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MINIMA OF H-VALUED GAUSSIAN PROCESSES!

By J. M. P. ALBIN
Chalmers University of Technology and Goiteborg University

We study low local extremes of Gaussian random fields with values
in a separable Hilbert space and constant variance. Our results are sharp
for certain stationary processes on the line and for these processes we also
prove global limits.

1. Introduction. Let T be a separable topological space and let (H,
(|}, ]| - |I) be a real separable Hilbert space with unit ball H; and bounded
linear operators .~ = /(H). Further let {X(¢)},.r be a centered separable
P-continuous H-valued Gaussian random field, with respect to a complete
probability P, such that X(¢) has variance R € # independent of ¢. Also
let R have spectrum (eigenvalues) {A;};.; € (0, 00) and choose a complete
orthonormal system {e,}}- ; satisfying Re;, = Ape,,.

In Section 3 we study the tail P{|| X (s,)||?> < &} as ¢ | 0 for a fixed s, € T.

In Sections 4 and 5 we derive upper and lower bounds for

P[inf 1X ()2 < 3] ase |0, for SCT,
teS

and in Section 6 we give several applications of these results.

Let {&.(8)}ers =1, 2,..., be independent R-valued stationary stand-
ardized Gaussian processes and let Y(¢) be a separable version of
>V Arér(t)ey. In Section 7 we sharpen the results of Sections 4 and
5 and find the exact asymptotic behavior of P{inf,.[ 1 |Y(2)]? < €} under
conditions on r,(¢) = E{£,(0)¢,(¢)}. In Section 8 we prove global limits for
Y when r,(t) — 0 not too slowly as ¢ — oc.

Low extremes for the stationary finite case (when the sequence {A,} ter-
minates) have been studied for T' = R by, for example, Aronowich and Adler
(1986) and Albin (1990, 1992a). The finite case behaves radically differently
from than the infinite case.

Large values of || X| were investigated for X an Ornstein—Uhlenbeck pro-
cess on the line by, for example, Iscoe and McDonald (1989), Iscoe, Marcus,
McDonald, Talagrand and Zinn (1990), Albin (1992b) and Csaki and Csorgo
(1992). Albin (1992a) studied stationary L2-differentiable X. The (not so dif-
ferently behaved) finite cases were first studied by Sharpe (1978).

2. Regular variation. For easy reference we now state some facts from
the theory of regular variation which will be needed in the sequel. These facts
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can all be found (with proofs and notes on priority) in Bingham, Goldie and
Teugels (1987). [Other excellent general references for this area are Geluk and
de Haan (1987) and Resnick (1987).]

We study regular variation of a strictly positive function f(x) both as x | 0
and as x — oo. Therefore, we use the symbol x — U, where either U = 07
or U = co. We assume that f is defined on (0, 00) if U = 0% and on (%, o)
for some &£ > 0 if U = oo. Further we write I; = (0, 1] if U = 01, whereas
Iy =[1,00) if U = 0.

Let I;;(A) = [min{1, A}, max{1, A}] for A € I; and define

f*(U; 1) =lim sup f(Ax)/f(x),
f.(U;A) = 1imi[§1f f(Ax)/f(x),

VU, f;A) =limsup sup f(nx) / f(x),

x=U  pely(d)
VU, £:4) = liminf inf f(ux)/f(x)
for A € I;. We say that f(x) is O-regularly varying as x — U if
0< f.(U;A) < f*(U;A) <oo foreach A € I.

The upper and lower Matuszewska indices a(f) and B(f) are given by
a(U; f) = oo, if W*(U, f;A) = oo, for some A € Iy,
a(U; )= J}i_r:(lllln(f*(U;x))/|1n(x)|, if ¥*(U, f;A) < oo for each A € I,
BU;f)=—o0, if ¥ (U, f; 1) =0 for some A € Iy,
BU;f)= }ijrll]ln(f*(U;x))/|ln(x)|, if W (U, f;A) > 0 for each A € I;.

Writing f (x) = f(1/x), it is then easily seen that

U f)=al/U;f),  BWU;f)=BA/U;f),
BWU;1/f) = —a(U; f).

Further we have, by the Matuszewska indices theorem,

(2.1

a(U;f)<oo & YU, f;)) <oo foreach A e Iy,
2.9) BU;f)>—-c0 & WY(U,f;A)>0 foreach eIy,
f is O-regularly varying as x — U
& -0 < B(U;f) =a(U; f) < 0.

Let f be O-regularly varying and take v € (1, 00) if U = o0 and v € (—o0, —1)
if U = 0". Then there are constants C; = C;(v) > 1 and & = %(v) € I; such
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that
C1(v) ]NDY < f(Ax) [ f(x) < Cy(w)ret?

(2.3)
for A € Iy and x € Iy — I(%).

We say that f has bounded increase if a(f) < oo, bounded decrease if
B(f) > —oo, positive increase if B(f) > 0 and positive decrease if a(f) < 0.

Let f be nondecreasing and unbounded above and write f<(x) = inf{y >
0:f(y) > x}. Then we have [Bingham, Goldie and Teugels (1987), Exercise
2.12.8]

a(oo; f) =1/B(oc0; f7) so that
a(oo; f) <00 & B(oosf7) > 0.
The upper order p(f) and lower order wu(f) of f(x) as x — U are given by
p(U:f) = limsupIn(f(x))/|In(x)| and u(U: f) = liminf In(f (x))/| In(x)!.

(2.4)

The relations with the Matuszewska indices are

(2.5) BWU; ) =mwU; f) < p(U; f) < a(U; f).

We say that f belongs to the class I' as x — U with auxiliary function
w: (0, 00) = (0, 00) if f is nondecreasing and

lirrll] f(x+ yw(x))/f(x) =e” for each y € R.
In that case, for each y € R,
(2.6) w is self-neglecting, that is, hIIll] w(x + yw(x))/w(x) =1,

@7 )~ x+yw(x) = lim f(g(x)/f(x) = e’
For f in I" we further have

(2.8) hnll] f(Ax)/f(x)=0 for A€ (0,1),

(2.9) linrllj x"f(x)=U foryeR.

3. The tail of || X(s,)||>. Fix an s, € T and write W = X(s,). In Propo-
sitions 1 and 2 we adapt an argument of Davis and Resnick (1991) (D&R) to
study aspects of the asymptotic behavior of P{||W||? < &} as € | 0. Since the
emphasis of our work is on fields and processes rather than single random
variables, we will only, as briefly as possible, state and prove results needed
in later sections.

The idea of D&R is to note that a central limit argument should give
the tail of |W||? since |W|? is small only when the independent components
{{er|W)}32, all are small simultaneously. An adequate central limit theorem
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is then obtained using (Laplace transform related) Esscher transform tech-
niques.

The Esscher transform of || W||? at s > 0 is a random variable |W|? with dis-
tribution dFy2(x) = e™** dF jy2(x)/ $(s), where ¢(s) = E{exp[—s|W|*]} =
[122,(1 + 2x;5)~ Y2, 1t follows that

_ 9 _ e A
m(s) =EUWIY = X 1555
00 222
V(s)=Var{|W[%} = Y k.
£(1+2)\k3)2

PROPOSITION 1. Writing g(¢) = inf{s > 0: m(s) < &}, we have
x

P{||W||2 <&+ 8

} ~ (expx)P{|W|? < &}

_ (expx) expla(e)e} d(q(e))
9(£)y/27 V(q(e)

for each x € R. Writing f w2 for the density function of |W||? we further have
(3.2)  fywp(e+x/q(e)) ~ e“q(e)P{|W|? < &} locally uniformly for x € R.

(3.1

asel 0

PrOOF. The only part of the argument for (3.1) and (3.2) in (D&R, Sec-
tion 3) which does not carry over to our setting is the verification that
(3.3) lim

g ,S<>|dt=0 for 6 > 0,
$—>00 J|t|>8s4/V(s) iljl Ai S\/V(S) I

where g(¢) = E{exp[its([N(0, 1)2],—E{[N(0, 1)2],1)]} and N(0, 1) denotes a
standardized Gaussian random variable. The reason that D&R, proof of (3.3),
does not carry over is that their conditions 3.7 and 3.8 do not hold.

Let n(s) = {i: A;s > 1} and choose ¢ > 0 such that In[1 + %Szx] > cx
for x € [0,1]. Since [;°(1+¢2)™ dt < 3m(1+ §%)' for v > 1 and since
lim,_, , n(s) = oo, the fact that (3.3) holds then follows from noting that

I1

t
/\Msm L gAis(s\/V(s)) ' @

o (" Sinf14 A dt
= ex — n ———————
PlTa& V(s)(1+2A,5)
5
4

o0

8s4/V(s)
o0 (s) 4¢2
2 SRR SA DY ) R
= 85,/ V{(s) eXp[ T 9s2V(s)

1 422
-1 > ln[1+ 9V(s)”dt

{i: A;s<1}

1
4
n
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S33\/V(s)[/2:3(1+t2)_"(s)/4dt} exp{—z ) A?s2}

{i: Ajs<1}

3w (& 2% \VAroo4 o c
<22y =8t 14 -8 — A2s?
. 2<Z<1+2Ais>2> [*9 ] e"p{ 1,2 M

i=1 {i: A;s<1}

R —_———— 1-n(s)/4
< 377[‘/”(8) S /\?821| [1 + 352]

V2 2 {i: Ajs<1}

xexp{—z > )\?32}. O

{i: A;s<1}

REMARK 1. Ibragimov (1982) proved (3.1) and (3.2) for x = 0, but gave
partial priority to G. N. Sytaya [Ibragimov (1982), page 2165]. Since we need
(3.1) and (3.2) for x # 0, as well as some facts [e.g., (3.4) and (3.5)] concerning
the quality of convergence provided by the method of D&R, the results of
Ibragimov and Sytaya are not sufficient for us. (Note that Ibragimov’s result
is Gaussian, whereas that of D&R is general.)

