn�t�/q�t�� ≥ ε
}
≤ lim sup

θ→0
lim sup
n→∞

∞∑
j=1

Bj;n;(5.5)

where Bj;n = P�sup0≤t≤θ2−j+1 �αn�t�� ≥ εq�θ2−j��:
In the following discussion, C is a positive constant independent of θ, j and

n, and may take different values in each appearance. Put

εj = εq�θ2−j�;

Gn = �jx n1/2θ2−j+1 ≤ εj/2� and Hn = �jx n1/2θ2−j+1 > εj/2�:
By the following inequality [cf. (22.17) in Billingsley (1968)], for any 0 ≤ s ≤
t ≤ s+ h ≤ 1,

�αn�t� − αn�s�� ≤ �αn�s+ h� − αn�s�� + n1/2h;(5.6)
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we have for j ∈ Gn

Bj;n ≤ P��αn�θ2−j+1�� + n1/2θ2−j+1 ≥ εj�
≤ P��αn�θ2−j+1�� ≥ εj/2�
≤ Cε−2

j �θ2−j�r2

≤ Cε−2�log�2j/θ��−2β

(5.7)

by (A2), �2:3� and �2:4�. Hence �5:7� implies that

lim sup
θ→0

lim sup
n→∞

∑
j∈Gn

Bj;n = 0:(5.8)

Note that in the case of µ < r2/2, �5:8� holds also for β = 0.
Write

1 x= 1j;n =
1
4

εj

n1/2
= ε

4
q�θ2−j�
n1/2

:(5.9)

When j ∈Hn, using �5:6� again, we obtain

Bj;n ≤ P
{

max
1≤i≤θ2−j+1/1

�αn�i1�� ≥ εj/2
}

+P
{

max
0≤i≤θ2−j+1/1

sup
i1<t≤�i+1�1

�αn�t� − αn�i1�� ≥ εj/2
}

≤ P
{

max
1≤i≤θ2−j+1/1

�αn�i1�� ≥ εj/2
}

+P
{

max
0≤i≤θ2−j+1/1

�αn��i+ 1�1� − αn�i1�� + 1n1/2 ≥ εj/2
}

≤ P
{

max
1≤i≤θ2−j+1/1

�αn�i1�� ≥ εj/2
}

+P
{

max
0≤i≤θ2−j+1/1

�αn��i+ 1�1� − αn�i1�� ≥ εj/4
}

≤ 3P
{

max
1≤i≤θ2−j+2/1

�αn�i1�� ≥ εj/8
}
:

(5.10)

From (A1) it follows that, for all 0 ≤ i < k ≤ θ2−j+2/1,

E�αn�k1� − αn�i1��p ≤ C1
(
��k− i�1�p1 + n−p2/2��k− i�1�r1

)

≤ C1
(
��k− i�1�p1 + n−p2/2�k− i�1r1

)
:

Thus, by a theorem of Móricz (1982), there is a constant C, depending only on
C1 and p1, such that

E max
0≤i≤θ2−j+2/1

�αn�i1��p

≤ C
(
�θ2−j+2/1�p11p1 + n−p2/2�θ2−j+2/1�1r1 logp�θ2−j+2/1�

)

≤ C
(
�θ2−j�p1 + n−p2/2θ2−j1r1−1 logp�θ2−j+2/1�

)
:

(5.11)
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Since p2 > 1 − r1 in �A1�, l�x� = logp�x�/x−1+r1+p2 ≤ C for all x ≥ 1. Thus
from �2:3�, �2:4�, �5:9�, �5:11� and the fact that θ2−j+4n1/2/εj ≥ 8, we conclude
that for j ∈Hn,

P
{

max
0≤i≤θ2−j+2/1

�αn�i1�� ≥ εj/8
}

≤ Cε−pj
(
�θ2−j�p1 + n−p2/2θ2−j1r1−1 logp�θ2−j+2/1�

)

≤ Cε−pj
(
�θ2−j�p1 + εr1−1

j �θ2−j�n�1−r1−p2�/2 logp�θ2−j+4n1/2/εj�
)

≤ Cε−pj
(
�θ2−j�p1 + ε−p2

j �θ2−j�r1+p2l�θ2−j+4n1/2/εj�
)

≤ C
(
ε
−p
j �θ2−j�p1 + ε−p−p2

j �θ2−j�r1+p2
)

≤ Cε−p−p2�log�2j/θ��−pβ:
This, together with �5:10�, proves that

lim sup
θ→0

lim sup
n→∞

∑
j∈Hn

Bj;n = 0:(5.12)

Note that in the case of µ < p1/p, �5:12� is true for β > 1/�p+p2�. The proof
of �5:1� is now complete by �5:5�, �5:8� and �5:12�. Similarly one can also prove
�5:2�.

