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CLUSTER FORMATION IN A STEPPING-STONE MODEL
WITH CONTINUOUS, HIERARCHICALLY

STRUCTURED SITES

By Steven N. Evans1 and Klaus Fleischmann

University of California, Berkeley and
Weierstrass Institute for Applied Analysis and Stochastics

A stepping-stone model with site space a continuous, hierarchical
group is constructed via duality with a system of (delayed) coalescing
“stable” Lévy processes. This model can be understood as a continuum
limit of discrete state-space, two-allele, genetics models with hierarchically
structured resampling and migration. The existence of a process rescaling
limit on suitably related large space and time scales is established and
interpreted in terms of the dynamics of cluster formation. This paper was
inspired by recent work of Klenke.

1. Introduction and results.

1.1. Background. In several physical and biological systems, the phe-
nomenon of cluster formation can be observed. One has systems in which
spatially dispersed units can be one of two or more possible types. There is
a mechanism that attempts to impose local agreement among units, possibly
in the face of “noise” that can destroy the agreement but may also spread it.
One of the fundamental questions about such systems is the manner in which
clusters (i.e., large regions of agreement) grow and interact with each other.

A rather detailed picture on the growth of clusters in the simple voter model
on the one-dimensional lattice Z was developed by Arratia [1].

An analogous picture emerged for a certain class of stepping-stone models
in the work of Klenke [12], Theorem 2. He considered a system of interacting
diffusions of the Fisher–Wright type with state space �0;1� indexed by the
countable hierarchical group

4 x=
{
ξ = �ξi�i∈Z− ∈ �ZN�

�:::;−2;−1�: ξi = 0 for all i sufficiently small
}
;(1)

where Z− denotes the negative integers, ZN is the cyclic Abelian group
�0; : : : ;N − 1� of order N ≥ 2 with the operation of addition modulo N and
addition in 4 is performed coordinatewise. The reason for the nomenclature
is that the sets

4k x=
{
�ξi�i∈Z− : 0 = ξ−k−1 = ξ−k−2 = · · ·

}
; k ∈ Z+
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(Z+ denotes the nonnegative integers) are finite subgroups of 4 with �0� =
40 ⊂ 41 ⊂ · · · . Thus, each point of 4 belongs to a unique coset of 41 along
with N− 1 other points, each coset of 41 is contained in a unique coset of 42
along with N− 1 other cosets of 41 and so on.

These models arise as the M → ∞ diffusion limits of a class of discrete
state-space models in population genetics in which the sites represent demes
or colonies of M individuals, each possessing one of two possible genotypes.
Here the value of the process at a site is the proportion of the colony with a
given genotype. These proportions evolve by independent resampling within
colonies and migration of individuals between colonies. In this interpretation
we can think of the hierarchical structure of 4 as capturing the idea that
colonies are grouped into clans, clans are grouped into villages, villages are
grouped into counties and so forth. Consonant with this interpretation, the
strength of the migratory flux between two sites is taken to be a function of
how far apart the sites are in this hierarchy. We refer the reader to Sawyer
and Felsenstein [17] for more discussion of the biology behind the original
discrete models (see also Sawyer [16]). We will give a more precise description
of the diffusion limits in Section 4.

Klenke [12] showed that if the migration rates coincide with the jump rates
of a “strongly recurrent” random walk on 4, then as time evolves the sites
will tend to segregate into increasingly large clusters where the value of the
diffusion at the sites in the cluster is close to either 0 or 1; moreover, there is
a characteristic rate at which such clusters grow. Although we will not give
the precise definition of “strong recurrence” here, it might help the reader’s
intuition if we remark that the simple random walk on Z is strongly recurrent,
whereas on Z2 it is not.

Regimes in which the migration rates in interacting diffusions are the jump
rates of a recurrent, but not strongly recurrent, random walk were studied by
Fleischmann and Greven [10, 11] and Cox, Fleischmann and Greven [4]. The
clustering behavior for these latter models is different and rather more subtle.
(See [5] and [3] for similar results concerning the related voter model.)

In [12] and [10] two quantitative phenomena are considered as proxies for
the somewhat imprecise notion of cluster formation. The first is the presence
of blocks of sites in which the average value over the block is close to 0 or 1,
and the second is the presence of significant “correlations” between sites that
are far apart. The latter phenomenon is expressed in terms of the behavior of
a sequence of models that is obtained by “thinning out” sites, so that a large
number of neighboring sites is replaced by a single representative.

1.2. Purpose of the paper. In this paper we consider a class of processes X
that also arise as limits of the kind of simple discrete models described above.
The difference here is that, loosely put, we pass to a continuum limit with the
space of sites, so that the smallest geographic units become microscopic enti-
ties, rather than remaining as mesoscopic entities as they do in [12] and [10].
Our processes X can be thought of as infinitesimal cousins of those in [12].
Instead of �0;1�4, the state space of our processes is the set of Borel functions
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in �0;1�G, where G is the hierarchical group of all semiinfinite sequences,

G x=
{
g = �gi�i∈Z ∈ �ZN�Z: gi = 0 for all i sufficiently small

}
(2)

(again with coordinatewise addition), a group that can be topologized as a
nondiscrete, locally compact, totally disconnected group. Our processes are
natural stochastic partial differential equation (SPDE) analogs [see (8) below]
of the infinite system of stochastic differential equations considered in [12] and
arise as limits of the latter processes (cf. the proof of Theorem 3 in Section 4
below). In particular, the “drift part” of the SPDE is determined by the jump
rates of a “stable” Lévy process on G.

We also remark that our processes are essentially particular examples of
the continuum stepping-stone models considered in [19].

As well as being of interest in their own right, a significant advantage of
our models is that they exhibit the same sort of cluster formation dynamics
as the models in [12], but these phenomena can be more easily described
and understood in our setting. More precisely, our models can be rescaled at
suitably related large time and space scales to obtain limiting processes that
also have the Borel functions from G to �0;1� as their state space. Results
about the formation of clusters in our original models can then be rephrased
as easily proven facts about the microscopic and macroscopic spatial structure
at fixed times of these scaling limits. In particular, there is no need to resort to
“artifices” such as thinning or block averaging. These latter transformations
can be seen as partial substitutes for spatial rescalings that are unavailable in
models with a discrete collection of sites. Moreover, our point of view enables
us to study the evolution of all the clusters and not just the cluster containing
the origin.

A model analogous to ours was considered in Mueller and Tribe [15] with
G replaced by R and the Lévy process that describes the migration replaced
by Brownian motion. This analog arises as a suitable scaling limit of a long-
range voter process on Z. It appears that it is possible to construct a sequence
of long-range voter process-like particle systems on 4 that can be rescaled
in the manner of [15] to converge to our process, but we do not pursue this
matter in the present paper.

1.3. The site set G. Before we can describe more precisely the process we
wish to consider, we need to make a few simple remarks about the structure of
the group G of (2). General discussions of the structure of totally disconnected,
locally compact, Abelian groups may be found in [21] or [9]. Via

�g� x=N−k; where g ∈ G and k x= inf
{
i ∈ Z: gi 6= 0

}
;(3)

we introduce a translation-invariant ultrametric on G, that is, a translation-
invariant metric satisfying

�g − g′� ≤ �g� ∨ �g′�; g;g′ ∈ G:
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With this metric, G is a nondiscrete, locally compact, totally disconnected
Abelian group with countable base. Note that the balls

Gk x=
{
g ∈ G: �g� ≤N−k

}
; k ∈ Z;(4)

are compact-open subgroups of G satisfying Gk ⊃ Gk+1 ; and that

�g� =N−k if and only if g ∈ Gk\Gk+1 :(5)

Denote by l�dg� = dg the Haar measure on G; normalized so that l�G0� =
1: That is,

l assigns the mass N−k to Gk; k ∈ Z;(6)

and, conditioned on Gk ; it has i.i.d. coordinates gi for i ≥ k; “uniformly”
distributed on ZN : In particular,

l
(
Gk\Gk+1

)
=N−k�1−N−1�; k ∈ Z:(7)

1.4. Description of the model: existence of X. Formally, the process we
wish to consider is the process X which has as its state space the space of
Borel maps from G into �0;1� and solves the stochastic partial differential
equation

dXt�g� ⊗ dg =
√
af
(
Xt�g�

)
w�dt⊗ dg�

+
{∫

G
ν�dg′�

[
Xt�g + g′� −Xt�g�

]}
dt⊗ dg;

(8)

t > 0; g ∈ G: Here w�dt⊗dg� is time–space white noise with P��w�A×B��2� =
m�A�l�B� for Borel sets A ⊂ R+ and B ⊂ G, with m being the Lebesgue
measure on R+ and l being the Haar measure on G defined in Section 1.3.
Further, f is the standard Fisher–Wright diffusion coefficient

f�r� x= r�1− r�; 0 ≤ r ≤ 1;(9)

and ν is the Lévy measure

ν�dg� x= b �g�−α−1 dg;(10)

where 1 < α < ∞ and a; b > 0 are fixed constants, called the Lévy index,
diffusion constant and Lévy constant, respectively.

