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A CENTRAL LIMIT THEOREM FOR REVERSIBLE
EXCLUSION AND ZERO-RANGE

PARTICLE SYSTEMS

BY SUNDER SETHURAMAN AND LIN XU

ETH-Zentrum and Rutgers University

We give easily verifiable conditions under which a functional central
limit theorem holds for additive functionals of symmetric simple exclusion
and symmetric zero-range processes. Also a reversible exclusion model

Ž .with speed change is considered. Let h t be the configuration of the
Ž .process at time t and let f h be a function on the state space. The

y1 r2 lt Ž Ž ..question is: For which functions f does l H f h s ds converge to a0
Brownian motion? A general but often intractable answer is given by
Kipnis and Varadhan. In this article we determine what conditions be-

Ž .yond a mean-zero condition on f h are required for the diffusive limit
above. Specifically, we characterize the Hy1 space in an applicable way.

Our method of proof relies primarily on a sharp estimate on the
‘‘spectral gap’’ of the process and weak regularity properties for the
invariant measures.

1. Introduction and results. One of the difficult problems in the recent
study of interacting particle systems is the characterization of the motion of a
specific, or tagged, particle. A suitable description of the tagged particle

w xmotion has been shown to imply various physical properties of the process 9 .
The investigation of the motion of any single particle, however, is complicated
by the fact that it depends on its environment, that is, the other particles.
Therefore, by itself, the tagged particle motion is not Markovian. However,
the interaction of the other particles is weak and it is usually expected that
the tagged particle motion, appropriately scaled, will converge to a diffusion.

w xHow to prove this? The general method, outlined by Kipnis and Varadhan 6 ,
is to evaluate the tagged particle motion as the sum of a martingale and an
additive functional. The martingale, by standard limit theorems, converges. It
is therefore enough to show that the scaled additive functional converges
also. When such a functional central limit theorem is true for the general

w xstationary reversible Markov process is determined in 6 . Although Kipnis
and Varadhan give an abstract condition under which additive functionals
converge, this condition is often too involved to verify for any particular case.
In particular, if one desires to solve the tagged particle problem in an
interacting particle system with drift, that is, when the process is nonre-
versible, then more tractable conditions are required.
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The aim of this article is to provide such easy-to-verify conditions in the
context of three types of conservative interacting particle systems, two ver-
sions of the exclusion process and the zero-range process. Although our
motivation for the problem derives from tagged particle considerations, we
note that our conditions represent simple criteria under which an invariance
principle holds for these particle systems.

w xBefore we proceed further, let us describe the result in 6 . Consider a
Ž .Markov process h t defined on the state space S and let it be reversible with

Ž .respect to the probability distribution p dh . Suppose also that the process
Ž . Ž . Ž .h t is stationary and that p is the ergodic measure. Let f h g L S, p and2

p w xnormalize f so that E f s 0. Define L to be the infinitesimal generator of
the process. Now specify the time integral

t
S t s f h s ds.Ž . Ž .Ž .H

0

w x y1r2 Ž .It is proved in 6 that l S lt converges weakly, with respect to p , to a
Ž 2Ž . . 2Ž .Brownian motion B s f t if the limiting variance is finite, s f - `.

This condition is further analyzed by calculating the variance:

1 22 ps f s lim E S tŽ . Ž .
ttª`

`
ps 2 E f h s f h 0 dsŽ . Ž .Ž . Ž .H

0

y1ps 2 E yL f , fŽ .
y1r2 y1r2ps 2 E yL f , yL f .Ž . Ž .

2Ž .Now it is clear that s f - ` is equivalent to

1r21 f x g Range yL ,Ž . Ž . Ž .

5 5 y1which in turn is equivalent to f - `, the H bound on f :y1

p p< <w x2 E f , f F c f E yL f , f'Ž . Ž . Ž .

5 5 Ž .for all locally supported f; here, in fact, f is the smallest c f .y1

The above calculation also identifies the finite variance condition as an
equivalent measure of the asymptotic independence of the state variables:

`
p3 E f x s f x 0 ds - `.Ž . Ž . Ž .Ž . Ž .H

0

Ž . 1As terminology, we will call a function f x : S ª R admissible for the
Ž . 2Ž . Ž . Ž .generator L if f x satisfies either s f - ` or its equivalents 1 ] 3 . This

2Ž .characterization of f is naturally the best possible because s f is the
'Ž . Ž .limiting variance of 1r t S t .
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As mentioned before, it is difficult to verify these conditions for a particular
Ž .f x , even if the function is locally supported. For certain conservative

dynamics, we will determine in this article simpler admissibility conditions
for locally supported functions. In other words, we will characterize the space
Hy1 in a more transparent way. Specifically, we investigate the symmetric
simple exclusion and the symmetric zero-range processes. In the last section
we show that our techniques also apply to a more general one-dimensional
nearest-neighbor exclusion model whose invariant measure is a Gibbs distri-
bution.

Conservative particle systems consist of an infinite number of particles
moving on Zd according to a Markovian law: particles are neither created nor
destroyed. Hence the title ‘‘conservative.’’ These systems were first introduced

w xin 1970 by Spitzer 14 .
Informally, both symmetric simple exclusion and symmetric zero-range

processes are systems of particles performing random walks according to
symmetric translation invariant finite range irreducible jump probabilities
Ž . Ž . Ž . dp i, j s p 0, j y i s p j y i , where i, j g Z . The difference occurs in the

nature of their interactions. For the simple exclusion system, the particles
interact only in that jumps to occupied sites are suppressed. Hence, the state

� 4Z d
space of the simple exclusion process may be realized as S s 0, 1 and a

� d4configuration h s h : i g Z as a collection of occupation variables h , wherei i
h s 0 or 1 if site i is empty or full. However, for the zero-range systems, thei

1 Ž .interaction is given in terms of a rate function c: N ª R , c 0 s 0 and
Ž . Ž .c i ) 0 for i G 1 here, N denotes the non-negative integers . If there are k

particles at a vertex i g Zd, then one of them jumps to site j at rate
Ž . Ž .c k p j y i ; this happens independently at every site. A configuration h

then is represented as a collection of occupation numbers h taking values ini
Z d Ž .the state space S s N . When the rate function c k ' k, it is not hard to

see that the associated zero-range process is noninteractive.
The more general symmetric exclusion process, for convenience, will be

� 4Zdefined on the space of charges S s y1, 1 . Besides the basic exclusion, the
charges interact in that different configurations possess different rates of
change. This will be made clearer in the following.

Note that throughout this article, we consider only symmetric finite range
Ž . Ž .irreducible p ? see Remarks 1.1 and 1.3 .

The Markovian evolution of the simple exclusion is given precisely through
the action of its symmetric infinitesimal generator L on test functions f:

Lf h s h 1 y h f h i j y f h p j y i ,Ž . Ž . Ž . Ž .Ž .Ž . Ž .Ý i j
i , j

where h i j is the ‘‘switched’’ configuration formed from h by exchanging the
values of h and h .i j

The symmetric infinitesimal generator L for the zero-range process is
given as:

Lf h s c h f h i j y f h p j y i ,Ž . Ž . Ž . Ž . Ž .Ž .Ž .Ý i
i , j
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where

h y 1, if k s i ,¡ i

i j ~h q 1, if k s j,h s jk ¢h , if k / i , j,k

provided h G 1 and i / j; otherwise, h i j ' h.i
The simple exclusion process may be constructed now without further

assumptions. However, in order for the zero-range processes to make sense,
we must impose on the rate the following condition:

Ž . < Ž . Ž . <LG There exists a constant a - `, where c k q 1 y c k - a for all1 1
k G 0.

w x w xWe refer to 10 and 1 for the details of these constructions.
We now specify the invariant measures for these processes. Because both

systems are conservative, it is expected that these processes possess a family
� 4of mutually orthogonal extremal invariant states P , each concentrated onu

configurations of fixed density u . In fact, this is the case and, furthermore,
Ž .these measures are product measures. As the jump probabilities p ? are

symmetric, these measures are reversible. Expectation with respect to P isu

5 5denoted by E . When the density u is fixed, we will denote by ? thepu
pŽ .L S, P norm.u

For the simple exclusion process, these extremal measures P are Bernoulliu

w x Ž w x.product measures with density u g 0, 1 see 10 .
In order to describe these measures for the zero-range processes, define the

Ž . 1 Ž 1 .partition function Z ? on R where R are the positive real numbers byq q

a k

Z a s .Ž . Ý c 1 ??? c kŽ . Ž .kG0

Ž .It is clear that Z ? is an increasing function. Let a* be the radius of
convergence of Z:

a* s sup a ; Z a - ` .� 4Ž .
Ž .To avoid degeneracy, we will assume that Z a diverges as it approaches the

boundary:

4 lim Z a s `.Ž . Ž .
aªa *

For 0 F a - a*, consider the translation invariant product measure P de-a

fined on S with marginal m :a

1 a k

� 45 m h s k sŽ . a i Z a c 1 ??? c kŽ . Ž . Ž .

for k G 0. In the literature, the parameter a is called the ‘‘fugacity’’ of the
process. However, a more intuitive parametrization of the invariant measures
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Ž .is through the particle density of the system. Let u a be the density of
particles for the measure P . That is,a

w xu a s E h ,Ž . a 0

where E refers to expectation with respect to P .a a

Ž . w . 1From 4 it follows that u : 0, a* ª R is a smooth strictly increasingq
bijection. We may write, therefore,

P s P , u G 0.u a Žu .