PROPOSITION 2. If m has positive decrease as s — oo, then q(g) is O-
regularly varying as € | 0. Further W, = W — Zle(W|el)el satisfies

k
34 PUWA? <o)~ (T1VZL) a@) *PUWIE < e} as e Lo
=1

Moreover there exist constants Co(k), €1(k) > 0 such that
(3.5) fiw,p(e = x/q(e)) < Coq(e)**T e ™ PP{|W|? < &}
for 0 < x < qg(e)e and ¢ € (0, &;].
PrOOF. Applying (2.4) to f = (1/m): (1/m(0), c0) — (0, c0) we get, by
(2.1),
a(0%; f) = a(o0; ) = Boos f 7)™ = B(o0; 1/m) ™ = —a(oo;m) ™" < co.

Hence q = fA has bounded increase. Since g (being nonincreasing) also has
bounded decrease, (2.2) shows that q(¢) is O-regularly varying.
Putting m(s) = 72,1 A;/[1 +2A;s] and §,(e) = g(e + 3x/q(¢)), we have

k
. < e+ 5(x — k)/q(e) + Y(24.()[1 + 21,4, ()
m(q,(¢)) =1 for x > 0.
> e+ 32/q(e) — 3k/G.(¢)
Since, by (3.1) and (2.6), q is self-neglecting, it follows that, given a 6 € (0, 1),

Gasoy(8) < qp(e) =inf{s > 0:m(s) < €} < G1_5)1(8) for & small.
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Hence we have gq,(¢) ~ q(¢), so that m(q,(e)) ~ &+ 3k/q(¢) + o(1/q(e)).
Consequently, (2.7) and (3.1) yield that

V(qi(e))? exp{qr(e)e} d(qx(e))
~ V(gi(e))* exp{qr(e)m(q,(¢)) — 3k} d(qx(e))
~ V2w e 2q,(e) P{IW|* < m(qx())}
~ 2w q(e) P{|W|?* < &}
~ V(q(e)) " exp{q(e)e}$(q(&)).

Observing that V,(s) =372, 202/[1+2A;8]2 ~ V(s) as s — oo, the fact that
(3.4) holds now readily follows from (3.1) and from noting that

k
E{exp[—s| W, |*]} = ( Vit 2Als)¢(s>

I=1
k
~ sk/2< ]_[\/2)\l)q§(s) as s — oo.
1=1

Since q,(e — x/q(e)) < 2¥*(01, g; %)q(s) for 0 < x < %q(s)s, for & small,
(3.2) and (3.4) readily yield that there are C3, &5 > 0 such that

(3.6) fiw, (e — x/q(e)) < C3q(e)** fw2(e — x/q(e))

for 0 < x < %q(s)s and ¢ € (0, &5]. Moreover, by D&R (equation 3.20) there
exist s;, C4 > 0 such that

Fiwj(V($)2y + m(s))
< Cyexp{—3 5}V (s) 2 ¢(s) exp{s(V(s)"*y + m(s))}
for s > s; and y € R. Taking y = —x(sV(s)¥/2)"! and s = g(&) we thus obtain
Fiwe(e — x/9()) < CaV(a()) 2 b(a(e)) expla(e)e — x}
for x € R and & small.

Combining this with (3.1) and (3.6) we deduce that (3.5) holds for 0 < x <
%q(s)s and with the factor e */2 replaced by e *. Using (3.2), (3.4) and the
proven part of (3.5), it follows that there are C5 > 1 and &3 > 0 such that

fiw,2(e — 2/q(&)) < C5 qi(s — x/q(e)) P{IW || < & — x/q(¢)}
< CEP{|Wypol® < e —x/q(8)} /4N b1 A ps2
< CEP{|Wi2l? < 38} /v 4N i1 d s
< C3 fywe(39)
< Ciq(e)t/* e 2P{|W|? < &}

for Jq(e)e < x < q(e)e and & € (0, g5]. O
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4. An upper bound for local extremes of fields. For an R-valued
Gaussian process {{(t)},.r the entropy .#;(S;¢) is the minimum number of
closed balls of radius & in the pseudometric d.(s,t) = VE{[{(¢) — {(s)]?}
needed to cover S C T. Then folvln Ny (S;e)de < oo is sufficient [Dudley
(1967)] and, assuming stationarity, also necessary [Fernique (1975)] for a.s.
continuity of {{(¢)},.s- The influence of .#; on the tail P{sup,. 1) {(¢) > x}
as x — oo is also significant, for example, Weber (1989), Adler (1990),
Samorodnitsky (1991) and Albin (1994).

A stationary H-valued Gaussian process Z(t) is a.s. continuous when
SUp,cp, fol VIn A4(,2,(S; &) de < oo [Fernique (1989), Théoreme 3.3].

In Theorem 1 we give an upper estimate of the tail P{inf,_¢ || X(¢)||® < £}
as ¢ | 0 expressed in terms of ./{,x)(S;"), {A;};2; [through g(e) = inf{s >
0: m(s) < e}] and P{|| X (sp)||? < &}. [The behavior of P{|| X(s,)|? < &} in turn
was expressed in terms of {A,}72, in (3.1).] It is required that ./, x,(S; ¢) is
O-regularly varying as & | 0. [By the proof of Theorem 1, open d, x, balls
are T-open, so .4, x)(S; ¢) is finite if, e.g., S is T-compact.] Our estimate is
essentially sharp in the stationary case (and other not too unbalanced cases)
since, under mild additional conditions, a lower bound of the same order will
be derived in Section 5.

The proof of Theorem 1 relies on two transparent ideas. The first idea has
its origins in the treatments of continuity by Dudley (1967) and Fernique
(1975, 1989) and concerns how to use the concept of entropy to sample the
process X (t) sparsely enough not to obtain redundant information, but yet
often enough not to overestimate inf, g || X(¢)|>. We find it surprising that
the influence of .#{,x)(S;-) on the left tail of inf, g | X (2)|? is equally direct
as that on the right tail of sup, g || X (¢)||%.

Define the covariance R, € £ by (R, ,x|y) = E{{x|X(s))(y|X(¢))} so
that R = R, ;. The second idea concerns estimation of sup,c s, | X () — W
conditional on |[W|J2(= || X(s)||?) < & for a neighborhood N(s,) of s, € S. If
Q=R ,R~! exists in a suitable sense [cf. (4.1)], one has

1X(t) = W|* = | X(¢) - QW | + 2§: (X(2) — QWle)(e,/[Q — 1]W)
k=1

+I[Q — 1]W||?

(where {é,} is a suitable basis in H). Since X (¢)— QW and W are independent,
only [@ — 1]W is affected by the conditioning. Thus the size of X(¢) — QW
and (X(¢) — QW|é,) can be controlled via calculus of covariance operators.
The major part of the proof consists of an analysis of the size of the compo-
nents {(é,|[@ — 1]W)} conditional on |[W|? < &. The central limit theorem
of D&R discussed in the beginning of Section 3 indicates that the (weak)
limit behavior of ((é,|[@ — 1]W) | |W|? < &) (suitably normalized) as ¢ | O is
Gaussian. [In a special case this statement is made precise in Lemma 4 of
Section 7 and used in the proof of Theorem 4.] Here we shall estimate the
“simultaneous” sizes of {(é,|[@ — 1]W)}7.; “before” (but close to) the limit.
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Via input from Samorodnitsky (1991) we then find a suitable separant S for
X along which to compute sup, gy, [ X (?) — W2

Although the classic concept of entropy is present in our result, our argu-
ments are mainly nonclassic: Dudley’s and Fernique’s direct connection be-
tween entropy and continuity/boundedness/suprema is unique for the study of
“high levels/large values” of Gaussian and some closely related processes. Low
levels are something entirely different, and although the last part of our proof
[the part after (4.12)] is more or less classic, the major part that precedes it
is new.

Let d(s, t) = sup,cpy, d(;x)(s,t) and choose an S C T'. Also write S, = {t €
T:d(t,S)<e}tand S, ={(s,t) € S x S:0 < d(s, t) < €}, and assume that

there exists (a correlation) r, , € 2 such that

4.1
(4.1 R,,=r, R for(s,t)€S,
for some g, > 0. Further suppose that

there is a y € H; such that

|1 —rg .l
M = -
1) sup{ d(yx)(s, £)?

The requirement (4.1) holds when R , does not have too many too wild off-
diagonal elements. In particular, if the component processes {(X(¢)|ex)}7 1

(4.2) (s,t) € SSO} < oo.

are independent, then (4.1) holds with r ,e, = pgfezek, where

pF) = Corr{(e,| X(s)) (ex| X (£))}.

Moreover, for independent components, d ., x)(s, t)? = 20,(1 — pgl,)t), so that

(4.2) holds when there is an / € N for which pg)t is minimal, that is, when
there is an / € N such that

k !
sup{(1—pN) /(1= p"): keN, (s,8) €8, } < 0.

REMARK 2. Recall that a variance C € _/ is positive; that is, C is self-
adjoint and (Cz|z) > 0 for z € H. Thus the eigenvalues {c,};.; of C are
nonnegative. Further C is trace class, so that tr(C) = > 37 ,¢;, < oo and
Y 71{Cfrlfr) = tr(C) for any complete orthonormal system {f,}7 ;. More-
over, there is a complete orthonormal system {g,};., of eigenvectors to C
(satisfying Cg;, = ¢, 8;).

THEOREM 1. Assume that m(s) =Y 5.1 A/(1+2A,s) has positive decrease
as s — oo and that (4.1) holds. Further assume that (4.2) holds for a y € H,
such that #x(S;e) = A, x)(S; e) is O-regularly varying as ¢ | 0. Then we
have

: P{inf, g | X(1)]* < &}
lim sup <
a0 Ax(S;q(e) 1 2)P{| X (sp)lI” < &}

Q.
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As described in Albin [1992(a), Section 5], the following lemma is an easy
consequence of a result due to Fernique (1971).