The reader familiar with the Fleming–Viot process may notice some sim-
ilarity between that process and ours. The difference is that in our process
resampling only occurs within the individuals at each site, rather than across
the whole population.

An existence and uniqueness theorem for this type of SPDE is stated with
a briefly sketched proof as Theorem 5.1(ii) in [19]. As we wish to consider
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rescaling limits of X that do not appear to be solutions to SDPE’s, it will be
more convenient for us to define the process X by describing it as a Feller
process with an explicitly given semigroup.

The key to such a description is the observation in [19] that a solution to (8)
is dual, via moment functions, to a (delayed) coalescing Lévy process. That is,
the dual can be thought of as a finite system of unlabeled particles that move
independently in G as “stable” Lévy processes with Lévy measure ν of (10),
but, additionally, each pair of colliding particles coalesces to a single particle at
rate a times their collision local time (i.e., the local time at 0 of the difference
of their positions.)

This description of the dual is not quite what we will use. Instead, we
will consider a slightly enhanced model in which we have a finite system of
particles labeled by �1; : : : ; n�, n ∈ N, that move independently in G as Lévy
processes with Lévy measure ν; but, additionally, each particle can be killed
and sent to an adjoined cemetery state † at rate a times the total of the
collision local times between the particle and the other living particles with
smaller labels. We will denote this latter process by �ϑ; Pg� = �ϑ; Pg

a; b� when
the initial state is g = �g1; : : : ; gn� ∈ Gn

† x= �G∪�†��n. We call it the (delayed)
coalescing Lévy process. A fuller description is given in Section 3.1.

As a final preliminary, we need to say something about the state space B
that we will use for our process X. Let B denote the set of equivalence classes
of Borel functions from G into �0;1�, where we declare that two functions
are equivalent if they are equal l-a.e. (recall that l is the Haar measure on
G). We can associate x ∈ B with the Radon measure x�g�dg on G: Via this
identification, we can think of B as a closed subset of the space of all Radon
measures on G endowed with the vague topology. (In this sense, the process
X to be constructed can be understood as a measure-valued diffusion.)

Alternatively, we can regard B as a closed subset of L∞ = L∞�G; l�; fur-
nished with its weak∗ topology as the dual of L1 = L1�G; l�:

These two relative topologies on B coincide. As both are metrizable, to see
this it suffices to show that, for x0; x1 ; : : : ∈ B,

∫
G
dgxj�g�ϕ�g� →

∫
G
dgx0�g�ϕ�g� as j→∞

holds for all ϕ in the set Cc�G� of all continuous functions ϕ onG with compact
support, if and only if it holds for all ϕ ∈ L1: But this is immediately clear
since Cc�G� is dense in L1 and the xj are uniformly bounded.

By Corollary 5.4.3 of Dunford and Schwartz [6], this B is a compact metriz-
able space.

Definition 1 (Product brackets). If x is a function defined on G; and n ∈
N; we set

�x; g� x=
∏
i

1�gi 6= †�x�gi�; g = �g1 ; : : : ; gn� ∈ Gn
† :
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Lemma 2 (Weight functions). For n ∈ N and ϕ ∈ L1�Gn; ln�, the function
I
ϕ
n: B→ R defined by

Iϕn�x� x=
∫
Gn
dg ϕ�g� �x; g�; x ∈ B;(11)

is continuous.

Proof. For ϕ of the form ϕ�g� = ϕ1�g1�; : : : ; ϕn�gn� with ϕi ∈ Cc�G�, the
claim is immediate. The general statement follows once we note that linear
combinations of such functions are dense in L1�Gn; ln�, and if �ϕj�∞j=1 is a

sequence in L1�Gn; ln� that converges to ϕ, then �Iϕjn �∞j=1 converges uniformly
to Iϕn. 2

Our first result is the following existence theorem, the proof of which is
postponed to Section 4.

Theorem 3 (Existence of the stepping-stone process X). For a; b>0 there
exists a unique strongly continuous semigroup S = Sa; b = �Sa; b�t�: t ≥ 0� of
Markov linear operators Sa; b�t�: C�B� → C�B� (i.e., a Feller semigroup) such
that

Sa; b�t�Iϕn �x� =
∫
Gn
dg ϕ�g�Pg

a; b�x; ϑt�;(12)

t≥0; n≥1; ϕ∈L1�Gn; ln�; x∈B: Moreover, there is a Hunt process �X; Pxa; b�
on B with continuous sample paths and semigroup Sa; b .

This �X; Pxa; b� is our stepping-stone process with diffusion constant a and
Lévy constant b:

1.5. The limiting cluster process Y. In order to describe the large-scale
space–time properties ofX, we need to introduce another B-valued process. By
analogy with the definition of the coalescing Lévy process ϑ, we can consider
an instantaneously coalescing Lévy process. This is a finite system of labeled
particles that move independently in G as Lévy processes with Lévy measure
ν; but, additionally, when two particles collide the one with the higher label is
sent to the cemetery † instantaneously. The state space of this process is the
set Ǧn

† consisting of n-tuples �g1; : : : ; gn� ∈ Gn
† for which gi = gj 6= † does not

hold for 1 ≤ i 6= j ≤ n. We will denote this instantaneously coalescing Lévy
process by �η; Qg

b � when the initial state is g = �g1; : : : ; gn� ∈ Ǧn
† . A fuller

description is given in Section 3.2.
Next we state the existence of the limiting cluster processY which is proved

in Section 4.

Theorem 4 (Existence of the cluster process Y). For b > 0 there exists a
unique strongly continuous semigroup T = Tb = �Tb�t�: t ≥ 0� of Markov



1932 S. N. EVANS AND K. FLEISCHMANN

linear operators Tb�t�: C�B� → C�B� (i.e., a Feller semigroup) such that

Tb�t�Iϕn �x� =
∫
Ǧn
dg ϕ�g�Qg

b �x; ηt�;(13)

t ≥ 0, n ≥ 1, ϕ ∈ L1�Gn; ln�, x ∈ B. For each F ∈ C�B�,
lim
a→∞

Sa; b�t�F = Tb�t�F:

Moreover, there is a Hunt process �Y; Qyb � on B with continuous sample paths
and semigroup Tb .

We call �Y; Qyb � the cluster process of X with Lévy constant b: Intuitively,
as a→∞ the diffusion part in X speeds up without limit which should imply
that each component X�g� of X will be trapped at the boundary �0;1� of the
interval �0;1�. [See Theorem 6(iv) below.]

1.6. Scaling properties of X and Y. Let σ : G → G denote the shrinking
automorphism which moves all the coordinates of a point g ∈ G by one step
to the right, so that �σg� =N−1�g�. Using this with a slight abuse of notation,
define σ : B → B by σx = x ◦ σ , x ∈ B, to get an associated bijection on
B. With another slight abuse of notation, we will also let σ denote the map
from the space of probability measures µ on B into itself that is given by∫
�σµ��dx�F�x� =

∫
µ�dx�F�σx� for F a bounded Borel function on B.

Finally, we introduce a group of space–time scaling transformations 2 ={
2m;s: m;s ∈ Z

}
on D�R+; B� (the Skorohod space of cadlag paths from R+ to

B) by

�2m;sz�t x= σ−mzNαst; z ∈ D�R+; B�; t ≥ 0:(14)

(Recall that α is the index of our “stable” Lévy process.)
It turns out that 2m;sX (resp. 2m;sY) is the same sort of process as X

(resp. Y).