Under this convention it follows then that

a u s E c h , u G 0.Ž . Ž .u 0

w xIt is shown in 1 that these measures are invariant for the zero-range
Ž . Ž . Žprocess with rate c ? , and extremal when c ? non-decreases the ‘‘attractive’’

. Ž .case and p ? corresponds to a null recurrent walk. So, under our assump-
Ž .tions on p ? , we have extremality of P in d s 1, 2 for the attractive systems.u

This extremal property for P is believed to be true, but not proven, inu

general.
Ž . w Ž .xWe may now define the Dirichlet form D f s yE f Lf for both ofu u

these models associated with L under P .u

For simple exclusion,

2i jD f s E h 1 y h f h y f h p j y i .Ž . Ž . Ž .Ž .Ž . Ž .Ýu u i j
i , j

For zero-range processes,

2i jD f s E c h f h y f h p j y i .Ž . Ž . Ž . Ž .Ž .Ž .Ýu u i
i , j

We now define a one-dimensional nearest-neighbor reversible generalized
exclusion process. The ‘‘speed change’’ dynamics remarked on earlier is given
implicitly by the Dirichlet form

2i jD f s E f h y f h ,Ž . Ž .Ž .Ž .Ý0 0
< <iyj s1

where the expectation here is with respect to the invariant measure

exp bÝky1 h hŽ .isyk i iq1
6 P h , . . . , h sŽ . Ž .0 yk k Z bŽ .k

Ž .defined in terms of its finite-dimensional projections; Z b is the normaliza-k
w x w xtion. We refer to 10 for the construction of this process; see also 15 for a

discussion.
The Gibbs distribution P is Markovian for all real b and therefore has0

1 Žunique extension to all of Z . Therefore, P is also ergodic for the process see0
w x.15 . When b s 0, the measure is the familiar Bernoulli product measure. By
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the usual transfer matrix methods, we may specify the transition probability
matrix A:

1 b ybe eA s .
b yb yb bž /e q e e e

The one coordinate marginal is the fair coin-tossing measure corresponding to
� 4 � 4 � 4 � 4zero density: m h s P h : m h s y1 s m h s 1 s 1r2.i 0 i i i

Associated with P are the modified measures P l defined in terms of their0 u

finite-dimensional projections:

exp lÝk h y uŽ .Ž .isyk ilP h , h , . . . , h s P h , h , . . . , h ;Ž . Ž .0 yk ykq1 k u yk ykq1 kZ lŽ .k

Ž . Ž .Z l again is the new normalization. The mean m l of these distributions isk
given by

k1
lm l s lim h y u dP .Ž . Ž .ÝH i 0ž /2k q 1kª` isyk

Expectation with respect to P l will be denoted as El.0 0
We now define the notion of the finite volume ‘‘spectral gap’’ for these

d d Ž . Ž dprocesses. Let B ; Z be a cube of width n. Let P h s P h N Ý h sn n, K u ig B in
.K be the conditioned measure on the hyperplane corresponding to K parti-

cles. This measure is reversible and ergodic for the process localized on the
� 4dhyperplane S s Ý h s K . The dynamics for these processes aren, K ig B in

driven by L , the truncated generator corresponding to bonds only in Bd.n n
w x Ž .Denote by E f and D f the expectation and the Dirichlet form of fn, K n, K

with respect to P and L . Note that these definitions are independent of u .n, K n
Now, as these processes defined on S are finite state irreducible Markovn, K

chains, the operator L exhibits a discrete spectrum and we may define then
difference between 0 and the next largest eigenvalue as the ‘‘spectral gap’’ for
these processes. This quantity is also understood in terms of the constant

Ž .W n, K appearing in Poincare’s inequality:´
2w xE f y E f F W n , K D f .Ž . Ž .n , K n , K n , K

Ž .This constant W n, K is the reciprocal of the gap and necessarily depends on
the infinitesimal rates of the processes.

Ž .dRecall that K s Ý h . The following condition on W n, K will beig B in

useful in the statement of our results:

Ž . Ž . w Ž .2 x Ž . 4A1 There is a constant C u - ` such that E W n, K - C u n .u

REMARK 1.1. For exclusion processes with finite range jump probabilities
Ž w x w x. Ž . 2p, it is known see 11 and 13 that W n, K - Cn , where C is a constant

Ž .independent of n and K. In these cases, condition A1 is trivially satisfied for
any u .
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The situation is not as clear for zero-range processes. However, in a
w x Ž . 2forthcoming paper 8 , a similar bound, W n, K - Cn , is shown for those

Ž .nearest-neighbor symmetric systems with rate function c satisfying LG and
the following condition:

Ž . Ž . Ž .M There exists k g N and a ) 0 such that c k y c j G a for all0 2 2
k G j q k .0

Ž .These conditions include the rate c k s k corresponding to the indepen-
Ž . Ž . wdent random walk model. However, the important rate c k s I k G 1 where

Ž . x Ž .I ? is the indicator does not satisfy M . Yet, by a transform to the exclusion
w x Ž . Ž .2process 4 , we may bound W n, K - C n q K in dimension d s 1 and

Ž .therefore condition A1 holds also for this rate. In fact, it is expected that
Ž .A1 is only a technical condition and that all zero-range systems with rates
Ž . Ž . Ž .c ? which satisfy LG alone satisfy A1 .

We are now in a position to state the main result of this article.

Ž .THEOREM 1.1. Let h t correspond to the symmetric finite range simple
d Ž .exclusion process. Let also L ; Z be a finite set. Suppose that f h is a local

� 4 Ž .function supported in h : i g L . Let now u g 0, 1 . Then, f is admissible fori
2Ž .L acting on L S, P if and only ifu

dn

E f h s 0Ž . ysuyndy

for

0, 1, 2, in d s 1,
n s 0, 1, in d s 2,½

0, in d G 3,

Ž .THEOREM 1.2. Let h t correspond to a symmetric finite range zero-range
Ž . d Ž .process satisfying A1 . Let also L ; Z be a finite set. Suppose that f h is a

� 4local function supported in h : i g L . Suppose also that f obeys the growthi
w 4 xcondition E f - ` for some u ) 0. Then f is admissible for L acting onu

4Ž .L S, P if and only ifu

dn

E f h s 0Ž . ysuundy

for

0, 1, 2, in d s 1,
n s 0, 1, in d s 2,½

0, in d G 3.

Ž .THEOREM 1.3. Let h t correspond to the one-dimensional symmetric near-
est neighbor generalized exclusion process with Gibbs invariant measure P .0

� < <4 1 Ž .Let also L s 1, 2, . . . , L ; Z be a finite set. Suppose that f h is a local
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� 4 2Ž .function supported in h : i g L . Then f is admissible for L acting on L S, Pi 0
if and only if

dn
l Ž y .f h dP N s 0 for n s 0, 1, 2,Ž .H 0 ysundy

Ž . Ž Ž ..where l y is chosen so that m l y s y.