By �2:1� we have for any 0 ≤ s, t ≤ 1,

αn�t� − αn�s� →D B
∗�t� −B∗�s�:

Then by (A2) and Theorem 5.3 in Billingsley (1968),

E�B∗�t� −B∗�s��2 ≤ lim inf
n→∞

E�αn�t� − αn�s��2 ≤ C2�t− s�r2 :(5.13)

Thus, based on the fact that �B∗�t�; 0 ≤ t ≤ 1� is a Gaussian process, we have

E�B∗�t� −B∗�s��4 ≤ CE2�B∗�t� −B∗�s��2 ≤ C�t− s�2r2

for all 0 ≤ s; t ≤ 1. Applying Theorem 12.2 in Billingsley (1968) directly, we
can immediately get that �5:3� and �5:4� are true. This completes our proof of
Theorem 2.1. 2

Proof of Corollary 2.1. First we verify that �1n�t�; n ≥ 1� and 1�t�
are well defined on �0;1�. By Schwarz’s inequality, (A2), �2:4� and �2:5�, for
0 ≤ t ≤ 1,

E12
n�t� =

∫ t
0

∫ t
0
Eαn�u�αn�v�dQ�u�dQ�v�

≤
(∫ 1

0
E1/2�αn�t��2 dQ�t�

)2

≤ 2r2C2

(∫ 1

0
�t�1− t��r2/2 dQ�t�

)2

<∞;
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where the last inequality follows from αn�0� = αn�1� = 0, E�αn�t��2 ≤ C2t
r2

for 0 ≤ t ≤ 1/2, and E�αn�t��2 ≤ C2�1 − t�r2 for 1/2 ≤ t ≤ 1. Similarly, using
�5:13� in conjunction with (A2), we have

E12�t� =
∫ t

0

∫ t
0
EB∗�u�B∗�v�dQ�u�dQ�v�

≤
(∫ 1

0
E1/2�B∗�t��2 dQ�t�

)2

≤ 2r2C2

(∫ 1

0
�t�1− t��r2/2 dQ�t�

)2

<∞:

This shows that �1n�t�; 0 ≤ t ≤ 1y n ≥ 1� and �1�t�; 0 ≤ t ≤ 1� are square
integrable processes. Now we have, for any θ > 0,

sup
0<t≤θ

�1n�t�� ≤ sup
0<t≤θ

�αn�t�/q∗�t��
∫ 1

0
q∗�t�dQ�t�

and

sup
1−θ≤t<1

�1n�1� − 1n�t�� ≤ sup
1−θ≤t<1

�αn�t�/q∗�t��
∫ 1

0
q∗�t�dQ�t�;

where q∗�t� = �t�1 − t��µ�log 1/�t�1 − t���β. Thus �5:1�, �5:2� and �2:5� imply
for any ε > 0,

lim
θ→0

lim sup
n→∞

P
{

sup
0<t≤θ

�1n�t�� ≥ ε
}

= lim
θ→0

lim sup
n→∞

P
{

sup
1−θ≤t<1

�1n�1� − 1n�t�� ≥ ε
}
= 0:

(5.14)

Similarly, �5:3�, �5:4� and �2:5� imply for any ε > 0,

lim
θ→0

P
{

sup
0<t≤θ

�1�t�� ≥ ε
}
= lim

θ→0
P
{

sup
1−θ≤t<1

�1�1� − 1�t�� ≥ ε
}
= 0:(5.15)

Hence Corollary 2.1 follows from Theorem 2.1 and Theorem 4.2 in Billingsley
(1968). 2

Proof of Theorem 2.2. Let θ and ε be as in �2:6�. Since θ ≥ 1 +
√

2, we
can take r = ∞, v and p in Theorem 4.1 such that

2�θ+ ε�
θ+ ε− 1

< v <
2θ
θ− 1

and v < θ+ 1 < p < θ+ 1+ ε:(5.16)