Proposition 5 (Scaling properties). Consider m, s ∈ Z and a law µ on B.
The distribution of 2m;sX under Pµa; b (resp. 2m;sY under Qµb ) is that of X

under Pσ
−mµ
Nαs−ma;Nα�s−m�b (resp. Y under Qσ

−mµ
Nα�s−m�b).

1.7. Main result: cluster formation of X. Let B�0;1� denote the Borel sub-
set of B consisting of equivalence classes with a representative that takes
values in the set �0;1�. Now we have gathered together all the ingredients to
formulate our main result.

Theorem 6 (Cluster formation). Suppose that µ is a shift-invariant and
ergodic probability measure on B with intensity θ ∈ �0;1�:

∫
µ�dx�

∫
dgf�g�x�g� = θ

∫
dgf�g�; f ∈ B:(15)
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Then the following statements hold:

(i) The law of 2m;mX under Pµa; b converges to the law of Y under Qθ1
b as

m→∞.
(ii) The law of theD�R+;B�Z-valued random variable �2m−j;mX�j∈Z under

Pµa; b converges to the law of
(
2−j;0Y

)
j∈Z under Qθ1

b as m→∞.

(iii) For t > 0, the law of �2−j;0Y�t under Qθ1
b converges to the two-point

mixture

θδ1 + �1− θ�δ0 as j→∞;
and to the point mass

δθ1 as j→−∞:
(iv) For t > 0 fixed, Yt belongs to B�0;1�, Qθ1

b -a.s.

Thus, if we observe X on a suitable collection of large space–time scales,
then we see the cluster process Y in the limit. Varying the relationship be-
tween the growth of the time and space scales when taking the limit is equiva-
lent to observing Y on different space scales. If we observe Yt on a microscopic
scale, then we find ourselves in the middle of a cluster of 0’s or 1’s. On the
other hand, if we observe Yt macroscopically, the clusters of 0’s and 1’s will
be averaged, leading to a constant density θ:

The sequence of block-averaging limits studied in [12] corresponds in our
setting to the sequence of random variables

(∫
G0

dg2−j;0Yt�g �
)

j∈Z
=
(
Nj

∫
Gj

dgYt�g�
)

j∈Z
:

It is immediate from the spatial stationarity of Yt that this sequence is a
martingale, a phenomenon noted in [12].

As an aside, we note that the cluster state Yt is certainly random because
of the randomness of the j→∞ limit. Moreover, the distribution of Yt cannot
be just such a two-point mixture because then the j → −∞ limit would not
hold.

Finally, we remark that a fortiori we have for t > 0 and a sequence �cj�j∈N
of positive integers that as j→∞ the distribution of XNαjt�σ−cj · � converges
to the mixture

θδ1 + �1− θ�δ0 if cj/j→ 0;

and to the point mass

δθ1 if cj/j→+∞:

2. Stable Lévy process of index a. The purpose of this section is to
introduce the underlying migration process, a particular Lévy process Z on
G; a little more formally and collect some of its properties.
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2.1. More about G. The basic facts about totally disconnected, locally com-
pact, Abelian groups needed here may be found in [21].

For k ∈ Z, consider the quotient group G/Gk and the related quotient map
πk: G→ G/Gk . Since � · � defined in (3) is constant on the cosets of Gk other
than Gk itself, in G/Gk we get a translation-invariant ultrametric via

�ḡ� x=
{
�g�; if πkg = ḡ 6= 0;

0; if ḡ = 0;
ḡ ∈ G/Gk :(16)

The balls

�G/Gk�j x=
{
ḡ ∈ G/Gk: �ḡ� ≤N−k+j

}
; j ≥ 0;(17)

are finite subgroups of G/Gk : In particular, �G/Gk�0 = �0�; and �G/Gk�1
is isomorphic to the cyclic group ZN : Note also that if 4 is the countable
hierarchical group defined in (1), then

for all k ∈ Z; the quotient group G/Gk is isomorphic to 4:(18)

Recall that G† = G∪�†�, where † is adjoined as an isolated cemetery point.
Adjoin to G/Gk an isolated cemetery point that we will also denote by the
symbol † : Extend the quotient maps πk to G† by setting πk�†� x= † :

We also need the dual group G∗ of G: It can be defined as G in (2) except
we reflect the index j ∈ Z to −j: That is, the elements h of G∗ have the 0’s at
the right end. Set

�h� x=Nk where h ∈ G∗ and k x= sup
{
j ∈ Z:hj 6= 0

}
+ 1;

as well as

G∗k x=
{
h ∈ G∗: �h� ≤Nk

}
; k ∈ Z:(19)

Then

�h� =Nk if and only if h ∈ G∗k\G∗k−1 :(20)

The pairing �g;h� between G and G∗ is just given by

�g;h� x= exp
[

2πi
N

∑
j∈Z

gjhj
]
; g ∈ G; h ∈ G∗;(21)

where for the gj; hj ∈ ZN = �0; : : : ;N−1� the product gjhj is defined by the
usual multiplication in Z: Note that

G∗k =
{
h ∈ G∗: �g;h� = 1; ∀g ∈ Gk

}
; k ∈ Zy(22)

that is, G∗k is the annihilator of Gk . If µ is a finite measure on G; we define
the Fourier transform µ̂ of µ by

µ̂�h� x=
∫
G
µ�dg� �g;h�; h ∈ G∗:(23)

Write also ϕ̂ instead of µ̂ if µ�dg� = ϕ�g�dg; that is, if ϕ is the density
function of µ:
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Example 7 (Fourier transforms of some indicators). The Fourier transform
of the indicator function 1Gk

of the compact-open subgroup Gk is given by

1̂Gk
= N−k1G∗k ; k ∈ Z:(24)

In fact, if h ∈ G∗k ; then �g;h� = 1 [recall (22)], and (24) follows for such h from
l�Gk� =N−k: On the other hand, if h 6∈ G∗k ; then there is a j ≥ k such that the
jth coordinate hj of h is different from 0: However, gj is “uniform” on ZN , and

N−1∑

gj=0

exp
[

2πi
N

gjhj
]
= 0; hj = 1; : : : ;N− 1;

which implies that (24) is also true for those h:

Lemma 8 (Approximate identity). If ϕ ∈ L1�Gn; ln�, n ∈ N, then

lim
k→∞

Nnk
∫
Gn
k

dh ϕ�g + h� = ϕ�g� ln-a.e. and in L1�Gn; ln�:

Proof. It suffices to consider the case when ϕ is supported on Gn
−r for

some r ∈ N. Then for k ∈ N the function g 7→N−nrNnk
∫
Gn
k
dhϕ�g+h� is just

the conditional expectation of ϕ under the probability measureN−nrln�·∩Gn
−r�

given the σ-field generated by the cosets of Gn
k , and the result follows from

the martingale convergence theorem. 2

2.2. Stable Lévy process Z on G. Let Z x=
{
Zt: t ≥ 0

}
denote the “stable”

Lévy process on G with Lévy measure ν as defined in (10) with the index
1 < α <∞ fixed and b > 0: That is, Z is a cadlag jump process with stationary
independent increments, where a jump with value g occurs in the interval dt
with rate ν�dg�dt: Consequently, by (5) and (7),

Z makes a jump of size �g� =N−k at rate bNkα�1−N−1�; k ∈ Z:(25)

Note that ν is indeed a Lévy measure by the finiteness of

ν�G\Gk� =
∞∑
j=0

ν
(
Gk−1−j\Gk−j

)

= bNkα 1−N−1

Nα − 1
; k ∈ Z:

(26)

For more about processes such as Z, we refer to [9], Section 2. Denote by
Pg = P

g
b the law of Z starting at Z0 = g: In what follows, we simply call

�Z;Pgb � the Lévy process (with Lévy constant b�:
Next we want to calculate the characteristic function of Zt [recall (21)].