REMARK 1.2. It should be noted that we expect Theorem 1.3 to extend in a
similar way to higher dimensions as in Theorems 1.1 and 1.2; the problem
lies in applying a computationally difficult cluster expansion to estimate the
characteristic function of the invariant measures. In one dimension, such
estimates are more manageable, due to the Markovian nature of these
measures.

REMARK 1.3. The finite range assumption, besides being useful in satisfy-
Ž .ing A1 , is also exploited to prove the ‘‘necessity’’ parts of the claims.

The following remarks indicate a few basic equivalences which lead to a
corollary.

REMARK 1.4. We note that the conditions

dn

7 E f h s 0 for n s 0, 1, 2, . . .Ž . Ž . ysuyndy

or for the Gibbs state P ,0

nd
lŽ y .f h dP s 0 for n s 0, 1, 2, . . . ,Ž .H 0ndy ysu

may be recast as

n
8 E f h h y u s 0 for n s 0, 1, 2, . . . .Ž . Ž . Ž .Ýu iž /

digZ

In fact, for models with product invariant measures, such as the simple
exclusion and zero-range processes, these last conditions become

n

9 E f h h y u s 0 for n s 0, 1, 2, . . . .Ž . Ž . Ž .Ýu iž /
igL

REMARK 1.5. As a point of clarification for the proofs of Theorems 1.1 and
5 51.2, we note that any local function f satisfies f - ` for any p G 0 whenp

the underlying probability structure is a Bernoulli-type measure, that is,
when the site number is bounded.

REMARK 1.6. A refinement of Theorem 1.2 holds when the zero-range rate
Ž . Ž . 5 Ž .5satisfies the assumptions LG and M . In this case, because W n, K -`
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2 5 5Cn , we may replace the growth condition f - ` with the less restrictive,4
5 5more natural condition f - `.2

These remarks and the previous discussion of extremality of P and theu

Kipnis]Varadhan theorem imply:

Ž . 5 5COROLLARY 1.1. Let f h be a local function such that f - `. Let L be2

the generator for the symmetric finite range simple exclusion or those symmet-
Ž . Ž .ric nearest neighbor zero-range processes with rates satisfying LG and M .

Ž . 2Ž .Then f h is admissible for L acting on L S, P if and only ifu

n
uE f h h y u s 0Ž . Ž .Ý i½ 5

igL

for
0, 1, 2, in d s 1,

n s 0, 1, in d s 2,½
0, in d G 3.

Furthermore, we have the invariance principle with respect to P ,u

ly1r2S lt ª B d 2 f tŽ . Ž .Ž .
in all dimensions for simple exclusion and in d s 1, 2 for attractive zero-range.

REMARK 1.7. We note that in dimensions d G 3, simply a mean-zero
Ž .condition on f h is sufficient for admissibility. This mimics the well known

Ž w x.result for finite state irreducible Markov chains see 2 . Similar invariance
Ž .principles also hold for a wider class of zero-range systems see Remark 1.1 ,

and the generalized exclusion process.

Let us consider a few examples for the nearest-neighbor simple exclusion
process in dimension d s 1:

Ž . Ž .EXAMPLE 1.1. Let f h s h y h . We will give a direct proof that f h is1 2
w xadmissible. Clearly, E f s 0 for any u . Furthermore,u

w xE ff s E h y h f hŽ . Ž .u u 1 2

s E h f h y E h f hŽ . Ž .u 1 u 2

12s E h f h y E h f hŽ . Ž .u 1 u 1

12s E h f h y f hŽ . Ž .Ž .u 1

1r21r2 22 12F E h E f h y f hŽ .Ž .Ž .Ž .u 1 už
1r2F c f D f ,Ž . Ž .u

where we have used the Schwarz inequality in the penultimate line and have
replaced the variation on the bond 1 l 2 by the full Dirichlet form in the last
line. This shows that f is admissible.
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Ž . w xEXAMPLE 1.2. Let f h s h y 1r2. Here E f s 0. However, the sec-1 1r2
ond condition is not satisfied. We may construct a sequence of local functions
� 4 w x Ž .f so that E ff s 1, but D f ª 0 as n ª `. This is a conse-n 1r2 n 1r2 n
quence of the recurrence of random walk in dimension 1. In fact, take

n Ž .f s 4Ý h y 1r2 . We will see that these functions play an importantn isyn i
role in the ‘‘necessary’’ part of the proof of Theorems 1.1]1.3 given in the next

Ž .section. We note, however, that f h is admissible in dimensions d G 3. This
is due to the transience of random walk in three or more dimensions, which

� 4prevents the construction of a sequence f .n

EXAMPLE 1.3. The previous discussion enables us to calculate the distri-
bution of the occupation time at the origin, say, for dimensions d G 3:

1 t 2h s y u ds ª N 0, s u ,Ž . Ž .Ž . Ž .H 0't 0

where initial configurations are distributed according to P . The correctu

scalings in dimensions d s 1, 2 for the occupation time integral to converge
y3r4 Ž w x.'to a nondegenerate Gaussian are, respectively, t and t log t see 5 .Ž .

w xWe may regard the object E f , for fixed f , as a function of y. In fact,y
Ž . w x Ž .defne A y s E f . When f is a polynomial, A y is a polynomial in y.f y f

Ž .Hence, as indicated by the differing examples above, A y should be ‘‘flat’’f
up to second degree near some point u in dimension d s 1 in order for f to be

4Ž .admissible with respect to L P .u

These admissibility conditions, on the other hand, are also measures of the
Ž .asymptotic independence of the state variables. Consider 3 : if the correla-

w Ž Ž .. Ž Ž ..xtions E f h s f h 0 decrease fast enough to be integrable, then f , byu

definition, is admissible. If we understand simple exclusion to be not so
different from random walk, then we might argue for a general mean-zero
Ž .f h that its correlations, taking into account the linear, quadratic and higher

y1r2 y1 Ž y3r2 .order expansions, behave like a s q a s q O s , clearly not inte-1 2
grable if a , a / 0. Consequently, in d s 1, these conditions are extra crite-1 2
ria on f so that the slower modes a and a vanish. This is made more1 2
precise in Section 3.

In Section 2, we outline an ‘‘integrations by parts’’ method, applicable to all
three processes considered, which has been used before in different forms in a

w xfew settings 16, 3 . This approach relies on two estimates. First, we make
use of the estimate on the spectral gap for the process defined on a finite

Ž .range of coordinates afforded by condition A1 . Second, we utilize nice
regularity properties of the invariant measures of the process.

In Section 3, we will give special arguments for Theorem 1.1 utilizing the
Ž .condition 3 in the case of nearest-neighbor interactions. The method of proof

here applies only to the simple exclusion process and relies heavily on the
� 4Lnearest-neighbor condition. The fact that the state space S s 0, 1 for finite

subsets L ; Zd is of finite cardinality is also useful.
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In Section 4, we will demonstrate the robustness of the method given in
Section 2 by modifying the arguments given there to prove Theorem 1.3 for a
one-dimensional generalized exclusion process. The key idea is that the
Markovian invariant measures behave like product measures with exponen-
tial error.

2. The main argument. In this section, we prove Theorems 1.1 and 1.2
for the simple exclusion and zero-range processes. The proof we will outline

Ž .applies in a variety of situations in which the spectral gap estimate A1
holds and when the invariant measures possess certain regularity. For the
simple exclusion and zero-range processes, the invariant measures are prod-
uct measures with well behaved marginals. Accordingly, several estimates
required for the characteristic functions of these marginals are immediate. As

Ž .discussed earlier, the spectral gap estimate A1 is known for exclusion
processes. The condition is also true for a wide class of zero-range models

Ž .under some conditions; however, as remarked, we expect A1 to be satisfied
by all constructable zero-range procesess.

In order to fix ideas, we work in dimension d s 1; the higher dimensional
cases are analogous.