LEMMA 1. For every H-valued centered Gaussian random variable N we
have

u2

1
PUNY > u} = exp| g7 — gt

} for u > 0.

PrOOF OF THEOREM 1. Write L* for the adjoint of L € ./, put ¢4 = ¢4 A
M;(y)~*2 and take (s, t) € S,,. Note that, by (4.1), Y, , = 3[1+r, ,]X(s) has
variance R = 7[1 +rs]R[1 + 7% ¢]. Further write {A,} for the spectrum of R
and let {é,} be a corresponding complete orthonormal system of eigenvectors.
Since by (4.2), |1 —ry || < M1dyx)(s, t)* < 1 for (s, t) € S,,, we have

5 2
43)  tr(R) =E{|Y, I} < 1@+ Iry, — U)BIXGI?} < § tr(R).
Moreover an easy computation shows that
1_rs,t=2(%[ — T, t])N+1+Z( [1 )[1+rs t] Z(%[l_rs,t])l[l"i_rs,t]

=1 =1

as N — oo, with convergence in operator norm. In view of (4.1), and again
using that |1 —rg | < Myd,x)(s, t)? < 1, it follows that

E{(X(t) —r,  X(s)6;)*} = ([R — 2R, ;1% .+ 1o RT} 161 | &)
=([1—r, JR[1+7} 16, | &)

4xk< QL ry e ék>
=1

< AhggllL =7 /11 =3I =7 o]

(4.4)

< 4XkM1d(y\X)(s7 t)2
Consequently [and by (4.3)], X ;, = X(¢) —r, ;X (s) satisfies

s tr(Var{X, ,}) = Y (Var{X, ,}¢, | &) < 4M,d ,x(s, t)* tr(R)
. k=1

< 9M1d(y|X)(s! t)z tr(R)
Further we have
1X(s) =Y, | =3l[1-r, )X

(4.6) X ,
< e My[|X(s)ll/q  for diyx)(s, 8)°q < 1,
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but here || X(s)|| < | X(s) =Y, (|| + Y ||, so that, by (4.6),
@D X() =Yl < GMAIY, l/0)/(Q~ 3M1/q) < Ma||Y /g
for d, x(s, t)2q < 1 and & small. Combining (4.6) and (4.7) we conclude that

“s) IX(s)I?<e = Y, N> <e+Me/q+iMie/q> <e+ M,/q
= X< 1+ M/q)e+M,/q) <e+2M,/q

for d,;x)(s, t)?q < 1 and & small.
Clearly we have

IXOI? = 11X, = 5[1 = re JX )P + s X (s)II?
= 1l =7y JX ()P +2(X Y 1)

< (1K ol + 311 = 7o XS + lIre PI X (1 + 2(X ]V o).

When there is a Cg > 0 [not depending on (s, t)] such that d, x (s, t)%q < Cgm,
this readily yields that

1
IX@OIF = e~ 7. IX@IF<e- "7 and 2AX, Y0 <57
1 ) ) 1/2
@9 s Xz (G2l - uIXe))

-l nadixel = (37)

for n > 0,v4+71 >0, d,x/(s, t)’¢ <1ACgn and £ small.

Now observe that X, is independent of X(s) and Y, ,. Furthermore,
the variables {sign((Y ;é;))};.; are independent, identically distributed
Rademacher variables and independent of the sequence {|(Y ,|é)|}5_;. It
follows that the variables {(X, ,|é;)sign((Y ;|é;))}?; are uncorrelated and
independent of the sequence {|(Y ,|é;)|}}2;. Writing ¢ = ¢ + M;/q and
N(0,1) for a standardized Gaussian random variable which is independent
of Y, ,, we thus have

s, t»

P{qz<Xs,t|ék><Ys,t|ék> S I 1Y P < }
k=1

o 1/2
< P{NO. (@ TEUX, Je?) (Vodé)?) = b IV, 0P < 8.
k=1
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Using Lemma 1, (4.4), (4.5), (4.8) and (4.9), we therefore obtain

P{||X(t)||2 ce LIXG <ot "'}

< P{ans L }P{IIX(So)IIZ < &)

as . N 1

#Pla T X e (Vo) = IXOIE <]
k=1

(4.10)

1 mn 2
= P{||X
=P 24~ 3456 M, tr(R)d , x (5, t)2q} {1 X(so)lI” < e}

n

o 1/2
—|—P N 0’ 1 (q ;\ Ys é 2> > )
(0,1) kgl 1Y s elér) 8(M1q)\?d yx)(s, 1)

2 ~
1Y, P < }

Let P; € ./ be the projection on E; = span{e;: i € J} for J € N, P; the
projection on span{é;:i € J}, P; = 1— P, and P5 = 1— P. Since the density
function of a X2(1)-distributed random variable is decreasing, (3.5) and (4.8)
then combine with elementary computations to show that

P{q<Ys,t|ék>2 >, |Vl < &)

=8q—2 . y+z

f / ||Pfk)Ys,t||2<‘9 - q>fﬁ{k}Ys,t2( 7
z=8q py=5q— z . y+z y\ dydz

/ / o Tiegyee (8 - q>fﬁ{k}n,t2<q> o

X
—P{HYS P <é- }
q

x—ZMl}

<2

_l’_

x
—
&
U

N

IA

<P{IXOI <2 -

_ z=¢eq fyisq—z f X o y+z f dy dz
=)o, Lo 1Py X (s0)lI12 7(1 1Py X (so)]2 q pe

CoP{|| X (s0)|? < g} 7= Y= 12 < y+ 2)
< —>—— | dyd
N \/2’77)\1 z=x—2M / Y exp 2 Yoz

<Cy exp(—;) P{| X (sp)||* < &} for x >2M; and & small
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and for some constant C; > 0. In view of (4.8) [and (3.1)] it follows that

E{q”(Y, &) Iyy, <5y}  2M P{|Y,,|? < &}
{IY s, lI7<&} < s, t
P{[| X(s0)|* < &} ~ P{|X(so)]? < &}

00 xl/p
+LM1 C7 exp<—2) dx < CS

(4.11)

for p > 1 and ¢ small, for some Cg = Cgq(p) > 0. Hence Hélder’s inequality
gives

00 1/2
P{N(o, 1>(qZAk<Ys,t|ék>2) o V)P < }
k=1

< x 2PE{[N(0, 1)]2”}E{< Z)A‘kq<Ys,t|ék>2> 1{||Ys,t||2<é}}
k=1
< x 2P E{[N(0, 1)]?*} tr(R)"

o0
X E{ Z/\kqp<Ys,t|ék>2p1{|lY&,|l2<é}}
=1

< Cyx *PE{[N(0, 1)**} tr(R)” P{|| X (s0)II” < ¢}-
Recalling (4.3) and (4.10) we conclude that there is a Cq = Cqy(p) > 0 such
that

P{||X<t>||2 s om L X <o Z”}

1 n
< _ _
= eXp{ 24~ 3456M, tr(R)d ., x,(s, 1)°q

}P{||X(so>||2 <&}
(4.12)
- (12)2P M Cy tr(RYPE{[N(0, )7}
< d iy (5. 2P gPn P P{| X (so)” < &}
< Cod (5. P qP 2PP{| X (s0)|” < &}

for d,x(s,t)?q < 1A Cgn and & small.

Put ¢, = {sy} and write m, for the maximal cardinality of a set &€, =
{s1,-.., 8, } which is contained in S and satisfies d,x(s;,s;) > ¢ /?27"
for i # j. Then we must have m, < .#x(S;q /22-(**1), Further it is clear
that

(4.13) dyx)(s, ta(s)) < q V227" for some t,(s) € €, for each s € S.

By LZ%-continuity of X, given s € T' and & > 0, there is a T-neighborhood
U of s such that d,x(s,t)* = E{(y|X(¢) — X(s))?} < &* for ¢t € U. Thus
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d, x) balls are T-open and X is d, x)-separable. Further we have, by (4.1)
and (4.2),

E{|X(t) - X(s)|*} = tr(Var{X(¢) -~ X(s)})

tr(2[1—-ry,]R)

= Z2Ak([1 - ’”s,t]ek ‘ ek>
k=1

A

Ztr(R)Mld(pr(s, t)2
— 0 as d(y|X)(s> t) — 0.

Hence (4.3), { X (¢)},.s is L2- and P-continuous in the d, x) topology. It follows
(from a well-known argument) that each d , x)-dense subset of S separates X.

Now let v, = (v2—1)Y}_,27%2/q and take p = 3a(0%;.#x(S;-)) [< oo by
(2.4)] in (4.12). Since ;2 ,¢, separates X, (4.12) and (4.13) then yield that

: 2
Plinf | X(s)|? < ¢ — 1/q]

< P{| X(so)lI* < &}

> . 2 _ . 2 _
+P{n91{;ggg IX@I <& n|n it 1XOP e -v, ]

< P{| X(so)lI* < &}

+ X P ULIXGI < o= X0 @)1 2 0 -1, 1}

n=1 se6,

< [1 + icg(\/ﬁ_ ]_)*GQ(/X)23(2*’1)01(//X)V/X(S; q1/22(n+1)):|

n=1

x P{[ X (s0)[I* < e}.