Lemma 9 (Characteristic function of Zt). For each t > 0; the characteristic
function of Zt under P0

b is given by

P0
b

〈
Zt ; g

∗〉 = exp
[
− c b t �g∗�α

]
; t ≥ 0; g∗ ∈ G∗;(27)
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with the constant

c = cN;α x=
1−N−α−1

Nα − 1
:

Proof. Since Z is a Lévy process with Lévy measure ν; for t > 0 fixed we
have

P0
b

〈
Zt; g

∗〉 = exp
[
−t
∫
G
ν�dg�

(
1− �g;g∗�

)]
; g∗ ∈ G∗y

see [9], Proposition 1 (send there N→∞�: It remains to show that
∫
ν�dg�

(
1− �g;g∗�

)
= cN;α b �g∗�α; g∗ 6= 0:(28)

Decompose the left-hand side into a sum of the contributions from each
“annulus” Gj\Gj+1 and apply (5) to conclude that the left-hand side is

b
∑
j∈Z

N�α+1�j
∫
Gj\Gj+1

dg
(
1− �g;g∗�

)
:

Using (7) and (24), we see that this is equal to

b
∑
j∈Z

Nαj
[
1G∗\G∗j −N

−11G∗\G∗j+1

]
�g∗�:

Assume now that �g∗� =Nk, k ∈ Z: Then the latter expression coincides with

b
∑
j<k

Nαj − bN−1 ∑
j<k−1

Nαj = bNα�k−1� + b�1−N−1�
∑

j<k−1

Nαj:

But this equals the right-hand side of (28), completing the proof. 2

Recall that σ denotes the shrinking automorphism defined in the beginning
of Section 1.6. Sometimes we write Z�t� instead of Zt :

Corollary 10 (Scaling for Z). For m ∈ Z, s ∈ R and g ∈ G, the distribu-

tion of the process σmZ�Nαs·� under P
g
b is that of the processZ under P

σmg

Nα�s−m�b .

Proof. Using the Lévy property, without loss of generality we may set
g = 0. It suffices by the Markov property and a simple induction argument
to show that for all t ≥ 0 the distribution of the random variable σmZ�Nαst�
under P0

b is that of the random variable Z�t� under P0
Nα�s−m�b .

Let σ∗: G∗→ G∗ denote the “adjoint” shrinking automorphism that moves
every coordinate of g∗ to the left, so that �σ∗g∗� = N−1�g∗� and �g;σ∗g∗� =
�σg;g∗� for g∗ ∈ G∗ and g ∈ G. Then the characteristic function of σmZ�Nαst�
under P0

b is given by

P0
b

〈
Z�Nαst�; �σ∗�mg∗

〉
= exp

[
− c bNα�s−m�t�g∗�α

]
;

where we used Lemma 9. Applying that lemma again, the claim follows. 2
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Corollary 11 (Transition density of Z). The Lévy process Z has a jointly
continuous transition density p =

{
pt�g�: t > 0; g ∈ G

}
with respect to the

Haar measure l that is strictly positive and uniformly bounded on each set of
the form �ε;∞�×G; where ε > 0:

Proof. It follows from Lemma 9, the characterization (20) and Example
7 that

P0
b

〈
Zt ; g

∗〉 =
∑
k∈Z

ck �t�1G∗k�g
∗� =

∑
k∈Z

ck �t�Nk1̂Gk
�g∗�;

g∗ ∈ G∗, where we set

ck�t� x= exp
[
− c b tNkα

]
− exp

[
− c b tN�k+1�α]:

Thus, P0
b�Zt ∈ dg� = pt�g� l�dg�, where pt�g� x=

∑
k∈Z ck �t�Nk1Gk

. It is
immediate that the transition density p has the desired properties. 2

Corollary 12 (Equivalence of restricted laws). For ε > 0 and g, h ∈ G,
the restrictions of P

g
b and Phb to the sub-σ-field σ�Zt: t ≥ ε� are equivalent.

Proof. This is immediate from Corollary 11 and the Markov property. 2

2.3. Local time 3 for Z. Later on we will make use of the following fact.

Proposition 13 (Local time of Z). For each g ∈ G we have Pgb -a.s. that
there is a jointly continuous local time �t; h� 7→ 3�t; h�, �t; h� ∈ R+ ×G, such
that

∫ t
0
dsf�Xs� =

∫
G
dh3�t; h�f�h�

for all bounded Borel functions f and all t ≥ 0. In particular, Pgb -a.s.,

3�t; h� = lim
k→∞

Nk
∫ t

0
ds 1

{
�Zs − h� ≤N−k

}
;(29)

uniformly for �t; h� in compact subsets of R+ ×G. Moreover, for fixed h ∈ G,

inf
{
t > 0:Zt = h

}
= inf

{
t > 0:3�t; h� > 0

}
< ∞; P

g
b -a.s.(30)

Proof.
Step 1. Existence. For λ > 0, write

uλ�g� x=
∫ ∞

0
dt e−λtpt�g�; g ∈ G;

for the λ-potential density of Z: By (27), its Fourier transform ûλ is

ûλ�g∗� =
∫ ∞

0
dt exp

[
− λt− c b t �g∗�α

]
= 1
λ+ c b �g∗�α =

∑
k∈Z

dk1G∗k�g
∗�;
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g∗ ∈ G∗; where we set

dk x=
1

λ+ c bNkα
− 1
λ+ c bN�k+1�α ≥ 0; k ∈ Z:

Note that

dk is of order N−�k�α as �k� → ∞:(31)

In particular, dk is summable in k ∈ Z. Now, by (24), 1G∗k is the Fourier trans-
form of Nk1Gk

; for each k ∈ Z. Hence,

0 ≤ uλ�g� =
∑
k∈Z

dkN
k 1Gk

�g� ≤ uλ�0� <∞; g ∈ G:(32)

Therefore, uλ is a bounded continuous function on G, and from

uλ�0� − uλ�g� =
∑
k

1
{
N−k < �g�

}
dkN

k

and (31) we conclude

lim
06=g→0

uλ�0� − uλ�g�
�g�α−1

= kb;N;α; λ

for some constant kb;N;α; λ ∈ �0;∞�: As in the proof of Lemma 7.2 of [8],
we can check Dudley’s metric entropy condition to conclude that there is a
version of the centered, stationary Gaussian process on G with covariance
kernel �g;g′� 7→ u1�g′ − g� that has continuous sample paths. The existence
of a continuous local time 3 then follows from Theorem 1 of Marcus and Rosen
[14]. The limit relation (29) follows from general theory.

Step 2. Stopping time identity. Fix g, h ∈ G: Write Vh and Wh, respec-
tively, for the stopping times on the left- and right-hand sides of (30). Observe
that the right continuity of Z implies that ZVh

= h on the event �Vh < ∞�,
P
g
b -a.s. Similarly, ZWh

= h on the event �Wh <∞�, and Vh ≤Wh, Pgb -a.s.
Let us first show that

P
g′

b �Wh′ <∞� > 0 for all g′; h′ ∈ G:(33)

By Fubini’s theorem,
∫
deP0

b3�t; e� = P0
b

∫
de3�t; e� = t for all t ≥ 0, and so

P0
b�We <∞� > 0 for some e ∈ G. By Corollary 12 we get Pfb�We <∞� > 0 for

all f ∈ G, and combining this with the Lévy property establishes (33).
Let us now show that Vh = Wh, Pgb -a.s. It suffices by applying the strong

Markov property at time Vh on the event �Vh <∞� to show that

Phb�Wh = 0� = 1;(34)

but this follows by applying the strong Markov property at time Wh on the
positive probability event �Wh <∞� [recall (33)].

We are thus left with showing that Pgb �Vh < ∞� = 1. By (34) we know
that the random set �t > 0: Zt = h� is nonempty Phb -a.s. We have from
Corollary 10 that, under P0

b; the distribution of Z is the same as that of the
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process σkZ�Nαk·� for all k ∈ Z . Consequently, by the Lévy property, under
Phb ; the distribution of the random set �t:Z�t� = h� is the same as that of{
t:Z�Nαkt� = h

}
= N−αk�t:Z�t� = h�. Sending k → −∞, we see that the

random set �t:Z�t� = h� is unbounded Phb -a.s. Thus, by Corollary 12, the
random set �t:Z�t� = h� is unbounded P

g
b -a.s.; hence, Pgb �Vh < ∞� = 1

follows. 2

Corollary 14 (Collision local time). Let
(
Z̃t ; P̃

g̃
b

)
be a copy of �Zt ;P

g
b �.

Then for g; g̃ ∈ G we have P
g
b × P̃

g̃
b -a.s. that the limit

L�t� x= lim
k→∞

Nk
∫ t

0
ds 1

{∣∣Zs − Z̃s

∣∣ ≤N−k
}

exists uniformly on compact subsets of R+ , and this collision local time L�t� of

Z and Z̃ is continuous in t: Moreover,

inf
{
t > 0:Zt = Z̃t

}
= inf

{
t > 0:L�t� > 0

}
<∞; P

g
b × P̃

g̃
b -a:s:(35)

Proof. This is immediate from Proposition 13 and the observation that
the law of Z− Z̃ under Pgb × P̃

g̃
b is the same as the law of Z under Pg−g̃2b : 2

We extend the Markov process �Z;Pgb � to the state space G† = G ∪ �†� by
declaring that † is an absorbing point.