Ž .PROOF OF THEOREMS 1.1 AND 1.2. Sufficiency. Let f h be given dependent
only on a finite number of coordinates indexed in L g Z. We assume f

Ž .satisfies the criteria 9 with respect to P . To prove the admissibility of f , weu

Ž .will establish 2 .
Ž . w Ž . Ž .y1 n Ž . x < <Let g y s E f h N 2n q 1 Ý h y u s y for n ) L . Then we cann u yn i

�Ž .y1 nq1 4solve u in any hyperplane 2n q 3 Ý s K , wheren, K isyny1

yL u s g y g .Ž .n n , K n nq1

Ž . � 4 � 4Here yL is the generator on bonds yn y 1, yn , . . . , n, n q 1 . Then
Ž . � nq1 Žsolution u exists because yL , on the hyperplane Ý h s 2n qn, K n yny1 i

. 43 K , is a finite-dimensional operator and g y g is orthogonal to alln nq1
invariant measures of this truncated finite-dimensional process, that is,

w nq1 xE g y g N Ý h s z s 0 for all z. This is best seen by expressing, foru n nq1 yny1 i
< <n G L ,

n

g y s E f h N h s y , h , h , ???Ž . Ž . Ýn u i yny1 nq1
yn

as a martingale. Therefore, we may write, for a test function f,

w xE ff s E f y g fŽ .u u <L <q1

`

w xq E g y g f q lim E g f .Ž .Ýu n nq1 u n
nª`< <ns L q2

10Ž .
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5 5 2 w xBy the martingale property, g ª E f s 0 as n ª `. Therefore, theL ŽP .n uu

Ž .last term in 10 vanishes. Lumping the first term into the second by abuse of
notation, we have

w xE ff s E g y g fŽ .Ýu u n nq1

nq11
s E E g y g f h s KŽ .Ý Ýu u n nq1 i2n q 3 isyny1

s E E yL u f KŽ .Ý u u n n , K

1r2 1r2s E E yL u ? yL f KŽ . Ž .Ý u u n n , K n

1r2 1r22 21r2 1r2F E E yL u K ? E yL f KŽ . Ž .Ž .Ž .Ý nu u n n , K u

1r22y1r2s E E yL g y g KŽ . Ž .Ž .Ý u u n n nq1

1r221r211 ? E yL f KŽ . Ž .Ž .nu

1r21r2 2F E W n , K E g y g KŽ . Ž .Ž .Ý u u n nq1

1r221r2
?E yL f KŽ .Ž .nu

1r22 1r2F E W n , K E g y g K ? D fŽ . Ž . Ž .Ý u u n nq1 u

1r421r41r2 2 2F D f E W n , K ? E E g y g KŽ . Ž . Ž .Ýu u u u n nq1

1r4 1r41r2 2 4F D f E W n , K ? E g y gŽ . Ž . Ž .Ýu u u n nq1

1r4 1r41r2 2 4F 8 D f E W n , K ? E gŽ . Ž . Ž .Ýu u u n

1r41r2 4F 8 D f C ? n ? E g .Ž . Ž .Ýu u n

Ž .Here in the third step, we use the equality g y g s yL u ; in then nq1 n n, K
fourth step, we use symmetry; in the fifth, Schwarz inequality; in the sixth,
the above equality again; in the seventh, we use that the operator norm of
Ž .y1r2yL on the space of mean-zero functions on the hyperplane H isn n, K'bounded by W n , K ; in the next step, we overestimate by the SchwarzŽ .

Ž .inequality and the full Dirichlet form D f ; to obtain the last line, we recallu

Ž .our condition A1 .
5 5 4Observe now that if we can show that g decays fast enough, thenL ŽP .n u

5 5 1q« wthe proof is finished. In particular, a decay of g ; n for « ) 0 we will4n
pŽ . 5 5 xabbreviate the L P norm by ? as u is fixed gives that the above sumpu



S. SETHURAMAN AND L. XU1854

Ž . Ž 1y« .11 diverges as O n . However, this is sufficient because instead of the
� 4 � n4index sequence n , we may substitute the sequence 2 . In this spacing, the

5 5 yŽ1 q« .n Ž . n yŽ1q« .n
nsame decay g ; 2 is enough for the last sum in 11 , Ý2 2 ,42

to converge.
Ž .We will use the full force of the assumptions 9 to prove the following

lemma, which establishes this decay with « s 1r2 and, therefore, the suffi-
ciency part of Theorems 1.1 and 1.2. To simplify the exposition, we prove the
lemma for the zero-range processes.

Ž . Ž .LEMMA 2.1. Let f h s f h , h , . . . , h be a local function. Under the1 2 <L <

Ž .conditions 1.9 , we have that
n1

y3r25 5g h y u F K f n ,Ž .Ý 4n iž /2n q 1 yn 4

Ž < < .where K s K L , u is a finite constant.

Ž .y1 n Ž .PROOF. Let y s 2n q 1 Ý h y u . In what follows, we apply theyn i
convention that C and K represent finite constants which may vary on

< <application; typically these constants depend on L and u .
Step 1. To prove the lemma, we employ an Edgeworth expansion or

Ž .Cramer’s trick to evaluate g y . The idea is to ‘‘modify’’ P so that the´ n u

variables h y u have mean y:i

n1
E f h , . . . , h h y u s yŽ . Ž .Ýu 1 <L < i2n q 1 yn

nE fI 1r 2n q 1 Ý h y u s yŽ . Ž .Ž .u yn is nE I 1r 2n q 1 Ý h y u s yŽ . Ž .Ž .u yn i

12Ž .

<L <'2n q 1 Q yÝ h y u y yŽ .Ž .2 nq1y <L < 1 is E f ,mŽl. ' < <2n q 1 y L Q 0Ž .2 nq1

where E refers to expectation with respect to the modified productmŽl.
l Ž Ž Ž .. Ž ..measure P with marginal m s exp l h y u rM l m , whose meanmŽl. i a Žu .

Ž .is the density m l . Also we define
l

'Q x s l P h y u y y s x .Ž . Ž .Ýl mŽl. i½ 5
1

Ž .Step 2. We now choose the parameter l so that m l s y q u . With this
Ž . Ž w x.choice, Q x obeys a classical local central limit theorem see 12 . Morel

precisely, when u ) 0,
l

'lim Q x s lim l P h y u y y s xŽ . Ž .Ýl mŽl. i½ 5lª` lª` 1

21 yx
s exp ,2½ 5'2p s yŽ . 2s yŽ .

13Ž .
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2 2 'Ž . w xwhere s y s E h y u y y is the variance and x s lim xr m .mŽl. i mª`

w 2Ž . x Ž .This limit allows us to conclude, for y small when s y ) 0 , that Q 0 )l
Ž .C u ) 0.

'Ž .Also Q x may be developed in powers of xr l by the expansion in termsl
Ž . w � Ž .4xof the characteristic function: n t s E exp it h y u y y . First, we writey yqu

the equality

p li t x'Q x s l e n t dt .Ž . Ž .Hl y
yp

� 4 Ž .By expanding exp itx in the usual way, we have that Q x equalsl

ix' 'l lp l p l
n t dt q tn t dtŽ . Ž .H Hy y'l' 'yp l yp l

2yx ' lp l 2 y3r2q t n t dt q r x l ,Ž . Ž .H yl 'yp l

14Ž .

Ž .where r x represents the error term.
Now, for u ) 0, the zero-range marginals are quite regular and we may

compute, for t small, that

n t s 1 y t 2 s 2 y r2 q O t 3 ,Ž . Ž . Ž .Ž .y

2Ž . < <where, for y small, the variance s y ) 0. For t ) « ) 0, we then have
that

< <n t - K « - 1.Ž . Ž .y

< <Also it is not hard to determine that for y and t - « small, we have that

< < n 2� 4n t - exp yCtŽ .y

Ž .for all n G 1 and some C u ) 0.
< Ž . < Ž . < < 3These observations allow us to bound the error: r x - C u x .

w x 5 Ž .5Step 3. Let J s yd , d for small d ) 0. We will bound g y as4n
follows. First write

1r4 1r44 45 5g y F E g y I y g J q E g y I y f JŽ . Ž . Ž . Ž . Ž .Ž . Ž .4 ½ 5 ½ 5n u n u n

s F q F .1 2

Now, by large deviation estimates, or direct computation, we have that

5 5 y3r2F - C f n .42
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Step 4. Therefore, what remains is to bound F . Our immediate plan is to1
Ž .obtain a better estimate of g y by substituting the Taylor expansion andn

Ž . Ž .lower bound estimate for Q ? of Step 2 into 12 . We have thatl

<L <'2n q 1 Q Ý h y u y yŽ .Ž .2 nq1y <L < 1 i
E fuqy ' < <2n q 1 y L Q 0Ž .2 nq1

< <LK1s K E f h q E f h h y uŽ . Ž . Ž .Ý0 uqy uqy i'n 1

2< <LK2 y3r2q E f h h y u q n E f h r hŽ . Ž . Ž . Ž .Ýuqy i uqyž /n 1

s V q V q V q V ,0 1 2 3

< < < Ž . < Ž < < . 5 5where uniformly, for y g J, K s K n, y - K L , d and r -pi i
Ž < < . 5 Ž .5K L , u , p for any p ) 0. The strategy now is to investigate the V I y g J 4i

separately.
It is not difficult to bound the last term:

5 5 5 5 y3r2V I y g J - K f n .Ž . 4 43

5 5 w xThe estimation of V requires a closer analysis. As y g J s yd , d40
with d small, we may expand V in powers of y. We write0

< <L

V s C E f h q C E f h ? h y u yŽ . Ž . Ž .Ý0 0 u 1 u i
1

2< <L
2 3q C E f h ? h y u y q r h y ,Ž . Ž . Ž .Ý2 u iž /

1

15Ž .