Therefore, by �4:3� and �4:11�, for any 0 < η < �p− 1− θ�/θ, there is K <∞
such that for any 0 ≤ s; t ≤ 1,

E

∣∣∣∣
n∑
i=1

�I�Ui ≤ t� − I�Ui ≤ s� − �t− s��
∣∣∣∣
p

≤K
(
np/2�t− s�p/v + n1+η/2)
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and

E

∣∣∣∣
n∑
i=1

�I�Ui ≤ t� − I�Ui ≤ s� − �t− s��
∣∣∣∣
2

≤Kn�t− s�2/v;

which follows that

E�αn�t� − αn�s��p ≤K
(
�t− s�p/v + n−�p−2−η�/2)

and

E�αn�t� − αn�s��2 ≤K�t− s�2/v:

Hence (A1) and (A2) hold for p1 = p/v > 1; p2 = p − 2 − η > 1; r1 = 0 and
r2 = 2/v. Noting that 0 < η < �p− 1− θ�/θ, it is easy to see from �5:16� that

min
(
p1

p
;
r1 + p2

p+ p2
;
r2

2

)
≥ min

(
1
v
;
p− 2− η

2p− 2

)
>

1
2

(
1− 1

θ

)
:(5.17)

By Theorem 1 of Shao (1986), �2:1� holds. This proves Theorem 2.2 by Theo-
rem 2.1. 2

Proof of Theorem 2.3. From Theorem 2 of Shao (1986) (cf. Remark 1
there) it follows that �2:1� holds. By Theorem 1.1 of Shao (1995), we have for
p ≥ 2,

E

∣∣∣∣
n∑
i=1

�I�Ui ≤ t� − I�Ui ≤ s� − �t− s��
∣∣∣∣
p

≤ C
(
np/2 exp

(
C
�log2 n�∑
i=0

ρ�2i�
)
�E�I�U1 ≤ t� − I�U1 ≤ s� − �t− s��2�p/2

+ n exp
(
K
�log2 n�∑
i=0

ρ2/p�2i�
)
E�I�U1 ≤ t� − I�U1 ≤ s� − �t− s��p

)

≤ C
(
np/2 exp

(
C
�log2 n�∑
i=0

ρ�2i�
)
�t− s�p/2 + n exp

(
C
�log2 n�∑
i=0

ρ2/p�2i�
)
�t− s�

)
;

where �x� denotes the integer part of x. Clearly, under the condition �2:7�, we
have for p ≥ 2 and any 0 < δ < min�ε�p− 1�/�2�2+ ε��; �p− 2�/2�,

E

∣∣∣∣
n∑
i=1

�I�Ui ≤ t� − I�Ui ≤ s� − �t− s��
∣∣∣∣
p

≤ C
(
np/2�t− s�p/2 + n exp

(
C
�log2 n�∑
i=0

ρ2/p�2i�
)
�t− s�

)

≤ C
(
np/2�t− s�p/2 + n1+δ�t− s�

)
;
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since exp�C∑�log2 n�
i=0 ρ2/p�2i�� is a slowly varying function. This, in turn, gives

us for p > 2,

E�αn�t� − αn�s��p ≤ C
(
�t− s�p/2 + n−�p−2−2δ�/2�t− s�

)

and for p = 2,

E�αn�t� − αn�s��2 ≤ C�t− s�:
Thus (A1) and (A2) are satisfied for p1 = p/2; p2 = p − 2 − 2δ > 0 and
r1 = r2 = 1. Hence by �2:4�,

µ = �1+ p− 2− 2δ�/�p+ p− 2− 2δ� > 1/�2+ ε�:(5.18)

On the other hand, under the condition �2:8�, we have for p ≥ 2,

E

∣∣∣∣
n∑
i=1

�I�Ui ≤ t� − I�Ui ≤ s� − �t− s��
∣∣∣∣
p

≤ C
(
np/2�t− s�p/2 + n�t− s�

)
;

which implies that for p ≥ 2,

E�αn�t� − αn�s��p ≤ C
(
�t− s�p/2 + n−�p−2�/2�t− s�

)
:

Thus (A1) and (A2) are satisfied for p1 = p/2; p2 = p − 2 and r1 = r2 = 1.
Obviously µ = 1/2. Now the proof of Theorem 2.3 is complete. 2

Before proving Theorem 2.4, we need the following lemma.