[Here we used an idea of Samorodnitsky (1991), Section 3.] Further, for
e small, by (2.6), ¢ = & — 1/q satisfies ¢ < & + 2/qg(¢), whereas, by
(B.1), P{|IX(so)lI> < &+ 2/q(8)} < 22P{||X(s0)|?> < é}. Applying (2.3) to
Mx (g 1?27 D) [ 4y (g7 1/?) [and noting that .#x(q(s) V%) < #x(q(8)71/*)]
it thus follows that (for & small)

Plinf | X(s)]? < ¢]
8 [1 X Co(v2 — 1)y (-2)20. 4 (S; q(é)lm]

n=1

x 2e*P{| X (so)||* < &}. O
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5. Local lower bounds for fields. To derive lower bounds we assume
that there is a subspace E C H of a certain minimal dimension such that
d 4 x)(8, £)/d; x)(s, t) is bounded for x, z € H, N E. Writing & for the projec-
tion on E and £+ = 1 — & one then observes that

P{|IX(®)I” <&, IX(s)]* < ¢}
<2P{|Z2XO)|? + |2+ X()I” < &, [2X(s)|* + |2+ X ()] < &}

Here (#X(t), 22X (s)) yields to finite Gaussian methods after a decoupling of
the dependence between X (¢) and &+ X (s), whereas Section 3 takes care of
P+X(s).
As in Section 4, although our result involves the classic concept of entropy,
it is only a minor part of the proof [essentially (5.9) and (5.10)] that is classic.
Now let E; = span{e;:i € J} for J C N and assume that

there is an I C€ N such that

d 1 x)(S, t):
di.x)(s, 1)

(5.1

MZ(I)Esup{ x,zeHlﬂEl,(s,t)GSSO}<OO.

If the components {(X(¢)|e,)};.; are independent, then (5.1) holds when
sup{(1 = py)/(1 = pdD):i j e L, (s.0) €8,,} < oo,

THEOREM 2. Assume that m(s) has positive decrease as s — oo and that
(4.1) holds. Further assume that (4.2) and (5.1) hold with y € Hy N E;. If, in
addition, #x(S; &) = ANy x)(S; &) is O-regularly varying as ¢ | 0,

(5.2) n=4#I> p(0%;q)p(0F;.#x(S;"))

and

Kk > 5p(075q)p(0%; . #x(S;-))a(0";.4x(S;-))

(5.3)
x [n+p(0*;.#x(S; )],

then we have

. P{inf s | X(1)|? < &}
1 f < =
TR0 ey (S q(e) VP X (s)2 < &}

REMARK 3. Since .#x and, by Proposition 2, ¢ are O-regularly varying,
(2.2) and (2.5) imply that p(q), p(.#x) and a(.#x) all are finite. Furthermore,
(5.2) and (5.3) hold for any « > 0 if I can be choosen with #I arbitrarily large
in (5.1).
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PROOF OF THEOREM 2. Choose g5 € (0, oA g1] such that M, (y)d(s,t)? <1
and 2M(y)*My(I)?| R||d(s, t)* < 1 for (s, t) € S, , where &; = £,(n) is given
in Proposition 2. Since d, x(s, £)? = 2([1 — r, ,]Rz|z), (4.1), (4.2) and (5.1)
yield that

([R—rs Rry 2z | 2)=dx (s, t)> = ([1 -1} ]z | R[1 -1} ,]2)
> d,x)(8, t)? — M%”‘R”d(y\X)(S: t)*

> IM3%d ,x)(s,t)> forze HiNE;and (s, t) €S,,.

Using elementary rules for the computation of determinants we thus deduce
that

Pi[X (@) + (1 —r, ) X(s)]
det (Var( P, X(s) ))

— det P(2R —r, Rry,] P, P;RP;
- P,RP, P,RP,

= det(PIRPI) det(PI[R — rs’th;’t]PI)

> (H/\l)( inf ([R-— rs,th;t]zlan

el zeHNE;

> (mi)(zMérndM(s, )2

iel
for (s, t) € S,,. An elementary Gaussian argument therefore shows that
P{|P[X(#)+ (1 -7, )X (I < x, [PrX(s)]* < v}

(5.4) - (2M3)M2 (4 /xy)"
T @m)([TierA®)d y xy (5, )"

[for (s, t) € S, |. Further we observe that, by (4.2),

IX@0I2 <&, 1X(s)|?<e and [PFX(s)|? < |PFX (1))
= |PAX@®) + (1 -r, )X(5)]]
(5.5) < IPX@OIP+2IXON 11— ry ] 1X(s)]
L =7 21X (5))12
<e—||PrX(s)|* +3M1d ,x)(s, t)’e.
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Since X(t)—r, ,X(s) is independent of X(s) and P;X(s) of P7X(s), (5.4) and
(5.5) now combine with (3.5) to show that, for (s, ) € S,, and & € (0, 5],

P{IX@O)I? <& |X(5)I? < &}
= 2P{| X(1)|? < &, | P;X(s)|? + | P} X(s)|* < &,
| P} X(s)]1? < | P} X(2)]?)
eq
<2 [ P{IPLX@) + 1~ ro )X < 8Midyx)(s. 0 + 2/q.
|PX(5)]? < x/q)
x [Pt x(s)2(e — x/q)dx/q
(66 2um2pMyC, Y X (s)I? < £}
w"(ﬂiez)@/z)d@m)(s, L

* 2 n/2 n/2 —x/2
X/O (BMyd yx)(s, t)’e + x/q)" "x"?e /% dx

_ 2 M CP{|| X (so)|? < &}
— 1/2
T ([ierAy’ )

n+2)(3 )”/2 I'(n+1) )

x (T —Me + .

< < 2 27! q"2d 1y x) (s, t)"

Clearly, by (5.2) and (5.3), there exist o € (0, %) and v € (1, co) such that

(5.7 n>Pp(Q)p(dy),  no>v(h—0p(ly), K> op(q)al L),

Further observe that, writing B, (s, ¢) = {t € T:d,x)(s,¢) < ¢} and given a
8 € (0, &5], there exists s(8) € S, such that

(5.8) V/X(S N B, (s(5), &5); a) > Wx(8;8) /). #x(S; e5).

It is now an easy exercise in covering numbers/entropy to conclude that there
is a set N; €SN B,(s(3), &5) satisfying

(5.9 .y (s N B,(s(5), &5); 5) < #N; < /X(s N B,(s(5), e5); %3)

such that d, x)(s,t) > 6 for N5 > s # t € N;. Taking 8 = q(£)°" /2, (5.6) thus
gives

. 2
P|inf | X()|” < ¢

(5.10) = #N,P{|X(s0)I* <e} = X P{XG)I* <& IXOI® < e}
Ns>s#teNs

= #N, P{|X(s0)[1* < e}[1 — C10-#x(S; 5¢°7*)(e"* + ¢7"9)]
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for £ small and for some C;;, > 0. Here we have, by (5.7), choosing a C;; > 0
such that g(g) < C1;677@ and .#x(S; &) < C11e P43,

A x(S; 59" + g7
(5.11) < €, 2P 4x1/2-0) (C e P @pA1/20) gn/2
+ qVP(v//X)(l/Z—Q)q—nQ) -0
as ¢ | 0. For £ small (5.8)—(5.10) therefore show that
Plinf |X()I? < o] = 1.4x(S3 25) " Ax(S: 0" V2P X (s)I < ).
The theorem thus follows from (5.7) and the fact that, by applying (2.3) to .#%,
Mx(S:q7V%) = Oy (=) CH{" X e D0 g (850712, 0

REMARK 4. By (4.1) and (4.2) we have d, x,(s, t)* < 2M|R||d,, x)(s, t)?
for z € Hy, so that B, (s, e//2M 1| R||) C B,(s, €). Consequently,

Ho1x)(858) < 8UD A, %) (S5 €) < Ay 3 (S e/V2M,|R]).

zeH,
Since .4 ] x)(S;-) is O-regul'arly varying, it follows that one can replace .#y =
Ay xy With sup, .y, #(; x) in Theorems 1-3. O

To get a sharp(er) lower bound we require that the y € H; given in (4.2)
satisfies

N yx) (SN B.(5, 8); €)M yx)(S; 8)
My(y) = Sup{ (y1X) y Az, :
/I/(y|X)(Sa 8)

(5.12)

0<8§é§80,8688}<00.
0

The requirement (5.12) essentially means that the ratio between the max-
imum entropy and the average entropy for a d, x ball is bounded.

We say that { X (¢)},cp is stationary if T' = (T, +) is an Abelian group and
it R o\, = Ry, g1y, for s, ¢, 7 € T. Then A4, x\(B,(s, €); &) does not depend
on s.

PROPOSITION 3. Assume that { X (¢)},cr is stationary and that 4/, (S, )
is O-regularly vaying as ¢ | 0. If, in addition, S has nonempty d ., x,-interior,
then (5.12) holds.

REMARK 5. If for example, 7 is metric and S is 7T-compact with
E{(y|X(t) — X(5))2} > 0 for S>3 s# ¢t e S, then diyx)(s,t) > 0=t —>rs
for {(s,t;)};2; € S x S. If S also has nonempty T-interior, it follows that S
has nonempty d, x)-interior.
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PROOF OF PROPOSITION 3. Take $ € S and g¢ > 0 such that B, (3, 25) € S.
Then it is an easy exercise in covering numbers/entropy to show that

Hyxy(Ss €) = Ay x)(By (8, 86);48) My xy (B, (-, €); ) for & < & < &g.