Ž .where again, for y g J, after considering the derivatives of l y at 0, some
5 5regrouping and bounding the constant K , we have C - C and r -40 i

Ž < < .5 5C L , u f . Each y factor, by the central limit theorem, represents a decay4
y1r2 5 5 4of n . Therefore, to estimate V we need only investigate the L norms40

Ž .of the zeroth, first and second order terms in 15 . These terms, however,
Ž . 5 5vanish from our assumptions 9 . This completes the estimation of V .40

5 5 5 5In the same manner, we may expand the terms V and V in powers4 41 2
of y. Here, however, we need only investigate up to the second and third
term, respectively, because V and V possess decay factors of ny1r2 and ny1

1 2
Ž .already. The lower order terms now vanish from assumptions 9 .

This completes the proof of Lemma 2.1 and, consequently, the ‘‘sufficiency’’
part of Theorems 1.1 and 1.2. I



CLT FOR EXCLUSION AND ZERO-RANGE SYSTEMS 1857

In fact, much the same proof of the lemma yields the stronger result in
dimension d which we state:

Ž . Ž . 5 5LEMMA 2.2. Let f h s f h , . . . , h be a local function. Assume f - `.p1 <L <

Then, given that

j

E f h y u s 0 for j s 0, 1, . . . , k ,Ž .Ýu iž /
igL

we have

1
Žkq1.d r25 5E f h y u F C f n ,Ž .Ý pu id< <B dn igBn p

Ž < < .where C s C L , u is a finite constant.

Necessity. We show by contradiction the necessity of the admissibility
Ž .conditions 9 . Our proof will be for the zero-range process, but a straightfor-

Žward modification see Section 4 for the arguments given for the generalized
.exclusion process can be made applicable for the simple exclusion model.

w xStep 1. Suppose f is admissible but that E f / 0. Then we may chooseu

Ž . w x Ž .f h s 1. With this choice, E ff / 0, but D f s 0, contradicting theu u

Ž .admissibility of f. This establishes the necessity of the first condition in 9 .
w xStep 2. Let f be admissible again. By Step 1 we know then that E f s 0.u

w <L <Ž .xHowever, suppose that E f Ý h y u / 0. Then we may chooseu 1 i

n i
f h s J h y u ,Ž . Ž .Ýn iž /2n q 1yn

w xwhere J is a test function supported on y1, 1 , vanishing at the boundary,
Ž . w x w xand J x ' 1 for x g y« , « . For large n, we then have E ff su n

w <L <Ž .xE f Ý h y u / 0. However,u 1 i

2i iq12 D f s E c h f h y f hŽ . Ž . Ž .Ž .Ž .Ýu n u i n n

2i q 1 i
s E c h J y JŽ .Ýu i ž / ž /ž /2n q 1 2n q 1

n 1 i
( C J9Ý 2 ž /2n q 12n q 1Ž .yn

ª 0 as n ª `,

Ž .which would contradict admissibility. Therefore, the second condition in 9 is
also necessary.
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Step 3. Again let f be admissible. We have then, from Steps 1 and 2, that
w x w <L <Ž .x w <L <ŽE f s 0 and E f Ý h y u s 0. However, suppose that E f Ý h yu u 1 i u 1 i
.2 xu / 0. In this case, we may choose

i l
f s J , h y u h y uŽ . Ž .Ýn i lž /2n q 1 2n q 1< < < <i , l Fn

with the condition that J is a test function, J ' 1 in a small ball around the
origin.

w x w Ž <L <1Ž ..2 xThen by independence of coordinates, E ff s E f Ý h y u / 0u n u i
for large n. However, after some calculation,

2 D fŽ .u n

2i iq1s E c h f h y f hŽ . Ž .Ž .Ž .Ýu i n n

i q 1 l
F CE c h J ,Ž .Ý Ýu i ž /ž½ 2n q 1 2n q 1i l

2i l 2yJ , h y uŽ .lž / /2n q 1 2n q 1
2j i q 1 j i 2q J , y J , h y uŽ .Ý jž / ž /ž / 52n q 1 2n q 1 2n q 1 2n q 1j

< < 2( C =J dx .H
Ž . ŽBy varying J, D f may be made as small as desired because two-dimen-u n

.sional Brownian motion is transient . This violates our admissibility assump-
Ž .tion on f. Consequently, we conclude that the third condition in 9 is also

necessary.
This concludes the proof of ‘‘necessity’’ and therefore the proof of Theorems

1.1 and 1.2 for the exclusion and zero-range models. I

3. Case of nearest-neighbor simple exclusion process. In Example
Ž .1.2, we showed that f h s h y 1r2 is not admissible for the exclusion1

� Ž .4process in dimension d s 1 by constructing a sequence of functions f hn
Ž . Ž .for which 2 cannot be satisfied for any constant c f . We can demonstrate

Ž .the inadmissibility of f in a different way by contradicting condition 3
instead. This is accomplished by computing explicitly the correlations

w Ž Ž .. Ž Ž ..xE f h s f h 0 to determine that they are not integrable. A more expan-1r2
sive version of this method of computation will enable us to prove Theorem
1.1 for the nearest-neighbor symmetric simple exclusion process. Our proof
here makes strong use of the nearest-neighbor condition and the form of the

� 4Z d
state space S s 0, 1 .
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Let us now introduce the dual process for the nearest-neighbor exclusion
process. Due to the structure of S, the following set is an orthogonal basis for

2Ž .L S, P :1r2

1 1 12 dL S , P s span 1, h y : i g Z , h y h y : i / j , . . . .� 4Ž . Ž . Ž . Ž .½ 5½ 51r2 i i j2 2 2

1 1�Ž . Ž .The generator L restricted to the span of h y ??? h y : i / i / ???i i 1 22 21 k

4/ i behaves as excluded random walk with k particles on the indices. Thisk
dual action, applied to the case k s 1, where L behaves as the generator for
simple random walk, allows us to write

E f h s f h 0 s E f h 0 T h 0Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž .1r2 1r2 s

1 1s E h 0 y T h 0 yŽ . Ž .Ž . Ž .1r2 1 s 12 2

1 1s E h 0 y P s h 0 y ,Ž . Ž . Ž .Ž . Ž .Ý1r2 1 1 j j2 2
jgZ

Ž .where T is the exclusion semigroup and P s are random walk probabili-s x y
ties. By independence of coordinates, it is easy to calculate the right-hand

Ž . Ž .side as 1r4 P s .11
Ž .Then the integral in 3 may be expressed as

` `
1E f h 0 f h s ds s P s dsŽ . Ž . Ž .Ž . Ž .H H1r2 114

0 0

s ` for d s 1, 2Ž .
- ` for d G 3 ,Ž .

recalling that d-dimensional random walk is recurrent for d s 1, 2 and
transient for d G 3. This argument will be extended to prove Theorem 1.1.

We first state the crucial lemma.

LEMMA 3.1. Symmetric nearest neighbor simple exclusion on Zd with k
particles is recurrent in d s 1 for k s 1, 2 and in d s 2 for k s 1; otherwise
the process is transient.

PROOF. We shall prove the result for d s 1; the arguments for d G 2 are
analogous. For one particle, k s 1, the claim is clear. We consider now the
case k s 2.