3. Coalescing processes. The purpose of this section is to introduce the
coalescing Lévy process ϑ, a nonlocally coalescing Lévy process kϑ and the
coalescing random walk kϑ, the instantaneously coalescing Lévy process η,
and to relate these processes.

3.1. Coalescing Lévy processes ϑ and kϑ. We will give a sample path
construction of ϑ. In fact, we will couple the construction of ϑ with that of
a sequence of nonlocally coalescing Lévy processes kϑ, in which particles die
at a rate proportional to the weighted amount of time they have spent within
distance N−k of other living particles.

Fix n ∈ N and g = �g1; : : : ; gn� ∈ Gn
† . On some probability space with

probability measure denoted by Pg = Pg
b , let Z = �Z1 ; : : : ;Zn� be a vector of

independent Lévy processes (with Lévy constant b) starting at g. For k ∈ Z,
1 ≤ i < j ≤ n, with both gi and gj different from † and t ≥ 0, we introduce
the following approximate collision local time of Zi and Zj:

kLi; j�t� x=Nk
∫ t

0
ds1

{∣∣Zi�s� −Zj�s�
∣∣ ≤N−k

}
:(36)

Note that the limit

∞Li; j�t� x= lim
k→∞

kLi; j�t� uniformly on compacts;Pg
b -a.s.,(37)
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is the collision local time of the ith and jth particles (Corollary 14). For the
other pairs 1 ≤ i < j ≤ n such that gi = † or gj = † set kLi; j ≡ 0.

On the same probability space where Z is defined, suppose that we also have
defined a family τi; j, 1 ≤ i < j ≤ n, of random variables that are exponentially
distributed with mean 1, independent and jointly independent of Z.

Recall that a > 0 is a given (diffusion) constant. For k ∈ Z x= Z ∪ �∞� and
1 ≤ i < j ≤ n, set

kUi; j x= inf
{
t: a �kLi; j�t�� > τi; j

}
:(38)

We will say that the jth particle coalesces into the ith one at time kUi;j ;

provided that, at time kUi; j−, both are still alive. That is, akLi; j serves as
a clock under which the ith particle tries to kill the jth one, as long as both
are not yet killed. To be more precise, recall that Z�0� = g ∈ Gn

† and define a
�0;1�n-valued càdlàg process kI x=

{(
kIj�t�

)
1≤j≤n: t ≥ 0

}
starting at

kIj�0� x=
{

0; if gj 6= †;

1; if gj = †;
k ∈ Z; 1 ≤ i ≤ n;

by setting

kIj�t� x= kIj�0� +
∑
i<j

1
{k
Ui; j ≤ t

}(
1− kIi

(
kUi; j −

))(
1− kIj

(k
Ui; j −

))
:

As the kUi; j are Pg-a.s. distinct, there is no problem with this definition. The
interpretation is that kIi�t� is the indicator of the event that at time t the ith
particle is dead. Here we are allowing some particles to be already dead at
time 0.

Define a Gn
† -valued process kϑ x=

{(k
ϑi�t�

)
1≤i≤n: t ≥ 0

}
starting at

kϑi�t� x=
{
Zi�t�; if kIi�t� = 0;

†; if kIi�t� = 1:
(39)

That is, killed particles are sent to † where they stay forever. Let kPg
a; b denote

the law of kϑ starting at g ∈ Gn
† : For k ∈ Z; we call kϑ a nonlocally coalescing

Lévy process, and drop the word “nonlocally” in the case of ∞ϑ: We also write
simply �ϑ;Pg

a; b� instead of �∞ϑ;∞Pg
a; b�: The following result is immediate

from the properties of Z and τi; j.

Lemma 15 [(Nonlocally) coalescing Lévy process]. We have that
(k
ϑ;k Pg

a; b

)

is a time-homogeneous strong Markov process for each k ∈ Z.

Remark 16 (Feller property). Because we can write Zi starting at gi ∈ G
as gi + Z̃i with Z̃i�0� = 0 and because

lim
k→∞

Nk
∫ t

0
ds1

{∣∣gi + Z̃i�s� −
(
gj + Z̃j�s�

)∣∣ ≤N−k
}
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is continuous in �t; gi; gj� ∈ R+ × G2, by Proposition 13 it is not hard to
demonstrate that kϑ is actually Feller for each k ∈ Z.

3.2. Instantaneously coalescing Lévy processes η. Fix n ∈ N and g =
�g1; : : : ; gn� ∈ Ǧn

† (here gi = gj 6= † does not hold by definition; see the
beginning of Section 1.5). Let Pg and Z be as in Section 3.1.

For 1 ≤ i < j ≤ n with both gi and gj different from †, set

Vi; j = inf
{
t ≥ 0:Zi�t� = Zj�t�

}

for the hitting time of Zi and Zj. Recall that Vi; j <∞ with Pg-probability 1
(Corollary 14). If i′ /∈ �i; j�, then Zi′�Vi; j� 6= Zi�Vi; j� = Zj�Vi; j�, Pg-a.s.,
by the independence of the coordinates of Z and the fact that the distribution
of Zi′�t� is absolutely continuous for all t > 0 when gi′ 6= †. In particular,
Vi; j 6= Vi′;j′ ; Pg-a.s., when �i; j� 6= �i′; j′�. For 1 ≤ i < j ≤ n such that gi = †
or gj = †, put Vi; j x= ∞.

Define a �0;1�n-valued càdlàg process J x=
{(
Jj�t�

)
1≤j≤n: t ≥ 0

}
starting at

Jj�0� x=
{

0; if gj 6= †;

1; if gj = †;
1 ≤ j ≤ n;

by setting

Jj�t� x= Jj�0� +
∑
i<j

1�Vi; j ≤ t�
(
1− Ji�Vi; j−�

)(
1− Jj�Vi; j−�

)
:

As the Vi; j are Pg-a.s. distinct, there is again no problem with this definition,
and the interpretation is that Ji�t� is the indicator of the event that at time
t the ith particle is dead. Here we are allowing some particles to be already
dead at time 0:

Define a Ǧn
† -valued process η x=

{(
ηi�t�

)
1≤i≤n: t ≥ 0

}
starting at g ∈ Ǧn

† by

ηi�t� x=
{
Zi�t�; if Ji�t� = 0;

†; if Ji�t� = 1;
(40)

and denote its law by Qg = Qg
b : We call

(
η;Qg

b

)
an instantaneously coalescing

Lévy process. The following result is immediate by construction.

Lemma 17 (Instantaneously coalescing Lévy process). We have that �η;Qg
b �

is a time-homogeneous strong Markov process.

3.3. An absolute continuity property of ϑ and η. Consider the coalescing
Lévy process ϑ with ϑ�0� 6= † [i.e., at least one of the ϑi�0� is different from
†�: Let Rt ⊂ N denote the set of all labels of particles alive at time t; that is,
Rt x=

{
i:ϑi�t� 6= †

}
. Write �Rt� for its cardinality. Define St analogously for

the instantaneously coalescing Lévy process η.
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Lemma 18 (Absolute continuity). Let n ∈ N and g ∈ Gn
† with g 6= †. Take

\ 6= R ⊆ �1; : : : ; n� and t > 0: Then the (subprobability) measure

Pg
a; b

(
Rt = R;

(
ϑi�t�

)
i∈R ∈ dh

)

on G�R� is absolutely continuous with respect to the Haar measure l�R� on G�R�

and, in fact, has a (subprobability) density function p̃t
(
g;R y ·

)
that satisfies

p̃t
(
g;R y h

)
≤
∏
i∈R

pt�hi − gi�; h ∈ G�R�

(with p the transition density of the underlying Lévy process). An analogous re-
sult holds for St with the resulting density function being denoted by q̃t

(
g; Sy ·

)
.