Here we have, by (5.8) (and Section 2), for & < %86 sufficiently small,

M yx)(By (8, 86);48) = Ay x)(S;48)/ A4 x) (S5 €6)
> [2W(0F, Ay x)(S, ) PIT?
x My1x)(S38) [ A y1x)(S; 26)-
Hence (5.12) holds with M5(y) = 2W(0", 4, x); %)L/l/m)q(s; g). O
THEOREM 3. Assume that m(s) has positive decrease as s — oo and that

(4.1) holds. Further asssume that (4.2), (5.1) and (5.12) hold with y € H{ N E;.
If, in addition, #x(S; &) = A, x)(S; ) is O-regularly varying as ¢ | 0 and

(5.13) n = #I > max{p(0%;q) p(07;.£x(S;-)), a(0F;.#x(S;"))},

then we have

o P{inf, 5 | X(¢)]? < &}
lim inf < > 0.
2l0 A x(S;q(e) V) P{| X (s0)|? < &}

PROOF. Take 7, v > 1 such that n[n — va(.#x)] > 1 and n > v?p(q)p(.#x)
and let K > 0. Also choose N; as in the proof of Theorem 2, where now
8 = Kq(&)™1/2. Then it is easily seen that £”/2#N; — 0 [consider (5.11) with
0 = 0 but with the factor ¢~"¢ omitted]. Further we have, by (5.12) and (2.3)
(for & small),

sup #{t € Nj: d i, x)(s,t) < ¢ "*(k+1)"K}

< s1slp Mx (SN B,(s, g "*(k+1)"K); 1q7'?K)
< M3(y)-#x(S; 3972 K)/-#x(S; ¢ (R +1)"K)
< M(y) Cy(—v) 27040 (ke + 1)),

Hence (5.6), (5.8) and (5.9) show that there is a C;5 > 0 such that [cf. (5.10)]

. 2
P|inf | X()|* < e}
= #N P{|| X (s0)[* < &}
-2 X > P{IX@®)|* <& | X(9)]* < &}

S€Ns keN {teN;: knK<ql/2d, x)(s,t)<(k+1)"K}
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> #NP{[| X (so)|* < &}

x [1 — Cp"*# N5 —C15 > (k + 1)*7”“(«/&)(1@"1{)—”]
k=1
> 3 Mx(S; 85) A x(S; Kq /P )P{|| X (s0)|* < &}
for ¢ and K large. Thus the theorem follows from applying (2.3) to .#x. O
6. Examples. In Examples 1-6 that follow it is assumed that {A,}; €
(0, 00) have been choosen so that m(s) = >3 ; A,/(1+ 2A,s) has positive de-
crease as s — oo. Further, in Examples 1, 4 and 5, S, S C R” are compact with

nonempty interior. There we also write ||¢|| = sup;;, |¢;|, Ds = sup ;g [[t—5|
and, choosing an n-dimensional hypercube K C S, dg = sup, ;. [|£ — s]|.

EXAMPLE 1 (An Ornstein—Uhlenbeck process). Let
X(@t)= Y VA ép(t)e, for t e R",
k=1

where {£,}72, are independent standardized (Gaussian) such that

E{&i(s)ér(t +5)} = eXP{—akiltil}
i-1

where 0 < a;, <sup q; =a < oo.
leN

Then independence of the components yields (4.1). Furthermore, we have

k n
exp(—agnDg)aglt — s <1-p) =1 - exp{—akzm .y
i=1

<na|t-s|.

Hence (4.2) holds for y = e;, for any £ € N, whereas (5.1) holds for any finite
I C N. Recalling that d,, x)(s, £)? = 2A,(1 - pg@z), we also conclude that

{s e R"|s| < &*/(2A,an)} € B, (0;¢)
C {s e R": ||s|| < exp(apnDg)e®/(2\zap)}.
It follows that ./, x,(S; &) is (O-) regularly varying with
(exp(—apnDg)rrardge™ —1)" < #, x)(S;e) < (\anDge? +1)".

Since by Proposition 3, (5.12) also holds, Theorems 1 and 3 combine to show
that

. ) . 2
0 < timof PO IXO <2} o Plinfies IXOI° <o} _
A0 g(e)yPYIX(so)P < ef ~ o a(e)P{IX(s0)” < e}
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ExAMPLE 2 (Independent identically distributed components). Let

X(t) = i VALER()e, forteT,
k=1

where the processes {&1(¢)}er, {€9(¢)}iers - - - are independent identically dis-
tributed and standardized. Then (4.1) holds, (4.2) holds for y = e, for any
k € N and (5.1) holds for any finite I C N. Provided that, given an S C T,
e, x)(S; €) is O-regularly varying, Theorems 1 and 2 now show that

. P{inf, s | X()|I” < &}
lim sup = < 00,
61 210 ey x)(S5q(e)V2P{| X (sp)]1? < &}
) . \
lim inf P{inf, 5 | X(®)[* < &}

= fi h 0.
H0 e M ) (S; q(e) PP X (so)[® < &} ek

If the processes {£,};2, are stationary and S has nonempty d ., x,-interior,
then (5.12) holds by Proposition 3, and Theorem 3 gives a sharp lower bound.

EXAMPLE 3. Let X(t) = Y32, V/Ar€x(t)ey, where {£,}%° | are independent
and standardized. Assume that there is an J C N such that {¢;} ;.; are iden-
tically distributed and satisfy p§’Z < p(s{ez for each choice of (j, k) € J x (N—J).
Then (4.1) holds, (4.2) holds for y = e; for any j € JJ and (5.1) holds for finite
IcdJd. If A, x)(S; &) is O-regularly varying for j € J, then Theorem 1 gives
an upper bound for P{inf, g || X(¢)||? < &}. If, in addition, #J is sufficiently
large [to satisfy (5.2)], then Theorem 2 gives a lower bound.

EXAMPLE 4 (A nonstationary Ornstein—Uhlenbeck process generated from
fractional Brownian motion; space dependence in 7). Choose an a € (0, 1)
and let

o=y Set) (Lew)

[(Eoweo) s (Sewer) - (£(on(3) -o0(3)) )]

for s, ¢ € R". Define X as in Example 2, where (e,|X(¢)) = /A,£,(¢) has

correlation p§k2 = 0, ;. [Equivalently one may define &,(¢) = (X ; exp¢;)~%/2 -

W (exp(t1/2),...,exp(t,/2)), where {W,}?”, are independent fractional
Brownian motions satisfying E{W ,(s)W,(¢)} = |s|?>* + |¢|>** — |t — s|?*.] By
Example 2, (4.1) holds, (4.2) holds for y = ¢; and (5.1) holds for finite I C N.
Furthermore, a Taylor expansion reveals that

1- Os,t = 92— (1+20) < Z(ti —s; )2 exp(si)) /(Z eXp(Si)> +As, ; |t_S|min{2,1+2a}’
v i
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where sup{|A, ;|: |t — s| < oy, |s| < M} < oo for oy, My > 0. It follows that
Cigllt =87 < dix)(5,8) < Cglit — 5|V for ||t —s|| < o
for some constants C;3, 05 > 0. Now take an § in the interior of S and write
S=80@)={teR" |§—¢|| < %(rz}. Then we have
Sn B, (s;&) C {t e R": ||s —t]| < (C138)"},

{teR™ |s—t]| < (Ciie)*} € B, (s;6) for & < &7 = Cy305/°

Consequently, ./, | X>(S; ) is (O-) regularly varying with
(%szf‘dgs*“ - l)n < JI/<81|X>(»§’; £) < (%C?3DS87Q + l)n for € < &;.

The fact that (5.12) also holds (for { X (¢)},.¢) thus follows from observing that

‘/1/(e1|X)(‘§ N B, (5;8);8) < Heyx)({t € R":|s — £]| < (C138)*}; &)

< (Ci5(8/e)* + 1)

for & < &;. Applying Theorems 1 and 3 we conclude that

L P{inf,_g¢ ||)((t)||2 < &}
0 < liminf teS
210 q(&)"/2P{|| X (sy)|?* < &}

. Plinf, s | X(0)|? < &}
< lim sup tes < o0.
10 ()" PP{]| X(so)|? < &}

Since S = S(8) € 8 for oy, small, while S < UXN, S(5;) for some choice of
{5,}¥, € S, Boole’s inequality shows that (6.2) also holds when S is replaced
by S.
ExaMPLE 5 (L2-differentiability; space dependence in H). Let X(t) =
T X(¢t) for t € R*, where {X(7)}rers---> {Xn(T)}.cr are independent
stationary H-valued variables with common variance R. Assume that each
X ;(7) satisfies (4.1) with

(6.2)

T1:T2 T1,T2 2

RO =r() R wherery) =1—1r/r%+A07% and lim A = 0,
for some r7, AY e . Then X(t) possesses a derivative X'(¢) such that
lim,_  E{||A7[X(t+h) - X()] - X'(®)||*)} = 0 and X(0) and X'(0) are in-
dependent. Furthermore, R = nR and R, ,=(1/n)}; rgz?ti)R, so that (4.1)
holds. It follows that
d<Z|X>(0, t)? = <Z[r;/ - 2A§f)]}?t?2 | z>

(6.3) > [il}f(r;’Rz|z) ~ 2sup ||A§j>1%||] It12,

d 30, 8)> < | R|| sup[|7/]| + 2| A 1] ¢
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for z € H, and, in particular, (r/ Rz|z) > 0. [In fact /R = Var{X/(r)}, so that
r;’R is positive.] We now make the additional assumption that

there is a finite I € N such that #I > np(0*; q) and
inf inf (r/Rz|z) > 0.

i zeH,NE;

Then (6.3) implies (5.1). Furthermore, we have
I ool , ;
1= ool = @) S0 = 28716 < (2n) " supllr] + 2147 11l

Hence, by (6.3), (4.2) holds for y € E;. For D4 sufficiently small we also obtain
Ciie™ < Myx)(Sie) <1+ Cpye™”

for some C;; > 0. Thus Jf/(y|X>(S’;-) is (0-) regularly varying with p(0*;
M yixy) = (054, x)) = n. [As in Example 4 we can first study a sufficiently
small (in terms of Dg) set S € R" and then easily extend results to a larger
S afterwards.] It is also clear that S has nonempty d, x)-interior. Hence, by
Proposition 3, (5.12) holds. Since p(0*;q) > 1 it also follows that (5.13) holds
when #I > np(0F;q). [If p(0*; q) < 1, then there is a § < 1 such that £°q(¢)
is bounded for & small. However, then m(s)%s is bounded for s large, which
contradicts the fact that m(s)s — oo.] In conclusion, by Theorems 1 and 3, X
satisfies (6.2) with o = 1.