Two particle simple exclusion on Z may be represented as a jump process
�Ž . 4 Ž .on i, j : i ) j , where the point i, j corresponds to the positions of the

particles on the integer line. Two particle exclusion in this characterization is
a nearest-neighbor process whose jump rates all equal 1r2 irrespective of the
starting point. In order to demonstrate recurrence, we will show that this
process is a random function of recurrent two-dimensional random walk.

�Ž . 4Let us call the points m q 1, m : m g Z as boundary points and the
others as interior points. The distinction between these types is that bound-
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ary points have two neighbors and interior points have four. Define the
2 �Ž . 4mapping C: Z ª i, j : i ) j , where

i , j , if i ) j,Ž .
C i , j sŽ . ½ j q 1, i y 1 , otherwise.Ž .

�Ž . 4 Ž .This map is reflection across the line m q 1, m : m g Z . Let x t be
RW Ž .two-dimensional random walk with generator L . Then C x is a Markovt

˜�Ž . 4process on i, j : i ) j . Let us compute the generator L of the process. Write
for a test function h,

˜ RWLh s L h C i , jŽ .Ž .
1s h C i q 1, j q h C i y 1, j q h C i , j q 1Ž . Ž . Ž .Ž . Ž . Ž .4

qh C i , j y 1 y h C i , j .Ž . Ž .Ž . Ž .
Ž .When i, j is an interior point, the right-hand side is evaluated as
1 h C i , j q 1, 0 q h C i , j q y1, 0Ž . Ž . Ž . Ž .Ž . Ž .4

qh C i , j q 0, 1 q h C i , j q 0, y1 y h C i , j .Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .
Ž . Ž . Ž .If i, j is a boundary point, i, j s m q 1, m , then we calculate the right-

hand side as
1 h C m q 1, m q 0, 1 q h C m q 1, m q 1, 0Ž . Ž . Ž . Ž .Ž . Ž .2

y h C m q 1, m .Ž .Ž .
˜Hence, for interior points, L gives rates 1r4 to its four neighbors; for

˜boundary points, L gives rates 1r2 to each of two neighbors. As remarked
earlier, however, two particle exclusion gives rates 1r2 to all neighbors
irrespective of interior or boundary point distinctions, but we notice both
Ž Ž ..C x t and simple exclusion share the same embedded jump probabilities.

This suggests introducing the following random time change. Define v: Z 2 ª
R1 by

1, if i , j is a boundary point,Ž .
16 v i , j sŽ . Ž . ½ 1r2, otherwise.

Ž .For a fixed trajectory x ? let

t
A t s v C x s ds.Ž . Ž .Ž .Ž .H

0

y1Ž . Ž .This function increases; hence A t exists. We claim now that y t s
Ž Ž y1Ž ...C x A t is two particle exclusion. This claim is established by verifying

Ž .that y t and the exclusion process share the same generator. We will make
Ž Ž .. t Ž Ž ..use of the fact that f z t y H Lf z s ds is a martingale for test functions0

Ž . Ž Ž ..f if and only if z t is a Markov process with generator L. Because C x t
˜ Ž Ž Ž ...is a Markov process with generator L, we can write f C x t y
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t ˜ y1Ž Ž Ž ... Ž .H Lf C x s ds as a martingale. Let t s A t . Then by changing vari-0
ables,

t
RWf C x t y L f C x s dsŽ . Ž .Ž . Ž .Ž . Ž .H

0

y1Ž .A ty1 RW y1s f C x A t y L f C x A A s dsŽ . Ž .Ž . Ž .Ž . Ž .Ž . Ž .H
0

1t ˜s f y t y Lf y u du if u s A s .Ž . Ž . Ž .Ž . Ž .H v y uŽ .Ž .0

Ž .This implies that y t is a Markov process with generator

L̃f yŽ .
Lf y s .Ž .

v yŽ .
Ž .The time change factor v ? adjusts the rates so that L is the simple

exclusion generator. This establishes the recurrence of two particle exclusion.
To show the transience of three or more particle simple exclusion on one

dimension, we use the following potential theoretic technique. Let L be the
Ž .generator of a Markov process x t . If there exists a function f defined on the

state space, such that

< < < <17 Lf x F 0 for x large, f x ) 0 and f x ª 0 for x ª `,Ž . Ž . Ž . Ž . Ž .
Ž .then x t is transient.

� < < 4 � < < < < 4This is seen as follows. Let B s x - r and A s x ) r and x - R .r r , R
Let t be the exit time from the annulus A . Then by Doob’s theorem andR r , R
Fatou’s lemma,

tR
E f x t y E Lf x s ds F f y .Ž . Ž . Ž .Ž .Ž . Hy R y

0

Ž .Now 17 allows us to write, for a given point y g A , thatr , R

f y G E f x tŽ . Ž .Ž .y R

G inf f x P t - `, x t g B .� 4Ž . Ž .y R R r
xgBr

Ž .Allowing R ª `, by Fatou’s lemma again, we then conclude, if x t is
Ž .recurrent, that there exists an « ) 0 so that f y ) « . However, this prevents

f from vanishing at `. Hence the chain must be transient.
Therefore, to prove transience of three or more particle simple exclusion,

Ž .we need only exhibit an f satisfying 17 . Let

Ž .2yk r22f m s 1 q m ,Ž . Ž .
Ž .where m s m , . . . , m is the ordered position of k particles. Clearly f is1 k

Ž .Ž .positive and vanishes at `. To finish, we will demonstrate that Lf m F 0
< <for m large.
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For interior points m, calculate

k
1Lf m s f m , . . . , m q 1, . . . , m y f mŽ . Ž . Ž . Ž .Ý 1 i k2

is1

1q f m , . . . , m y 1, . . . , m .Ž .1 i k2

< <It is not difficult to show this quantity is negative for m large and k G 3.
Ž .We may represent boundary points m as m s s , . . . , s , where the s are1 n i

strings of consecutive integers, representing n clumps of adjacent particles.
Let l be the length of the ith string; we note that l may be 1. Let us denotei i
s q 1 to be the new string obtained from s by shifting the rightmost particlei i
by 1 to the right. The string s y 1 is analogously defined. Theni

v
1 1Lf m s f s , . . . , s q 1, . . . , s yf m q f s , . . . , s y1, . . . , sŽ . Ž . Ž . Ž . Ž .Ý 1 i n 1 i n2 2

is1

< <also is negative for large m and k G 3. We omit the details. This concludes
the proof of the lemma. I

REMARK 3.1. If we denote P RW as the transition probability for random
walk, it is clear that one particle simple exclusion is a random walk and that
its transition probabilities behave accordingly: In dimension d s 1, standard
local central limit theorems give

RW y1r2 y3r2'< <2p s P s y s - Cs ,Ž .p i j

2 Ž < <.where s is the variance of the jump probability p and C s C j y i is ap
finite constant depending on the moments of p.

Two particle simple exclusion transition probabilities behave somewhat
SE Ž . RWŽ y1Ž ..differently. Formally we know P s s Ý P A s . Also, we notelm C Žm*.sm lm*

Ž .that t F A t F 2 t, so, to first order, ignoring the usual normalization 2ps ,p
we have

y1y1 y3¡2 A s q O s , if m is an interior point,Ž . Ž .Ž .SE ~P s ;Ž .lm y1y1 y3¢ A s q O s , if m is a boundary point.Ž . Ž .Ž .

This remark will be used in what follows. We now prove Theorem 1.1 in the
case of nearest-neighbor symmetric interactions.

PROOF OF THEOREM 1.1. We prove the result for d s 1; arguments for
Ž .higher dimensions are analogous. Let f h be supported only on a finite

Ž .number of coordinates, L ; Z. We will show that conditions 9 are equivalent
Ž .to the condition 3 to complete the proof. Fix the invariant measure as the

Bernoulli product measure P . Because each coordinate is either occupied oru
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Ž .not, that is, takes values either 1 or 0, we may represent f h as a polynomial
in the dual basis:

f h s c q c h y u q c h y u h y uŽ . Ž . Ž . Ž .Ý Ýi i i j i j
2igL Ž .i , j gL

q finite sum of higher order terms.