Proof. For a Borel subset B of G�R�,

Pg
a; b

(
Rt = R;

(
ϑi�t�

)
i∈R ∈ B

)
≤ Pg

b

((
Zi�t�

)
i∈R ∈ B

)
:

This implies the claim. 2

3.4. Coalescing random walk kϑ. For each k ∈ Z, the quotient map πk
from G to G/Gk transforms the Lévy process Z on G to a random walk kZ̄:=
πkZ on G/Gk : In order to calculate the jump rates of kZ̄, recall that the Haar
measure l assigns massN−k toGk and each of its cosets [see (6)]. Furthermore,
if g belongs to a coset of Gk other than Gk itself, then �g� = �ḡ�, where ḡ =
πkg ∈ G/Gk [recall (16)]. Hence, by the definition (10) of ν; the jump ḡ 6= 0
occurs in the walk kZ̄ with rate

kqḡ x= bN−k�ḡ�−α−1; ḡ ∈ G/Gk ; ḡ 6= 0:(41)

Note that the total jump rate is finite:
∑
ḡ 6=0

kqḡ = ν�G\Gk� <∞ [recall (26)].
If in the construction of Section 3.1 we put kZ̄ x= �πkZ1; : : : ; πkZn�, then

for pairs �i; j�; i < j; such that both gi 6= † and gj 6= †, by (36) we have

kLi; j�t� =Nk
∫ t

0
ds1

{
kZ̄i�s� = kZ̄j�s�

}
:(42)

That is, kLi; j from (36) is now the “weighted” collision local time of kZ̄i

and kZ̄j:
Recall (18) saying that G/Gk is isomorphic to the countable hierarchical

group 4: Delayed coalescing random walks on 4 are described in [12] and [10]
as systems of unlabeled particles. As we remarked in Section 1.4 for the case
of the usual description of (delayed) coalescing Lévy processes, it is possible
to enhance such a model by assigning labels to the particles and, rather than
thinking of two particles merging into one, think instead of one of the particles
being sent to the cemetery † at the time of “coalescence.” It is this latter process
that we will refer to as a (delayed) coalescing random walk kϑ on G/Gk ∪�†�:

Combining the above observations and taking into account in particular the
identity (42) leads immediately to the following result.
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Lemma 19 (Coalescing random walk). Let n ∈ N, g ∈ Gn
† and k ∈ Z: Under

kPg
a; b, the process kϑ x=

(
πk

kϑ1; : : : ; πk
kϑn

)
is a coalescing random walk on

G/Gk ∪ �†� with jump rates kq of (41), coalescing rate aNk and initial state
ḡ = �ḡ1; : : : ; ḡn� =

(
πkg1; : : : ; πkgn

)
.

3.5. Convergence of coalescing processes. In this section we will make pre-
cise one sense in which the coalescing random walks kϑ converge to the coa-
lescing Lévy process ϑ as k→∞, resp., the coalescing Lévy process ϑ tends
to the instantaneously coalescing Lévy process η as a→∞.

Recall the definition of the state space B given in Section 1.4. For k ∈ Z;
define the averaging transformation Mk: B→ B by

�Mkx��g� x=Nk
∫
Gk

dg′ x�g′ + g�; g ∈ G:(43)

That is, Mkx �g� is the average of x over the coset g +Gk : Note that Mk is
well defined as a map from B into itself because the right-hand side of (43)
does not depend on which particular representative for x we use to compute
the integral. SinceMkx is constant on the cosets ofGk, we can think ofMkx�·�
as a function on the quotient group G/Gk and write M̄kx instead of Mkx in
this case.

By analogy with the product brackets pairing of Definition 1, we can intro-
duce a pairing between �0;1�G/Gk and �G/Gk ∪ �†��n, n ∈ N, that we will also
denote by �·; ·�.

Recalling Lemma 19, the convergence of the coalescing random walk kϑ
to that of the coalescing Lévy process ϑ and the convergence of ϑ to the
instantaneously coalescing Lévy process η can now be expressed as follows.

Proposition 20 (Convergence). Suppose n ∈ N, ϕ ∈ L1�Gn; ln� and t ≥ 0.
Then

∫
Gn
dg ϕ�g� kPg

a; b

[
M̄kx;

kϑt
]
→
∫
Gn
dg ϕ�g�Pg

a; b�x;ϑt� as k→∞(44)

and
∫
Gn
dg ϕ�g�Pg

a; b�x;ϑt� →
∫
Gn
dg ϕ�g�Qg

b �x;ηt� as a→∞;(45)

uniformly in x ∈ B.

Proof. Fix n;ϕ and t as in the proposition. First consider (44). Note that
the right-hand side of (44) is well defined (i.e., does not depend on which
particular representative we choose for x) by Lemma 18. Using the definition
(43) of the average Mkx, the construction of kϑt provided in Section 3.1 and
interchanging the order of expectation and integration, the left-hand side of
(44) can be written as

∫
Gn
dg ϕ�g�Nnk

∫
Gn
k

dh Pg
b

n∏
i=1

x1− kIi�t�(Zi�t� − hi
)
:
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Since for h ∈ Gn
k the law of �Z − h;k I� under Pg

b is the same as the law of
�Z;k I� under Pg−h

b , the latter expectation equals

Pg−h
b

n∏
i=1

x1− k Ii�t�(Zi�t�
)
:

Interchanging the order of integration (twice) and using the shift invariance
of the Haar measure dg; the left-hand side of (44) can be rewritten as

∫
Gn
dgNnk

∫
Gn
k

dhϕ�g + h�Pg
b

n∏
i=1

x1−kIi�t�(Zi�t�
)
:

The difference between the left-hand side and the right-hand side of (44)
can be written as a sum of two terms by subtracting and adding the quantity

∫
Gn
dg ϕ�g�Pg

b

n∏
i=1

x1− kIi�t�(Zi�t�
)
:(46)

The absolute value of the first term in this sum can be estimated from above
by

∫
Gn
dg

∣∣∣∣N
nk
∫
Gn
k

dhϕ�g + h� − ϕ�g�
∣∣∣∣→ 0 as k→∞;

where the convergence follows from Lemma 8. It therefore remains to check
that (46) converges uniformly in x ∈ B to

∫
Gn
dg ϕ�g�Pg

b

n∏
i=1

x1−∞Ii�t�(Zi�t�
)

as k → ∞: Note that our fixed t ≥ 0 is Pg
b -a.s. different from ∞Ui; j [recall

(38)] for any 1 ≤ i < j ≤ n, and these random variables are Pg
b -a.s. distinct.

Moreover, kLi; j�t� converges uniformly on compacts to ∞Li; j�t� as k → ∞,
Pg
b -a.s. [recall (37)]. Thus, the kUi; j converge Pg

b -a.s. to the ∞Ui; j as k→∞,
and we have Pg

b -a.s. for 1 ≤ i ≤ n that kIi�t� = ∞Ii�t� for all k ∈ Z sufficiently
large.

The proof of (45) is similar and easier. Write ∞aUi; j and ∞aIi in place of ∞Ui; j

and ∞Ii for the moment, to emphasize the dependence on a in the definition.
We need to check that

∫
Gn
dg ϕ�g�Pg

b

n∏
i=1

x1−∞a Ii�t�
(
Zi�t�

)

converges uniformly to
∫
Gn
dg ϕ�g�Qg

b

n∏
i=1

x1−Ji�t�(Zi�t�
)

as a→∞. It follows from Corollary 14 that Pg
b -a.s. the random variable ∞aUi; j

converges to the hitting time Vi; j as a→∞. An argument similar to the one
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above establishes we have Pg
b -a.s. for 1 ≤ i ≤ n that ∞aIi�t� = Ji�t� for all a

sufficiently large, implying the claim. 2

3.6. Scaling of coalescing processes. The shrinking automorphism σ de-
fined in the beginning of Section 1.6 can be extended to G† by setting σ† x= †;
and to Gn

† by σ�g1; : : : ; gn� x= �σg1; : : : ; σgn� for each n ∈ N:

Lemma 21 (Scaling for ϑ and η). For m ∈ Z, s ∈ R and g ∈ Gn
† , n ∈ N, the

distribution of the process ϑ�Nαs·� under Pσ−mg
a; b [resp. η�Nαs·� under Qσ−mg

b ] is
the same as the distribution of the process σ−mϑ under Pg

Nαs−ma;Nα�s−m�b (resp.

σ−mη under Qg
Nα�s−m�b).