Lemma 5.1. Let X and Y be associated random variables with a common
uniform distribution over �0;1�. Then for any 0 ≤ s < t ≤ 1,

�Cov�I�s < X ≤ t�; I�s < Y ≤ t��� ≤ 4�t− s�1/3 �Cov�X;Y��1/3:

Proof. Let u = Cov�X;Y� and h�x� = I�s < x ≤ t�. It suffices to show
that

Eh�X�h�Y� − �t− s�2 ≤ 4�t− s�1/3 u1/3(5.19)

and

�t− s�2 −Eh�X�h�Y� ≤ 3�t− s�2/3 u1/3:(5.20)

If u ≥ �t− s�2, then �5:19� holds obviously. When u < �t− s�2, put

a =
{
u1/4; if �t− s�4 ≤ u < �t− s�2;
�u/�t− s��1/3; if u < �t− s�4

and define

f1�x� =





0; if x < s− a;
1+ �x− s�/a; if s− a ≤ x < s;
1; if s ≤ x ≤ t;
1+ �t− x�/a; if t < x ≤ t+ a;
0; if x > t+ a:

(5.21)
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By Lemma 4.2, we have

Eh�X�h�Y� − �t− s�2

≤ Ef1�X�f1�Y� − �t− s�2

= Cov�f1�X�; f1�Y�� +Ef1�X�Ef1�Y� − �t− s�2

≤ �Cov�f1�X�; f1�Y��� + �t− s+ a�2 − �t− s�2

≤ a−2 Cov�X;Y� + 2a�t− s� + a2

=
{

2u1/2 + 2u1/4�t− s�; if �t− s�4 ≤ u < �t− s�2;
3u1/3�t− s�2/3 + �u/�t− s��2/3; if u < �t− s�4;

≤
{

2u1/3�t− s�1/3 + 2u1/4�t− s�2/3u1/12; if �t− s�4 ≤ u < �t− s�2;
3u1/3�t− s�2/3 + u1/3�t− s�4/3/�t− s�2/3; if u < �t− s�4;

≤ 4u1/3�t− s�1/3;
as desired.

As for �5:20�, it is obviously true if u ≥ �t− s�4/8. When u < �t− s�4/8, let
a = �u/�t− s��1/3 < �t− s�/2 and define

f2�x� =





0; if x < s;
1+ �x− s− a�/a; if s ≤ x < s+ a;
1; if s+ a ≤ x ≤ t− a;
1+ �t− a− x�/a; if t− a < x ≤ t;
0; if x > t:

(5.22)

Then, we have

�t− s�2 −Eh�X�h�Y� ≤ �t− s�2 −Ef2�X�f2�Y�
= �t− s�2 −Ef2�X�Ef2�Y� − Cov�f2�X�; f2�Y��
≤ �t− s�2 − �t− s− a�2 + �Cov�f2�X�; f2�Y���
≤ 2a�t− s� + a−2 Cov�X;Y�
= 3u1/3�t− s�2/3:

This proves �5:20�. 2

Proof of Theorem 2.4. Let ν and ε be as in �2:9�. Clearly, �2:9� implies

u�n� = max
i≤n

∑

jx �j−i�≥n
Cov�Ui;Uj� = O�n−�ν−1+ε��:

Thus, we can take p = ν + 1 + ε and r = ∞ in Theorem 4.2. Since p >
�5+
√

33�/2, we can find an η such that

0 < η < min��p2 − 5p− 2�/�2p�; ε/ν�:(5.23)

Therefore, by �2:9� and �4:7�, for such an η and for any absolutely continuous
function f with �f� ≤ 1 and sup �f′� ≤ B, where B ≥ 1, there is K < ∞ such
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that

E

∣∣∣∣
n∑
i=1

f�Ui�
∣∣∣∣
p

≤K
(
n1+ηB2 +

(
nmax

i≤n

n∑
j=1

�Cov�f�Ui�; f�Uj���
)p/2)

:(5.24)