Ž .A simple computation, noting the independence of coordinates h , reduces 9i
to the following conditions on the coefficients:

n< <L

18 E f h h y u s 0 for n s 0, 1, 2 m c, c , c s 0.Ž . Ž . Ž .Ý Ý Ýu i i i jž /
1

We now compute the correlations. Due to the orthogonality of the dual basis
and the duality relation, we have

19 E f h 0 f h sŽ . Ž . Ž .Ž . Ž .u

2s c q E c h 0 y u c h s y uŽ . Ž .Ž . Ž .½ 5Ý Ýu i i j j

qE c h 0 y u h 0 y uŽ . Ž .Ž . Ž .½ Ýu i j i j

= c h s y u h s y uŽ . Ž .Ž . Ž . 5Ý lm l m

qE H 0 H sŽ . Ž .u

2s c q c c E h 0 y u h s y uŽ . Ž .Ž . Ž .Ý i j u i j

q c c E h 0 y u h 0 y u h s y u h s y uŽ . Ž . Ž . Ž .Ž . Ž . Ž .Ž .Ý i j lm u i j l m

qE H 0 H sŽ . Ž .u

212 220 s c q u q 1 y u c c P sŽ . Ž . Ž .Ž .Ý i j i j2

221 2q u q 1 y u c c P s q E H 0 H s ,Ž . Ž . Ž . Ž .Ž . Ý i j lm Ž i , j. Ž l , m. u4

where H denotes the ‘‘finite sum of higher order terms.’’ We observe that
w Ž . Ž .xE H 0 H s is a finite linear combination of transition probabilities of threeu

or more particle simple exclusion.
Ž .To finish the proof, we verify that 20 is integrable if and only if the

Ž .conditions 18 hold. Clearly we must have c s 0. In addition, Lemma 3.1
w Ž . Ž .ximplies that E H 0 H s , composed of a finite linear combination of transi-u

tion probabilities from transient chains, is integrable. The remaining second
and third terms, however, correspond to recurrent chains and bear further
scrutiny.

Ignoring the constant factor, the second term is given by

1 1 2RW RW < <c c P s s c c P s y q L c .Ž . Ž . Ž .Ý Ý Ýi j i j i j i j iž / ž /' ' ' '2p s s 2p s sp p
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RWŽ .Remark 3.1 allows us to conclude, therefore, because the P s are transi-i j
tion probabilities for one-dimensional random walk, that the right-hand side
is integrable if and only if Ý c s 0.i

The third term is reconfigured after the calculation

t tSE RW y1P s ds s E I C x A s s l , m dsŽ . Ž . Ž .Ž .Ž .Ž .H HŽ i , j. Ž l , m. Ž i , j.
0 0

y1Ž .A tRWs E I C x s s l , m v l , m ds,Ž . Ž . Ž .Ž .Ž .HŽ i , j.
0

where ERW is expectation with respect to P RW . This allows us to compute

t
lim c c P s dsŽ .ÝH i j lm Ž i , j. Ž l , m.
tª` 0

y1Ž .A tRWs lim c c E I C x s s l , m v l , m ds.Ž . Ž . Ž .Ž .Ž .Ý Hi j lm Ž i , j.
tª` 0

y1Ž .The observation that t F A t F 2 t, Remark 3.1 and the definition of v
enable us to conclude that the left-hand side is finite if and only if Ý c s 0.i j

This concludes the proof of Theorem 1.1 for the nearest-neighbor symmet-
ric simple exclusion process. I

4. Extension to a generalized exclusion process. The important
features of the zero-range and simple exclusion dynamics used in the proof of
Theorems 1.1 and 1.2 given in Section 2 are certain regularity properties for
the product invariant measures and the finite volume spectral gap estimate
Ž .A1 . Such regularity is, however, available for more general measures, for
example, Markovian measures. In addition, the required spectral gap bound

Žis available for processes whose invariant measures are Gibbs states see
.Remark 1.1 . These observations allow us to prove Theorem 1.3 for the

one-dimensional nearest-neighbor exclusion process with Markovian invari-
ant measures by following the arguments given in Section 2.

PROOF OF THEOREM 1.3.
Sufficiency. As in Section 2, define the conditional expectation g byn, a, b

n1
g y s E f h s y , h s a, h s b ,Ž . Ýn , a , b 0 i yny1 nq12n q 1 yn

� 4where a, b g y1, 1 . Our definition here differs slightly from the product
invariant measure case in that we condition additionally with respect to the
nearest-neighbor boundary coordinates h , h in order to ensure ergo-yny1 nq1
dicity of the finite coordinate process.

w nq1 xBecause E g y g N Ý h , h , h s 0, we may apply0 n, a, b nq1, a, b isyny1 i yny2 nq2
the same initial arguments for sufficiency given in Section 2 to the general-

5 5 Ž 1q« .ized exclusion process. Recall that we need only show that g is O n2n
w 5 5 2Ž . xfor some « ) 0 where ? is the L P -norm to finish the proof of suffi-2 0
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ciency. A modification of the proof of Lemma 2.1 is now used to prove the
following lemma.

Ž . � < <4LEMMA 4.1. Let f h be a local function supported in L s 1, 2, . . . , L ;
Zd. Under the assumptions on f in Theorem 1.3 and any « ) 0, we have that

5 5 5 5 yŽ3 r2y« .g y , a, b F K f nŽ . 2 2n

Ž < <.for K s K L , a finite constant.

PROOF.
Ž .y1 n Ž .g gStep 1. Let y s 2n q 1 Ý h and h s h , . . . , h , where 0 -yn i IŽn, g . yn n

g - 1r2 will be chosen later.
Recall the notation from Section 1. Through Cramer’s trick or the Edge-´

Ž .worth expansion, as in Section 2, we may express g y, a, b asn
gn

E f exp l h E exp l h h , a, bÝ Ý0 i 0 i IŽn , g .ž /½ ž /g Ž .yn ifI n , g

=
ng

IŽn , g .Q y h y y N a, bŽ .Ýn , a , b , l i 5ž /gyn

21Ž .

y1n
g'= 1 y 2n q 1 r 2n q 1 E exp l h a, b Q 0Ž . Ž . Ž .Ý0 i n , a , b , l½ 5ž /

yn

where we define

IŽn , g . g l'Q x s 2 n y n P h y y s x h , a, bŽ . Ž . Ž .Ýn , a , b , l 0 i IŽn , g .½ 5
Ž .ifI n , g

and
n

l'Q x s 2n q 1 P h y y s x a, b .Ž . Ž .Ýn , a , b , l 0 i½ 5
yn

g Ž . Ž Ž ..Step 2. Call n9 s 2n y 2n . By choosing l s l y so that m l y s y, the
Ž w x.quantity Q satisfies a local central limit theorem see 7 for Mar-n, a, b, l

kovian variables:
21 yx

lim Q x s exp ,Ž .n , a , b , l 2½ 5' 2s ynª` Ž .2p s yŽ .
2Ž . lwhere s y is the limiting variance with respect to the measure P . Hence,0
Ž .for y g y1, 1 , we have the lower bound

Q 0 ) C ) 0.Ž .n , a , b , l

IŽn, g . 'Ž .As in Section 2, we may develop Q x in powers of xr n9 byn, a, b, l

expanding the characteristic function

C t s E exp it h y y h , a, b .Ž . Ž .Ýn 0 i IŽn , g .½ 5
Ž .ifI n , g
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We may write
p

IŽn , g . i t x'Q x s n9 e C t dt .Ž . Ž .Hn , a , b , l n
yp

� 4Expanding exp itx , we have, as before,

ix' 'p n9 p n9IŽn , g .Q x s C t dt q tC t dtŽ . Ž . Ž .H Hn , a , b , l n n'n9' 'yp n9 yp n9

2yx 'p n9 2 y3r2q t C t dt q r x n ,Ž . Ž .H nn9 'yp n9

22Ž .