Proof. We will consider the claim for ϑ. The proof for η is similar and
is omitted. In the notation of Section 3.1, we have from Corollary 10 that the
distribution of Z�Nαs· � under Pσ−mg

b is the same as the distribution of σ−mZ
under Pg

Nα�s−m�b. Therefore, the distribution of �Z�Nαs·�; �∞Li; j�Nαs·��1≤i<j≤n�
under Pσ−mg

b is the same as the distribution of �σ−mZ; �Nαs−m ∞Li; j�1≤i<j≤n�
under Pg

Nα�s−m� , and the result is immediate from the construction of Sec-
tion 3.1. 2

4. Existence and uniqueness for X and Y. This section is devoted to
the proof of Theorems 3 and 4. We begin with the following simple observation.
Recall the function Iϕn of (11).

Lemma 22 (The algebra A). Let A ⊂ Cc�G� denote the set of functions of
the form 1H, where H is a coset of Gk for some k ∈ Z, and write A for the
linear span of the set

{
Iϕn:n ∈ N; ϕ =

n⊗
i=1

ϕi; ϕi ∈ A

}
∪
{
constant functions on B

}
:

Then A is a dense subspace of C�B�.

Proof. The result will be immediate from the Stone–Weierstrass theorem
(see, e.g., Theorem 36A of Simmons [20]), once we know that the algebra A
separates points. However, if for x1, x2 ∈ B;

∫
G
dgx1�g�ϕ�g� =

∫
G
dgx2�g�ϕ�g�; ϕ ∈ A ;

then x1 = x2 : 2

Proof of Theorem 3.
Step 1. Reformulation of the right-hand side of (12). Fix t, n, ϕ, x as in the

theorem. Recall the notation Rt (introduced in Section 3.3) for the set of all
labels of particles of ϑ alive at time t: Decompose the right-hand side of (12)
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into a sum with 2n − 1 terms by introducing into the expectation expression
under the integral the indicator functions 1�Rt = R� for \ 6= R ⊆ �1; : : : ; n�.
By Lemma 18 we know that ϑt restricted to �Rt = R� has an absolutely con-
tinuous subprobability distribution with density function p̃t�g;Ry ·�. Hence,
for a typical summand we get
∫
Gn
dg ϕ�g�Pg1�Rt = R��x;ϑt� =

∫
Gn
dg ϕ�g�

∫
G�R�

dh p̃t�g;R yh� �x;h�:

Introduce the function

ϕRt �h� x=
∫
Gn
dg ϕ�g� p̃t�g;Ry ;h�; h ∈ G�R�:(47)

Note that it belongs to L1
(
G�R�; l�R�

)
: In fact, since the p̃t�g;R y · � are sub-

probability densities,
∫
G�R�

dh
∣∣ϕRt �h�

∣∣ ≤
∫
G�R�

dh
∫
Gn
dg �ϕ�g��p̃t�g;Ryh� ≤

∫
Gn
dg �ϕ�g�� <∞:

Using this function, the right-hand side of (12) can thus be written as
∫
Gn
dg ϕ�g�Pg�x;ϑt� =

∑
R

I
ϕRt
�R��x� ∈ C�B�:(48)

In particular, we see that the right-hand side of (12) is well defined (i.e., it
does not depend on the choice of the representative of x).

Step 2. Uniqueness. By Lemma 22 we know that at most one semigroup
exists with the required properties.

Step 3. Existence of transition kernels. Fix k ∈ Z: Using the isomorphism
G/Gk

∼= 4 [recall (18)], we may make use of the well-known model of inter-
acting Fisher–Wright diffusions labeled by the countable hierarchical group 4
(see, e.g., [12] or [10]). Define kX to be such a process with the resampling
mechanism given by Nkaf, where f is as given by (9), and with migration
determined by the random walk kZ̄ in G/Gk introduced in the beginning of
Section 3.4.

More precisely, given the starting point x̄ ∈ �0;1�G/Gk; we may construct
kX as the unique strong solution of the following �0;1�G/Gk -valued system of
stochastic differential equations:

kX0�ḡ� = x̄�ḡ�;

d kXt�ḡ� =
√
Nkaf

(
kXt�ḡ�

)
w�dt; ḡ�

+
∑
ḡ′ 6=0

kqḡ′
[
kXt�ḡ+ḡ′� − kXt�ḡ�

]
dt;

ḡ ∈ G/Gk ; where w�·; ḡ�, ḡ ∈ G/Gk , are i.i.d. standard Brownian motions
and the migration rates kqḡ′ are given by (41). Write kPx̄a; b for the law of kX

starting at x̄ ∈ �0;1�G/Gk :
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Shiga’s [18] duality relation between interacting Fisher–Wright diffusions
and coalescing random walks may be expressed in our notation as follows.
For k ∈ Z, n ∈ N, t ≥ 0, x̄ ∈ �0;1�G/Gk and ḡ ∈ �G/Gk�n of the form ḡ =
�ḡ1; : : : ; ḡn� = �πkg1; : : : ; πkgn� = πkg for g = �g1; : : : ; gn� ∈ G,

kPx̄a; b
[
kXt ; ḡ

]
= kPg

a; b

[
x̄;kϑt

]
:(49)

Recall Proposition 20. Using the duality observation (49), we may rewrite the
left-hand side in the convergence statement (44) as

∫
Gn
dg ϕ�g� kPM̄kx

a; b

[
kXt ; πkg

]
:(50)

In order to express this in terms of the functions Iϕn from (11), we introduce
the liftings Lk: �0;1�G/Gk → B defined by

�Lkx̄��g� x= x̄�πkg�; x̄ ∈ �0; 1�G/Gk; g ∈ G:
Observe that the composition M̄k ◦ Lk is the identity map on �0; 1�G/Gk ,
whereas Lk ◦ M̄k = Mk on G. Now (50) and hence the left-hand side of (44)
equals

kPM̄kx
a; b I

ϕ
n

(
Lk

kXt

)
=x
∫
kνt�x;dy�Iϕn�y�;

where kνt�x; ·� denotes the distribution of LkkXt under kPM̄kx
a; b . From the con-

vergence statement (44), linearity and Lemma 22, we conclude that there exist
probability laws νt�x; ·� on B, such that

∫
νt�x;dy�Iϕn�y� =

∫
Gn
dg ϕ�g�Pg

a; b�x;ϑt�:(51)

Step 4. Feller property. It is immediate from (48) and (51) that, for t ≥ 0,
n ∈ N and ϕ ∈ L1�Gn; ln�, the map B 3 x 7→

∫
νt�x;dy�Iϕn�y� is continuous.

Therefore, by linearity and Lemma 22, there is an operator Sa; b�t�:C�B� →
C�B� such that

B 3 x 7→
∫
νt�x;dy�F�y� = Sa; b�t�F �x�(52)

for F ∈ C�B�, and Sa; b�t� satisfies (12).

Step 5. Semigroup property. Now we want to check the Chapman–
Kolmogorov property of the kernels νt�x;dy� from (51). It suffices to show
that

∫
νt�x;dy�

∫
νs�y;dz�Iϕn�z� =

∫
νt+s�x;dz�Iϕn�z�:(53)

According to (51) and (48), the interior integral can be rewritten to get, for the
left-hand side of (53),

∑
R

∫
νt�x;dy�I

ϕRs
�R��y�:
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Again by (51) we may continue with

∑
R

∫
G�R�

dh ϕRs �h�Ph
a; b�x;ϑt�:

Inserting (47) and interchanging the order of integration leads to
∫
Gn
dg ϕ�g�

∑
R

∫
G�R�

dh p̃s�g;Ryh�Ph
a; b�x;ϑt�:

Applying the Markov property of ϑ and (51) once more, we arrive at the right-
hand side of (53).

Step 6. Strong continuity. We have established the existence of a Markov
semigroup of operators Sa; b�t�:C�B� → C�B�. In order to show that this semi-
group Sa; b is strongly continuous, it suffices, by the Remark after Theorem
1.9.4 of Blumenthal and Getoor [2], to show that

lim
t↓0

Sa; b�t�F�x� = F�x�; F ∈ C�B�; x ∈ B:(54)

By linearity and Lemma 22, it in turn suffices to check (54) for F = Iϕn for all
ϕ ∈ C�Gn�, n ∈ N. Write a typical term from the left-hand side of (54) as in
(12). Recalling the construction of ϑ in Section 3.1, we will use

∣∣∣∣
∫
Gn
dg ϕ�g�Pg

a; b�x;ϑt� −
∫
Gn
dg ϕ�g�Pg�x;Z�t��

∣∣∣∣
≤ const

∫
Gn
dg ϕ�g�Pg{a coalescence has occurred by time t

}
:

(55)

Since this tends to 0 as t ↓ 0; it suffices to replace ϑ by Z, that is, to consider
the second term in (55). Reversing time, we obtain

∫
Gn
dh �x;h�Phϕ

(
Z�t�

)
→
∫
Gn
dh�x;h�ϕ�h� = Iϕn�x� as t ↓ 0;

as required.