To use �5:24� to derive (A1), we have to use two absolutely continuous functions
f1 and f2 defined by �5:21� and �5:22�, respectively, but with a common 0 <
a < �t− s�/2 that will be specified later. Clearly,

sup
x∈R
�f′k�x�� ≤ 1/a and E�fk�Un� −Efk�Un� − zn�v ≤ 2a

for v ≥ 1 and k = 1;2;
(5.25)

where zn = I�s < Un ≤ t� − �t− s�. In addition, f2�x� ≤ I�s < x ≤ t� ≤ f1�x�
and

0 ≤ f1�x� − f2�x� ≤ I�s− a < x < s+ a� + I�t− a < x < t+ a�;
which yield

∣∣∣∣
n∑
i=1

zi

∣∣∣∣ ≤ 4na+
∣∣∣∣
n∑
i=1

�f1�Ui� −Ef1�Ui��
∣∣∣∣+

∣∣∣∣
n∑
i=1

�f2�Ui� −Ef2�Ui��
∣∣∣∣:(5.26)

From stationarity, �5:25� and Lemma 4.2 it follows that

max
i≤n

n∑
j=1

�Cov�fk�Ui�; fk�Uj���

≤ Var�fk�U1�� + 2
n∑
i=2

�Cov�fk�U1�; fk�Ui���

≤K1

{
Ez2

1 + a+
n∑
i=2

�a+ �Ez1zi�� ∧ a−2 Cov�U1;Ui�
}

≤K1

{ n∑
i=1

�Ez1zi� +
∑

i≤a−3/�ν+ε�
a+

∑

i>a−3/�ν+ε�
a−2 i−ν−ε

}

≤K1

{ n∑
i=1

�Ez1zi� + a1−3/�ν+ε�
}
:

Here, and in the sequel, K1 is a generic positive constant that depends only
on ν and ε; however, it may take different values in each appearance. Thus,
by �5:24� and �5:26�,

E

∣∣∣∣
n∑
i=1

zi

∣∣∣∣
p

≤ 3p−1
(
�4na�p +

2∑
k=1

E

∣∣∣∣
n∑
i=1

�fk�Ui� −Efk�Ui��
∣∣∣∣
p)

≤K1

(
�na�p + n1+ηa−2 +

2∑
k=1

(
nmax

i≤n

n∑
j=1

�Cov�fk�Ui�; fk�Uj���
)p/2)

≤K1

(
�na�p + n1+ηa−2 + �na1−3/�ν+ε��p/2 +

(
n

n∑
i=1

�Ez1zi�
)p/2)

:
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Consequently, by choosing a = n−�p−1−η�/�p+2�, we have

E

∣∣∣∣
n∑
i=1

zi

∣∣∣∣
p

≤K1

{
n�3+η�p/�p+2� +

(
n1−�1−3/�ν+ε���p−1−η�/�p+2�)p/2

+
(
n

n∑
i=1

�Ez1zi�
)p/2}

≤K1

{
n�3+η�p/�p+2� +

(
n

n∑
i=1

�Ez1zi�
)p/2}

and hence

E�αn�t� − αn�s��p ≤K1

(
n−p�p−4−2η�/�2�p+2�� +

( n∑
i=1

�Ez1zi�
)p/2)

:(5.27)

On the other hand, from Lemma 5.1 we get

E�αn�t� − αn�s��2 ≤ 2
n∑
i=1

�Ez1zi�

≤ 2�t− s�1−3/�ν+η�
∞∑
i=1

�Ez1zi�3/�ν+η�

≤K1�t− s�1−3/�ν+η�
∞∑
i=1

�t− s�1/�ν+η� Cov�U1;Ui�1/�ν+η�

≤K1�t− s�1−2/�ν+η�:

(5.28)

Therefore, (A2) is satisfied for r2 = 1 − 2/�ν + η�. Substituting �5:28� into
�5:27�, we obtain

E�αn�t� − αn�s��p ≤K1
(
n−p�p−4−2η�/�2�p+2�� + �t− s��1−2/�ν+η��p/2):

Hence (A1) holds for p1 = �1−2/�ν+η��p/2 > 1, p2 = p�p−4−2η�/�p+2� > 1
[by �5:23�] and r1 = 0. It is easy to see that

min
(
p1

p
;
r1 + p2

p+ p2
;
r2

2

)
= min

(
1
2

(
1− 2

ν + η

)
;
p− 4− 2η

2�p− 1− η�

)

>
1
2

(
1− 3

ν

)
:

(5.29)

Similar to the proof of Theorem 2.2 of Yu (1993b), �2:1� holds (cf. Remark 2.1).
This proves Theorem 2.4 by Theorem 2.1. 2

The proofs of Corollaries 2.2, 2.3 and 2.4 are similar to that of Corollary 2.1.
Note that we use �5:17�, �5:18� and �5:29�, in conjunction with Remark 2.4, to
derive moment conditions in each corollary. The details are omitted.