EXAMPLE 6 (A nonstationary Ornstein—Uhlenbeck process generated from
set-indexed Brownian motion). Take X as in Example 2 with 7' = {A C
[0,1]": A Borel set} and p, p = (|A||B|)""2x|ANB|for A, B € T, where |-|is
the Lebesgue measure. Take a 6 € (0, %) andlet S =S(86)={A e T: |A| > §%}.
Then we have (e,| X(A)) = /A,/|A] W(A), where W is Brownian motion on
T with E{W(A)W(B)} = |AN B| and dw(A, B> = |A| + |B| - 2|ANnB|. It
follows that

d e, x)(A, B)? = M, (|A[|B)"V?[2//|A[|B] - 2| A N B]
< A8 2dy (A, B)?
for A, B € S. On the other hand, we have
AT — JTB? — [(IA] v |B]) = (JA| A |BDT?

(VI41-VIB) (VIA]V B[+ V[A[ A |B])?
_ (AIVIBDI(AI v |B]) - (|A| A|B])
N (|A|v|B|)+62+26\/|A|v|B|
< (1+28)7'[(|1A] vIB]) - (JA| A |B])]
<(1+28)'dy(A, B)?
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for A, B € S, which implies that

Mldw(A, B)? — (VIA] - /[B])?]
. A, B 2 _ kLW — W I
(4 B) JTAIIB]
_ 25),dy(A, BY?
= 82(1+29)
> 571Ade(As B)2

for A, B € S. Given an R-valued Gaussian process {{(¢)};cr, if we write
,/I/{O(S; g) for the minimum number of closed d, balls of radius & centered at
S needed to cover S C T, then it is an easy exercise in covering numbers
to see that .#;(S;¢&) < ,/I/go(S; g) < H(S; %a). Combining this with the facts
above, we conclude that

M (S;2y/8/A, &) < M (S5 2V/8/Mg8) < A x)(S;28)
= '/1/ek|X (S’ 8)7
(6.4) e
Ao x)(S18) < A ) (S58) < AP (8380, e)
< M (S; 181, %e).

Now consider the pinned Brownian motion W(A) = W(A) — |A|W([0, 1]*).
Since (|A| —|B|)? < (1—-6%)dy(A, B)? for A, B < S, we have

6%dyw(A, B < diy(A, B - (|A| - |B)® = dy(A, B)* < dy(A, B)?
for A, B € S. It follows that
Mw(S; 8) = M (S;28) = A (S; 28) = N3(S; 28),
Mw(Ss8) < M (S;8) < H(S;88) < N7(S; 5 6¢).
In view of (6.4) we thus obtain
(6.5) N7 (854/8/A4e) < N, x)(Ss €) < Ap(S; 1621, %),

The next lemma is proved in Samorodnitsky [(1991), Remark 6.2 and Exam-
ple 6.2].

LEMMA 2. Let S(0) ={A € T: E{W(A)?} > 0%} for 0 € [0, %]. Then there
is a constant Ci5 > 0 such that

(6.6) N (S(5 - 8);8) = Cge /8y for 8, €[0, 3],

(6.7) Hi7(S(81) — S(3y);¢) = Cuse ¥ [Vo, =6, + 82| for 07 <8, =8y = .
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In view of the easily established facts that S(6v1—62) = S(6) —
S(V1-62)and T =S(0") — E(%), (6.5)—(6.7) readily combine to show that
C[L — 8v1 —82]%(168/A4) 2me ™"
< M w(S(8V1—82);4/5/A, ¢)
< Heyx)(Ss &)
= Aw(807) = S(3): 384, 2)
< C15(164,/8*)°"[1/2 + 158% &>/ Ay ]e 7",

Hence X satisfies (6.1) with S = S(8) and Cige™*" < A, x)(S; £) < Cree*".

7. Local extremes for stationary processes. The treatment is special-
ized to the process Y (¢) = Y50, /Ar€r(t)ey, t € T = R, where {£,} are in-
dependent (R-valued) stationary and standardized with covariance functions
{r;}. Using Albin (1990, 1992b) the upper and lower estimates of Sections 4
and 5 combine with a weak convergence argument linked to the linear struc-
ture of R to give the exact asymptotic behavior of P{inf,.[ s 1Y) < &}
under conditions on {r,}.

For easy reference we now state the needed results from Albin (1990,
1992b): Let {k(t)};~o be an (0, co)-valued separable stationary stochastic
process such that 0 < P{«(0) < ¢} — 0 as ¢ | 0. Assume that there are
constants —oo < x; < 0 < x; < oo, a function w:(0,00) — (0,00) and a
strictly decreasing continuous function F':(x,, x;) — (0, c0) such that

(7.1) limis(,)up P{k(0) < ¢ — xw(e)}/P{x(0) < e} = F(x) for x € (x4, x1).

Further assume that there is a nondecreasing function p:(0, co) — (0, c0)
and a stochastic process {x(¢)};-( such that

the finite-dimensional distributions of {(K(p(s)t)_SIK(O) < s)}
w(g) ! t>0

(7.2)
—, those of {x(¢)},.0ase| 0.

We shall make the additional requirements that, given an A > 0,
[/ap(e)]
(7.3) Alrim limsup Y P{«(ap(e)k) <& |k(0) <&} =0 foreacha >0,
—00 £00 E—N
and that there are constants A, b, ¢, d, g, n; > 0 such that
(7.4) P{x(p(e)t) < e — qw(e), k(0) > e} < At* 1~ P{k(0) < &}

for 0 < t¢ < < n, and ¢ € (0, gg]. [Here (7.1) implies that w(e) = o(¢).]
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LEMMA 3. Assume that (7.1)—(7.4) hold. Then the limit

. _1 . —
lima P{gx(ak) > o} =L

exists and 0 < L < oco. Furthermore, we have

P{tei[%fh] K(t) < s} ~ R L p(e) 'P{x(0) < &} as e 0.

PROOF. This follows from combining Albin [(1990), Theorem 1] and Albin
[(1992b), Proposition 2(i) and the remark following that result]. Of course,
although results in Albin (1990, 1992b) are stated for suprema, they are triv-
ially adapted to deal with the infimum of a process «(¢) by considering the
supremum of —k(¢). O

Suppose that there are constants « € (0, 2] and ¢, cg, ... € [0, 00) such that

(7.5) rp(t) ~1—clt|]* ast— 0 for keN.

For the convergence in (7.5) we need a property reminiscent of uniformity for
keN:

(7.6) My = supsup [¢|7%[1 — rp(¢)] < oo.
keN teR

Of course, (7.5) implies that there exists an 2 > 0 such that

(7.7) supr,(t) <1 fort e (0, A].
keK

THEOREM 4. Let {{}};., be independent zero-mean R-valued Gaussian pro-
cesses with covariances E{{,(s){,(t)} = cp[|s|® + |¢]* — |t — s|¥] and let & be
a unit-mean exponential random variable such that Y, {{,}3., and & are
independent. Further put Z(t) = Y321 VA (w(t)es, and assume that m(s) =
Y 51 Ar/(1 4+ 2A,s) has positive decrease as s — oo and that (7.5)—(7.7) hold.
If, in addition,

(7.8) K ={keN:c, >0} satisfies #K > 2p(07;q)/a
(with q defined as before), then the limit
L({/\k}’ «, {ck})

 lim lP{ikgfl‘[IIZ(ak)IIZ w2 <el|Z(ak>><el|Y(0)>} = «f}

al0 a =1
exists with L € (0, 00). Moreover, we have

P{ inf Y (0)]? < g}~ RLq(e)/*P{|Y(0)|? < &} as e 0.
t€[0, ]
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REMARK 6. Here Z(¢) is a well-defined Gaussian process since, by (7.6),

Y Var{\/A §(t)} = D 2X,¢]t|* < 2 tr(R)M5¢]* < c.
=1 =1

Furthermore, Y7, \/2/A;{e;| Z(¢))(e;| Y (0)) is well defined since

iVar{\/T/\z (el Z()) (e, Y (0))}
=1

8

ANje |t < 4 tr(R)M;|t|°.

~
Il

1

LEMMA 4. Let p = ¢ V%, w = ¢! and «k(t) = |Y(¢)|%. Then (7.2) holds
with

x() = 1Z@))* + ix/TM(ezIZ(t))(ezlY(O)) - <.

=1

PROOF. Let {£,}52, be an independent copy of {&,}3>, and write {j,(¢) =
E,(t) — r(£)€,(0). Since £,(t) — r,(¢)€,(0) and &,(0) are independent,

the finite-dimensional distributions of q(||Y(pt)|* — &)
(19) =, those of 3 ah(E(p)? + 26O PELO)
k=1

= [1 = ri(pt)*1€1(0)%) + a(IY (0)]* — ¢).
Here we have, by (7.5), g[1 — r,(pt)?] — 2¢;|¢|*, and since
(7.10)  Cov{q"?{i(ps), a2 5u(pt)} = alri(p(t — ) — ri(ps)ri(pt)],
it follows that
(7.11) the finite-dimensional distributions of ¢'/2,(pt) —, those of {,(¢).
Writing N(0, 1) for a standardized Gaussian random variable independent of

Y(0) [and recalling that E{[N(0, 1)]?} = \/2/m] we further have, by (7.10)
and Jensen’s inequality and by an application of (4.11) (with s = ¢),

£

> andi(pr(p0eo) [ IY )P <]

k=141

00 1/2
=5{( ¥ - R0 (e ao?)  INO.DIIYO) <]

k=Il+1
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E 00 1/2
< \/( > g1 = rp(pt)?1rk(p)’E{qr,£,(0)* | |Y(0)]? < 8})