Ž .where r ? expresses the error.
ŽIt is now a messy computation to work out by diagonalizing 2 = 2 transfer

. < <matrices, for example that, for y small and t small, t - « , we have

< < 2� 4C t - exp yCtŽ .n

< <for some C ) 0. At the same time, for y small, for t ) « we have the bound
n

< <C t - K « - 1Ž . Ž .Ž .n

Ž . < Ž . < < < 3for K « - 1. These estimates allow us to control the error r x - C x .
w x 5 5Step 3. Let J s yd , d for d small. As in Section 2, we estimate g 2n, a, b

as
1r2 1r2

5 5g y F E g y I y g J q E g y I y f J� 4 � 4Ž . Ž . Ž . Ž . Ž .2n , a , b 0 n , a , b 0 n , a , b

s F q F .1 2

The second term F , as before for the zero-range process, is bounded through2
large deviation estimates or direct computation:

5 5 5 5 y3r2g y I y f J - f n .Ž . Ž . 2 2n , a , b

Step 4. Our strategy to estimate the first term F , similar to that em-1
ployed in Section 2, is to substitute the expansion and lower bound deter-

Ž . Ž .mined for Q ? in Step 2 into 21 , obtaining a more refined expressionn, a, b, l

Ž .for g to be treated through the conditions 8 . We calculate that gn, a, b n, a, b
equals

2c c1 2l y3r2E f h c q h q h q r h n a, bŽ . Ž .Ý Ý0 0 i iž /½ 5' nn Ž . Ž .igI n , g igI n , g

s V q V q V q V ,0 1 2 3

Ž .g gwhere the constants c s c n, y, h , h , a, b are uniformly bounded fori i yn n
y g J.

5 Ž .5Step 5. We now bound the norms V I y g J to estimate F . Recalling2i 1
Ž . Ž .the error bound for r h and the size of I n, g , the last term is bounded as

1r22 y3r2q3g5 5E V I y g J F C f n .Ž .� 4 20 3
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5 Ž .5The norms V I y g J for i s 0, 1, 2, as before in Section 2, will be2i
analyzed through Taylor expansion in y. Each y factor in the expansion, by
the central limit theorem for finite-state Markov chains, represents a decay of

y1r2 5 Ž .5 y3r2q3gn . We will show that V I y g J decays as fast as n .2i
ŽAfter regrouping covariance terms resulting in the expansion which van-

.ish for product invariant measures , we have

n

V s C E K f h N a, b q C E K f h h a, b yŽ . Ž . Ý0 0 0 0 1 0 1 i
yn

2n
2 3q C E K f h h y q r n , z , a, b y ,Ž . Ž .Ý2 0 2 iž /

yn

23Ž .

1 lŽ z .w x Ž . nwhere r is given in terms of f s K f y E K f N a, b and k h s Ý h3 0 3 yn i
by

lŽ z . 1 lŽ z . 1 lŽ z . 1 lŽ z . 1E f k y E f k N a, b k y E f k y E f k N a, b k k N a, bŽ . Ž .½ 50 0 0 0

< < < <and z F y . The ‘‘constants’’ K are uniformly bounded and depend on thei
Ž . Ž .boundary of I n, g as well as a and b; the ‘‘constants’’ C s C n, y involvei i

w n x g Žquantities such as yE Ý h N a, b F n y from splitting the sum into two0 yn i
.parts: one away from the boundary and one near and are uniformly bounded

in L2.
Ž .We now apply our assumptions 8 , standard Markov chain estimates and

Ž . Ž .conditioning on the boundary of I n, g to pull out the constants K to showi
Ž .the rapid decay of the first three terms in 23 .

w x w xcThe difference between E f N h , a, b and E f clearly decays expo-0 IŽn, g . 0
g < <nentially in n y L .

w n xcTo estimate E f ? Ý h N h , a, b , split the sum in the expectation0 yn i IŽn, g .
Ž . � g g 4into sums over I n, g , « s yn « , . . . , n « for 0 - « - 1 and its complement.

The resulting first term is different from its respective unconditioned expec-
tation exponentially by an amount small in ng. The unconditioned expecta-

w ` x 5 5tion differs from E f ? Ý h by f times an exponentially decaying factor`y` i
g w xg gin n . The second resulting term is bounded by CnE f N h , h , which0 yn « n «

Ž .also decays exponentially by the previous discussion for the first term in 23 .
By similar arguments, by splitting the region of summation several times,

Ž .the third term in 23 is shown to decay exponentially.
5 1 5To bound the remainder term, recall that f - C and that the differ-`

lŽ z .� 4 lŽ z .� 4cence between P h N h , a, b and P h N a, b , for a ) 1,0 IŽn, g . IŽn, g , a . 0 IŽn, g .
decays exponentially. Now by splitting the sums in the remainder into sums

Ž .over I n, g , a and its complement for some fixed a ) 1, then by carefully
Ž . 1conditioning on I n, g , a and using the bounds above on f and the proba-

Ž . Ž 3g . 2bilities, we may show that r n, z, a, b is O n . Hence, the L -norm of the
Ž y3r2q3g .remainder is O n . We omit the details.

5 5 5 5 y1r2 y1Because the terms V and V possess factors n and n , respec-2 21 2
tively, we need only take the Taylor expansion in y up to second and first
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Ž .order. Under the assumptions 8 , the terms in these expansions decay, by
Ž . Ž y3r2q3g .similar arguments given for the terms in 23 , O n .

We now have that

5 5 y3r2q3gg I y g J F Cn .Ž . 2n , a , b

Choose g and a appropriately to complete the proof of Lemma 4.1 and,
consequently, the ‘‘sufficiency’’ part of Theorem 1.3 for the generalized exclu-
sion process. I

As in Section 2, a similar proof of the lemma gives the stronger result in
dimension d s 1:

Ž .LEMMA 4.2. Let f h be a function depending on a finite set of coordinates
h . Then, given thatL

j`

E f h s 0 for j s 0, 1, . . . , k ,Ý0 iž /
isy`

we have, for any « ) 0, that

n1
yŽ kq1.r2q«E f h , h , h F Cn ,Ý0 i yny1 nq12n q 1 isyn 2

Ž < <.where C s C L is a finite constant.

Ž .We now prove the necessity of the conditions 8 .
Ž .Necessity. We show that the admissibility conditions 8 for the general-

ized exclusion process are required. As in Section 2, this is accomplished by
contradiction.

w xStep 1. Let f be admissible and suppose that E f / 0. Then with the0
Ž . w x Ž .choice of f h s 1, we note that E ff / 0, but that D f s 0. This0 0

Ž .contradicts the admissibility of f ; hence the first condition of 8 is necessary.
w xStep 2. Let f be again admissible. We know, therefore, that E f s 0.0

w ` xHowever, suppose that E f Ý h / 0. In this case we may specify the0 isy` i
sequence

n i
f h s J h ,Ž . Ýn iž /2n q 1isyn

w x w ` xwhere J is as before in Section 2. Clearly, E ff ª E f Ý h / 0.0 n 0 y` i
However,

2n i q 1 i 2D f s E J y J h y hŽ . Ž .Ý0 n 0 iq1 iž / ž /ž /2n q 1 2n q 1yn

ª 0 as n ª ` for any J .

Ž .We conclude the necessity of the second condition in 8 .
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Step 3. Let f be admissible once more. Steps 1 and 2 yield then that
w x w ` x w Ž ` .2 xE f s 0 and that E f Ý h s 0. Now suppose that E f Ý h / 0.0 0 isy` i 0 y` i

We may then consider the sequence

i l
f h s J , h hŽ . Ýn i lž /2n q 1 2n q 1< < < <i , l Fn

for a J as in Step 3 in the proof of necessity in Section 2. Immediately we
w x w Ž ` .2 xhave that E ff ª E f Ý h / 0. However, by the Markov property0 n 0 y` i

Ž .and standard inequalities we can bound the Dirichlet form D f by0 n

2C i l
E J , hÝ Ý0 1 l2 ž /ž /2n q 1 2n q 12n q 1Ž . i l

2
j i 2q J , h h y h ,Ž .Ý 2 j i iq1ž /ž /2n q 1 2n q 1j

where the symbols J and J refer to partial derivation.1 2
To evaluate this quantity, rewrite the first square as a double sum over

w xindices, say l and m. The correlations E h h vanish exponentially in the0 m l
< < < < 1r2difference l y m . Now split the double sum over regions l y m F n and

its complement. The second part now decreases faster than any polynomial.
This procedure is repeated for the second square. Now, it is a small calcula-

< < 2tion to conclude that the Dirichlet form may be bounded by CH =J dx. By
adjusting J, this can be made as small as possible, demonstrating the

Ž .necessity of the third condition in 8 .
This finishes the proof of ‘‘necessity’’ and consequently the proof of Theo-

rem 1.3 for the generalized exclusion process. I
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