Step 7. Hunt process. From general Markov theory (see, e.g., Theorem 1.9.4
of Blumenthal and Getoor [2]), we can conclude from steps 1–6 that there is
a Hunt process �X;Pxa; b� with semigroup Sa; b:

Step 8. Continuous sample paths. The general theory only yields that the
Hunt process X has càdlàg paths. In order to show that X has continuous
paths, it will suffice to show that the distribution of the continuous process

Lk
kX under kPM̄kx

a; b converges to the distribution of X under Pxa; b in the sense
of convergence of distributions on the Skorohod space D�R+; B� (cf. Theorem
3.10.2 of Ethier and Kurtz [7]).

Arguments similar to those in Steps 1–6 establish that
(k
X; kPx̄a; b

)
has a

Feller semigroup. The latter convergence statement will follow from Theorem
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4.2.11 of [7] if we can show that

sup
x̄∈�0;1�G/Gk

∣∣ kPx̄a; bIϕn
(
Lk

kXt

)
− PLkx̄a; b I

ϕ
n�Xt�

∣∣→ 0 as k→∞:(56)

The supremum can also be written as

sup
x∈B

∣∣ kPM̄kx
a; b I

ϕ
n

(
Lk

kXt

)
− PMkx

a; b I
ϕ
n�Xt�

∣∣:

It follows from Proposition 20 that

sup
x∈B

∣∣kPM̄kx
a; b I

ϕ
n

(
Lk

kXt

)
− Pxa; bIϕn�Xt�

∣∣→ 0 as k→∞:

Using Lemma 18, we have

Pxa; bI
ϕ
n�Xt� =

∑
R

∫
Gn
dg ϕ�g�

∫
G�R�

dh p̃t�g;Ryh� �x;h�

and

PMkx
a; b I

ϕ
n�Xt� =

∑
R

∫
Gn
dg ϕ�g�

∫
G�R�

dh p̃t�g;Ryh�N�R�k
∫
G
�R�
k

dh′ �x;h+ h′�:

Thus, we can bound
∣∣PMkx
a; b I

ϕ
n�Xt� − Pxa; bI

ϕ
n�Xt�

∣∣ above by

∑
R

∫
Gn
dg�ϕ�g��

∫
G�R�

d/h
∣∣∣∣p̃t�g;Ryh� −N

�R�k
∫
G
�R�
k

dh′ p̃t�g;Ryh− h′�
∣∣∣∣:

By Lemma 8, the internal integral converges to 0 as k→∞ for ln-almost all
g ∈ Gn: Therefore, by dominated convergence,

sup
x∈B

∣∣PMkx
a; b I

ϕ
n�Xt� − Pxa; bIϕn�Xt�

∣∣→ 0 as k→∞;

hence, (56) holds. 2

Proof of Theorem 4. The proof is very similar to that of Theorem 3 and
rather easier, so we will omit the details. Essentially, we just replace the
occurrences of (44) and kX in the above proof by (45) and X, respectively.
As X and Y have the same state space, there is no need for an analog of the
liftings, Lk, and so in the counterpart of Step 8 it is possible to replace the
application of Theorem 4.2.11 of [7] by one of Theorem 4.2.5 of [7]. 2

5. Scaling results. The purpose of this section is to verify the cluster
formation theorem (Theorem 6). This requires the following preparation.

Proof of Proposition 5. Consider first the claim regarding X. Fix m,
s ∈ Z: A simple induction argument shows that it suffices to establish, for
fixed t > 0,

Sa; b�Nαst��F ◦ σ−m� =
(
SNαs−ma;Nα�s−m�b�t�F

)
◦ σ−m
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for all F ∈ C�B�. By Lemma 22, it in turn suffices to consider the special case
F = Iϕn for n ∈ N and ϕ ∈ L1�Gn; ln�.

Observe that, by definition of the shrinking operation,
∫
Gn
dg ϕ�g� �x;σ−mg� = Nmn

∫
Gn
dg ϕ�σmg� �x;g�; x ∈ B:

Hence, by the definition (11) of Iϕn, we get Iϕn ◦ σ−m = NmnI
ϕ◦σm
n �x�: Thus,

by (12),

Sa; b�Nαst��Iϕn ◦ σ−m��x� =Nmn
∫
Gn
dg ϕ�σmg�Pg

a; b

[
x;ϑ�Nαst�

]

=
∫
Gn
dg ϕ�g�Pσ−mg

a; b

[
x;ϑ�Nαst�

]
:

By Lemma 21, we may continue with

=
∫
Gn
dg ϕ�g�Pg

Nαs−ma;Nα�s−m�b�x;σ−mϑ�t��

= �SNαs−ma;Nα�s−m�bI
ϕ
n� ◦ σ−m: 2

Lemma 23 (Ergodic theorem). Let µ be as in Theorem 6. Then the sequence
of probability measures σ−mµ converges weakly to the point mass δθ1 as
m→∞.

Proof. For k ∈ Z and m ≥ k; in L2 = L2�B; µ� we have
∫
Gk

dg σ−mx�g� =N−m
∫
Gk−m

dg x�g�

=N−kNk−m
∫
Gk−m

dg
∫
G0

dh x�g + h�

by the stationarity of µ: Since µ is ergodic, from the L2-ergodic theorem (The-
orem 6.4.1) of Krengel [13], it follows that the latter expression converges in
L2 to

N−k
∫
µ�dx�

∫
G0

dhx�h� = θ
∫
Gk

dh

as m→∞; where we used the assumption (15). Consequently, if H is a coset
of Gk we have that

∫
dg 1H�g�σ−mx�g� → θ

∫
dg 1H�g� as m→∞

in L2. Thus, in the notation of Lemma 22 we get
∫
σ−mµ�dx� Iϕn�x� →

∫
δθ1�dx�Iϕn�x� as m→∞

for ϕ = ⊗n
i=1 ϕi with ϕi ∈ A , 1 ≤ i ≤ n, n ∈ N, and the result follows by

Lemma 22. 2
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Proof of Theorem 6. (i) This follows, directly from Proposition 5, Lemma
23, Theorem 4 and Theorem 4.2.5 of [7].

(ii) This is immediate from part (i) and the observation that 2−j;0◦2m;m =
2m−j;m.

(iii) From Proposition 5 we see that the distribution of 2−j;0Y under Qθ1
b

is the same as the distribution of Y under Qθ1
Nαjb . For ϕ ∈ L1�Gn; ln�, n ∈ N,

by (13) we have

Qθ1
NαjbI

ϕ
n�Yt� =

∫
Ǧn
dg ϕ�g�Qg

Nαjbθ
�St�(57)

[recall that St = �i:ηi�t� 6= †�].
If we take the limit as j→∞ in (57), then, by the construction of Section 3.1

and Corollary 14, we get

θ
∫
Ǧn
dg ϕ�g� = θIϕn�1�:

On the other hand, if we take the limit as j→−∞ in (57), then we obtain

θn
∫
Ǧn
dg ϕ�g� = Iϕn�θ1�:

Both claims then follow by Lemma 22.
(iv) From Lemma 8, we know that Qθ1

b -a.s. for l-a.e. g ∈ G we have

Yt�g� = lim
k→∞

Nk
∫
Gk

dhYt�g + h�:

As Yt is (spatially) stationary under Qθ1
b , the kth term in the sequence on the

right-hand side has the same distribution as Iϕ1
(
�2−k;0Y�t

)
, where ϕ = 1G0

.
By part (iii),

Qθ1
b I

ϕ
1

(
�2−k;0Y�t

)(
1− Iϕ1

(
�2−k;0Y�t

))
−−→
k→∞

0;

and so Qθ1
b -a.s. for l-a.e. g ∈ G we have Yt�g� ∈ �0;1�. 2
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