T\ k=141

9 o 1/2
<(2 % ant - nerica)

k=I1+1

Since by (7.6), sup,y q[1 — r1(pt)?] < 2M;|t|%, it follows that

S ara(E(pt)? + 28 (pt)ra(p)ER(0))

limsup E {
k=l+1

el0

Y ghlL — r(pt)P1EL(OY
k=1

YO < o]

o0
<limsup Y gAg[1l—ry(pt)’]
a0 p=yq1

~ 1/2
+ lim sup<(8/7r) > gAap[l— rk(pt)2108>
£l0 k=l+1
+ lim sup g sup[1 — rk(pt)z]E{”Y(O)”z | 1Y (0)[* < &}
el0 keN
o o 1/2
< 2M5|t|a Z )\k +\/16CSM5|t|a/7T( Z )\k)
k=1+1 k=l+1
+ 2M5;|¢|*limsup &,
&0

where the right-hand side tends to zero as [ — oco. In view of (7.9) and (7.11),
(7.2) will therefore follow if we can prove that W = Y (0) satisfies

(@2 (Wlex), ..., ¢"*(Wley), q(IWII* — &) [ W]* < )
=g (2A) V2 (Wley), ..., (21) V3 (Wley), —&)

(7.12)

for each [ € N. However, by (3.2) and (3.4), we have

F a2 (Wiey).o a2(Wier) | q(W =) (Y1 - > Y1 | %)

_ fiw,2(e + (x — Zi\,,:ly%)/Q)l_[iﬂf\/TkN(o,1)(yk/q1/2)
92 f w2 + x/q)

l
- l_[f /1/2N(0’1)(yk) for (yl,,,,,yl,x)GRHl.
k=1
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Since, by (32), fq(HWHZ—s)|||W||2<s(x) — e* for x < O, it follows that

g2 (Wiey),.... 2(Wiey), a(IWi2—e) | [ W2 <e( Y15 -+ 5 V1> X)

= f g Wie),... 2 (Wiep | q(IW)2-e) (V15 - > Vi [ X) Fgqwiz—e)| jw)2<e (%)

l
- Hf /1/2N(0,1)(yk)ex
k=1
= f(2/\1)—1/2(W\e1) ,,,,, (ZAZ)-l/Z(W\el),fé’(yb s VI X)
for (yy,...,y;, x) € Rl x R*. Hence (7.12) holds. O

LEMMA 5. The condition (7.3) holds for k(t) = | Y (¢)|?.

PROOF. First we observe that, by (7.6),

diyyy (s, 07 =2 A (ylep)’[1 = ry(t — s)]
(7.13) k=1

< 2M5;|t — s|°‘<sup )\k>
keN

for y € H,. On the other hand, by (7.5), there is an #; > 0 such that
2 . of -
(114 diyyy(s, 07 = 2inf M1 —ri(t—s)] = |t = (}13161;; /\kck>

for ye HiNEg and |t — s| < h;. Thus (5.1) holds for I = K. Moreover, (4.1)
holds with r ;e, = r,(¢ — s)e,. In view of (7.5) and (7.14) it follows that

||1_rs,t|| < My

< — forye HHNEg and |t —s| < h4.
diyyy(s,8)? ~ (infheg Apey) P | <M

Hence (4.2) also holds. Writing n = #K, an application of (5.6) [which requires
(4.1), (4.2) and (5.1), but not (5.2), (5.3) or O-regular variation] now shows that
P{lY()]* < e[V (s)]? < &}

< Cyp[€"? 4 p"2|t — s|7"/2] for |t —s| < hy

for some constants kg, Ci; > 0. Furthermore, by (7.7), there is a C5 > Cyy
such that

P{Y(®)I* <& | Y(0)]* < &}

= P{ iAk[Zk(t) +r(0)E(0)] < e[ [Y(0)]* < 8}

k=1
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< P{ Y MG < (Ve + 1Y (0D | 1Y (0))% < }
ke K
< TTP{Aull — 7 (0)2][N(0, 1)]* < 4&}
ke K

<Cige"? for min{h, hy} <|t—s| <h
[where ,(t) is defined as in the proof of Lemma 4]. It follows readily that

(/)] , ,
> PllIY(apk)II” < | [Y(0)]* < ¢}
k=N

< Cus| (hfa)e g 4+ 3 (k)2 .
k=N
Here, since by (7.8), na/2 > p(q) > 1 (cf. Example 5), the right-hand side
tends to -3 y(ak)™¥/? as e | 0, which in turn tends to 0 as, N — oco. O

PrOOF OF THEOREM 4. Clearly, by (3.1), (7.1) holds with F(x) = e™* (and
w = g~ 1). To verify (7.4) we take a j € N such that jo > 1. Using (7.13), an
application of (4.12) with » = 0 then shows that there is a 15 > 0 such that

P{|IY(pt)|* < e~ n/q, |Y(0)|” = &}
< Co(/)d yv)(0, p()t)* ¢/ >/P{|Y (0)|I” < &}

< 2/Cy M3t~ (sup &x ) PAIY (O)) < e}
S

for 0 < t* < m < my and & small. [Note that, by (7.13), the condi-
tion d,x)(0, pt)2q < Cgnm required for the validity of (4.12) is satisfied
when t* < 7.] In view of Lemmas 4 and 5, Theorem 4 now follows from
Lemma 3. O

8. Global limits for stationary processes. By well-established prin-
ciples in extremal theory, control of local extremes combines with a suitable
global mixing property to imply one of three possible global limit results. How-
ever, it is often difficult to prove mixing since that involves manipulation of
and verification of sharp quantitative results for finite-dimensional distribu-
tions of arbitrary order. In Lemma 11 we will show that a careful adaption of
finite Gaussian ideas of Berman (1964) and Sharpe [(1978), pages 384—-387]
[in the sequence of estimates (8.5)] combine with estimates needed to allow
passage to infinite dimensions to verify the required mixing property. Then
we use Albin (1990) to prove global limits.

For easy reference we now state the needed results from Albin (1990). As-
sume that (7.1)—(7.4) hold and let T'(¢) ~ p(e)/(L P{x(0) < €}) as ¢ | 0 (where
L is given in Lemma 3). Further assume that

(8.1) ple+xw(e)) ~ p(e) as e 0for x € (xg, xq1).
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CONDITION D. This condition holds if, for any choice of @ > 0 and 7 € (0, 1)
and for any choice of points s; < --- < s; < #; < --- < t; belonging to
{akp(e): k € Z,0 < akp(e) < T(e)} and satisfying ¢; — s; > 7T'(¢), we have,
as e | 0,

i=1

P{ k(s = e} Jéle) > 8}}

- P{ rI]{K(Si) > 8}}P{ ﬁ{'{(tj) > «9}H — 0.

i=1 j=1

CONDITION D’. This condition holds if, for any choice of a > 0, we have
[7T(e)/ap(e)]

lim lim sup > P{k(akp(e)) < €| k(0) < &} = 0.
O 0 et h/ap(e)]

DEFINITION 1. We say that « has a 8-downcrossing of the level ¢ at ¢ if
k(t) = € and k(s) > ¢ for s € (¢ — 6, t).

LEMMA 6. If(7.1)—(7.4), (8.1) and Conditions D and D’ hold, then we have

. -1 . _
lipPle], iof,, <© - ¢] <]

=1—exp{—F(—x)} for x e (xg, x1).
If, in addition, k(t) is a.s. continuous, then

N.(k; A) =#{t € T(e)A: k has a 5-downcrossing of € at t} for A CR*

converges weakly as a random measure to a Poisson process with intensity 1.

PROOF. Since, by (8.1), Albin [(1990), equation 2.15] holds with ¢ = 0, the
lemma follows from Albin [(1990), Theorems 2(c) and 10]. O

THEOREM 5. Let m(s) have positive decrease as s — oo. Further let T'(g) ~
[Lq(e)Y*P{|Y(0)|? < &}]7! (where L is given in Theorem 4) and assume that

(8.2) r(t)= sup |r,(s)| satisfies liilolq(s)zr(T(s))zo.

s>t, keN

If, in addition, (7.5), (7.6) and (7.8) hold, then we have

. . 2 . _ _ _x
1;%1P[q(3)[t€[3%f(8)] 1Y ()] e] < x} —1—exp{—e*} forxeR

Moreover, N (|Y||?;-) converges weakly to a Poisson process with intensity 1.
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LEMMA 7. (i) lim,( q(&)?r(7,T(79¢€)) = O for 71, 75 > 0.
(ii) The right inverse r~(t) = sup{s > 0:r(s) > t} satisfies

11%1 q(e)Y*P{|Y (0)|| < e} r~([eq(e) + 1]7V2) =0 for each 7 > 0.
Proor. (i) By (2.6) and (3.1) we have q(e — 1n(%71)/q(s)) ~ g(&) and
T(s—ln(%‘rl)/q(s)) ~ %TlT(S), so that T(s—ln(%ﬁ)/q(s)) < 71T (¢) for £ small.
Since g is O-regularly varying we get, by [the change of variable ¢ — ¢/,
and] (8.2),
lim sup q(&)%r(7,T(79¢))
el0
< WU (0", ;1 A 73 1) lim sup q(&)r (7, T(¢))
el0
< WH(0%, ¢;1 A 73")limsup (e — In(371)/q)*r(T[e — In(371)/q])
el0
=0.
(i) Since by (i), r(T(37¢)) < q(&)~2 < [eq(e) + 1]71/2 for & small, we have
r~([eq(e) + 1]7V/2) < T(37¢). Consequently,
1\ 1
a(57e) PLYOI < el (loater + 117

_ro(ea(a)+11712) 2
LT(37¢) L

for & small. Since by (2.8) and (3.1), P{|W| < r&}/P{||W| < %78} — 0, (ii) now
follows using that q(%rs) > %\P*(OJ“, q;1 A (2/7)) q(e) for & small. O

The next lemma is contained in Hoffmann-Jgrgensen, Shepp and Dudley
[(1979), Theorem 2.1].

LEMMA 8. For every H-valued centered Gaussian random variable N we
have

P{|N| <e}=P{|N+z| <&} foreach e>0and zec H.
LEMMA 9. If lim, , r(¢t) =0, then r(t) <1 for t > 0 and (7.7) holds.