Proof of Theorem 3.1. First we have

Mn�x�−MF�x� = �1−Fn�x��−1
(
−
∫ ∞
x
�Fn�t�−F�t��dt+MF�x��Fn�x�−F�x��

)
:
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Hence, Theorem 3.1 follows by Theorem 2.1 of Yu (1993b) if we can show that

In =
∫ ∞

0
�Fn�t� −F�t��dt→ 0 a.s.

By �3:1�, we know that

EX =
∫ ∞

0
�1−F�t��dt <∞:

Therefore, for ε > 0 arbitrarily small, we can choose β > 0 so large that

I�1��β� =
∫ ∞
β
�1−F�t��dt < ε/2:

Thus

In ≤ I�1��β� + I
�2�
n �β� + I�3�n �β�;

where

I
�2�
n �β� = n−1

n∑
i=1

∫ ∞
β
I�Xi > t�dt

and

I
�3�
n �β� =

∫ β
0
�Fn�t� −F�t��dt

≤ β sup
0≤x<∞

�Fn�x� −F�x�� → 0 a.s.

by �3:1� and Theorem 2.1 of Yu (1993b).
Note that

∫∞
β I�X > t�dt is an absolutely continuous and nondecreasing

function of X with E
∫∞
β I�X > t�dt =

∫∞
β �1 − F�t��dt = I�1��β�. Hence

�
∫∞
β I�Xn > t�dt; n ≥ 1� is a sequence of associated random variables and

Cov
(∫ ∞

β
I�Xi>t�dt;

∫ ∞
β
I�Xj>t�dt

)
≤ Cov�Xi;Xj� for all i; j=1;2; : : : ;

by Remark 4 of Yu (1993b). This shows that, by �3:1�,
∞∑
n=1

1
n2

Cov
(∫ ∞

β
I�Xn > t�dt;

n∑
i=1

∫ ∞
β
I�Xi > t�dt

)
<∞:

Thus, applying Theorem 2 of Birkel (1989), we get

I
�2�
n �β� → E

∫ ∞
β
I�X > t�dt a.s.

= I�1��β�:
Therefore, lim supn→∞ In ≤ ε a.s. for all small ε and this completes the proof
of Theorem 3.1. 2
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Proof of Theorem 3.2. Part (i) follows from Theorem 2.4 and Corol-
lary 2.4.

Part (ii) follows from Theorem 2.4 and Corollary 2.4, except that we have
to verify that EX2/�1−3/ν� <∞ implies

∫ 1

0
�1/q�t��2/�1−3/ν� dt <∞;(5.30)

where 1/q�t� = �MF�Q�t�� +Q�t�� = �1− t�−1
∫ 1
tQ�u�du. In fact, by �3:2�,

zn�Q�t�� = �1−Fn�Q�t���−1
(
−
∫ 1

t
αn�s�Q�s� +MF�Q�t��αn�t�

)

and the function MF�Q�t�� in the second term above is bounded by 0 ≤
MF�Q�t�� ≤MF�Q�t�� +Q�t�. In addition, by integrating by parts,

MF�Q�t�� = −Q�t� + �1− t�−1
∫ 1

t
Q�u�du:

It is easy to check that q�t� is a nonincreasing function on (0, 1). Finally, by
Hardy’s inequality [cf. Hardy, Littlewood and Pólya (1959), page 240], we have

∫ 1

0

(
1
t

∫ t
0
Q�1− y�dy

)1/µ

dt ≤
(

1
1− µ

)1/µ ∫ 1

0
Q1/µ�y�dy

=
(

1
1− µ

)1/µ

EX1/µ <∞;

where µ = �1 − 3/ν�/2. This shows that �5:30� is true. Hence our proof of
Theorem 3.2 is now complete. 2
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Csörgő, M., Csörgő, S. and Horváth, L. (1986). An Asymptotic Theory for Empirical Reliability

and Concentration Processes. Lecture Notes in Statist. 33. Springer, New York.



WEIGHTED EMPIRICAL PROCESSES 2127
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