PROOF. Assume that r(¢) = 1 for some ¢ > 0. Then there exists {¢,}7”; €
[¢, 00) satisfying r,(t;) > 1 — k~1. Now choose # € (0, o0) and & > 0. Further,
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take k, n € N such that nt > £ and \/2/k < &¢/n. Then we have
ri(nty) = rp((n — 1)¢,) + E{[£x(nty) — €x((n — 1)¢,)]8,(0)}

> ri((n — Dty) — B{[£4(nt}) — £4((n — 1)t)12}
> r((n = 1)ty) — o/n

>...Zl_g’

so that r(£)>1—&. Hence r(f )=1, which contradicts the fact that r(¢)—0. O

LEMMA 10. Condition D’ holds.

PROOF. Since Y (¢) = Yei{enlY (2) — rp(¢)Y(0))e,, is independent of Y (0)
with Var{(e,|Y(t) — r,(£)Y(0))} > [1 — r(¢)?]Var{(e,|Y(0))}, we have, by
Lemma 8,

P{Y(@®)I* <& Y (0) < &}

00 2
—k[p{| 70+ Sroer | <oy o]
k=1

(8.3)
<E{P{IY®)I? < e} v (0)2<e}}

<P{|Y(0)]* < e/[1 - r()*]} P{|Y(0)||* < &} for¢> 0.
[Here r(t) < 1 by (8.2) and Lemma 9.] Since &/[1 — r(¢)?] > e+ 1/q(s) = t <
r~([eq(&) + 1]71/2), Lemma 7(ii) and (3.1) yield

[7T/(ap)]
limsup Y. P{|Y(akp)|® < | [Y(0)]? < &}
&0 p=14{h/(ap)]

= limsup(@p) " ([ea(e) + 11 P{Y O < o/11 = r(h)?1}
+limsup(rT /(@) P{IYO)I7 < -+ 1/q(e)}

=r7e/(aL) >0 as 70. =
LEMMA 11. Condition D holds.

Proor. Choose p = (p1,...,p,) € [—1,1]" and let {{,};_; be indepen-
dent standard Gaussian processes with parameter space {1, 2} and such that
E{{i(1){1(2)} = pj- Further write 0 = sup;;-, pp, let kg satisfy A, =
sup;-s Aj, and define

Zr'ty= > NG and XRT(E) = ZVT(E) + M G(E)?
2<l<n

I£k
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for n > k > 2. Since e */2 < (ex)~/2 and
.
Frname ynaee(*1 %2) < [277)\1\/(1 —p1 )xlxz] ;

we obtain, writing B(-, -) for the beta function and using (8.3),

2 e— X7"(1)
E iy SR SEAN | R
{“exp[ 2Ak<1+|9|>] i <”<8}}

=1
_ M1+l
o e
x E{(s - X3 " (1) (e - XZ’n(z))_lﬂl{xg"(1)<8,X',;’"(2)<s}}
_ A1+ o))
e
/ fAlgl(l)Z,Algl(Z)z(xl, xz)fzgv"u),zg*"(z)(zly 29) dxdz
O<xi<e—2 (e = x1 — 21)V2(e — xg — 25) /2
O<xg<e—2q
0<zq, z9<e
1/2 1/2
(8.4) _ (1 + o)) 21/ ZZ/ fA1§1(1)27A1§1(2)2(x121’ X923)
e 0<xq, x9<1,0<zq, z9<e (1 - x1)1/2(1 - x2)1/2

X fzpmqy, zpm@)(8 — 21, & — 29) dx dz

_ BG, P/l
2me /1 o]

/ fzg’"u), zg”(z)(s —21,8—29)dz
0<zq, z9<e

B(3, 5)*\
= mery/2(1— o))

B(l 1)2/\k

2’2
= medy/2(1— o))

P{Z?"(1) < e, ZV"(2) < &}

plzirw < o ezl <o)

for any p € [-1, 1]".
Let n1(2), v1(¢), ..., m,(¢), v,,(¢) be independent centered stationary Gauss-

ian processes and choose %y, ..., uy € R. Define the N | N matrices I',,3, €
Ry v by

(Lp)ij = Cov{ng(u;), mip(u )} and (%), = Cov{vp(u;), vi(u )}

and assume that (I'); = (2,);; = Ap. Also define Ch=hr,+(1- h)%, = Apch.
Further write f(A;-) for a centered Gaussian density based on the covariance
matrix A € Ry, and define YA € Ryp by (VA)1; = Ay, (VAo = Ayj, (VA)gy =
Aj; and (VA)g = A ;. For the x? processes Y")(¢) = Y5 _; m(¢)? and Z((¢) =
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> _1vi(t)? we then obtain, using the elementary facts that (/NN (A x) =
(9/9x;)(3/9x ;) f(A; x) and that (y* + 2% — 20y2)/(1 - 6%) = (¥* +2%)/(1 +0),

p{ﬁ{w(u,.) > o} - P{rNW{ZW(ui) 51

i=1

[9 n
- /he[o,ll %nf(gh;xl)dxdh
Ny (xf)?=e} =1
N /he[o’l] Y ((@a)y = (295 (Chs b
NN_{X) (x))2=e} 1Si<j<N
1<k<n
x [1£(Ch;x") dxdh
Ik
- Z /he[O,l] ((Ek)ij - @k)ij)&ijf(gh; xk)
ls1L<<kJ<SnN Nz, A1 (2428}
o Z?:l(xil)2<5a
Z?:1(x;')2<8
x [1f(Chx"ydxdh
Ik
85 Z /hE[O 1] ar09((L'y)ij — (Ek)ij)( ]_[f(gh; xl)>
1§115<k]5§nN N A 11 (20,) =6} I#k

1\2
o ope{-1.1p ) <
Yizn(xj)i<e

< f(Chit, 5t = [o= S = o Taly? ) dxan
I#k l#k

2 ,/he[O 1] I(Ek)ij - (zk)ij|< Hf(ijgh; xl)>
1<i<j<N Zl#k’(xil)2<€’ I£k

1<k<n %9
o1, 02{-1,1} Eih(xj) <o

IA

x f(ijcz;al 6= Y (x))% oy [o= Z<x§>2)dxdh

I#k I#k

<4 Z sup /Zl#k(xil)2<a, i(Ek)ij - (Ek)ij|< Hf(ijgh; xl)>

1<i<j<N he[0.1] Yia(xl)?<e I#£k
1<k<n !
1 2¢e — xhH)2Z — xb)?
y ox {_ 2ue(x;) hZz;ak( ) }dx
2 A1 - (k)| 204 (1+ ()i

(When one or more of the QZ’S are singular, a continuity argument shows
that this inequality still holds.) Using (8.4) it follows that (in the notation of
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Condition D)

I P{ﬁ{i/\kfk(si)z e 8} n ﬁ{i/\kgk(tj)z = 8”

i=1lp=1 j=1lp=1

- P{ﬁ{i)\kfk(si)z > 8”1){ ﬁ {i’\kfk(tj)Q > 8” i

i=1 Up=1 j=1lp=1
2|r(t; —s;
y Sup[ r(t, ~ 50)
1521 hel0.1] 77\/1 — hlr(t; —s;)]
1<j=<J
1shsn (Bt =)o (E—50))
9 _X 7(tj=8; )5 r(tj—s; ,nl
xE{nexp[—s A ()}
1 2A,(1 + |hr(tj—si)|)
X I{X(hr(tj—si) ..... hr(tj—si)),n(l) }}:|
3 <&
(8.6)
- X": V2B(%, $))[T/(ap)Pr(rT)A,,
T em?A (1 —r(sT))

x P{Z',;:(l) < JW} P{Z;"(1) < &}

V2B(3, 1)2T%r(7T) tr(R)
em? (1 —r(7T))(ap)?

2 P
<P 5 weor| < o)
ketkq
2
X P{ 3 (02 < s} as n — oo.
k1

kit

Here &/[1 — r(7T)?] < & + 1/q(¢) for & small since, by Lemma 7(i),
V€q(e) +1r(7T) — 0. In view of Lemma 7(i), the fact that the Condition D
holds thus follows from observing that, by (3.1), (3.4) and (8.6),

lim sup
el0

I J
P{ﬂ{||Y<si>||2 = e} 0 (I E)I2 = s}}

i=1 j=1

—P{ﬁ{nY(smP > o} |P] AT @I = o] '

i=1 j=1

B 42X, B(3, 3)? tr(R)

- (maL)?

lim sup q(&)?r(rT). O
|0



MINIMA OF H-VALUED GAUSSIAN PROCESSES 823
PROOF OF THEOREM 5. By (7.13) we have

—1/a

{seR:|s| < (2M5[sup)\k]) 82/“] C B,(0;¢) for ye Hy,
keN

so that .,y ([0,1];e) < 1 + 3(2Ms[sup;yA])/“e~?/*. Consequently,

SUp,cp, fol VIn Ay7y([0,1];e)de < oo so that Y is a.s. continuous (see the

beginning of Section 4). In view of Lemma 6 [and the fact that, by Sec-
tion 7, (7.1)—(7.4) and (8.1) hold] the theorem thus follows from Lemmas 10
and 11. O

PROPOSITION 4. Equation (8.2) holds when t” sup,y |7(2)] — O for some
o> 0.

PrOOF. Choose C9 > 0 such that sup,y |r,(t)] < Ci9t™7 for ¢ > 0. Then
we also have r(t) < Ci9¢t~?. Consequently,

q(&)’r(T(s)) < C1oL?q()*"/*[P{||W|* < £}]°,
where, by (2.9), the right-hand side tends to zero [since £2/(?9g(g) — 0]. O

In the finite case with precisely n nonzero A.’s and n > 2/«, sufficient
mixing requires that °r(¢) — 0 for some o > (n/2 — 1/a)~!; compare Albin
[(1992b), Section 3].
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