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BROWNIAN MOTION ON A RANDOM RECURSIVE
SIERPINSKI GASKET1

BY B. M. HAMBLY

University of Edinburgh

We introduce a random recursive fractal based on the Sierpinski
gasket and construct a diffusion upon the fractal via a Dirichlet form. This
form and its symmetrizing measure are determined by the electrical
resistance of the fractal. The effective resistance provides a metric with
which to discuss the properties of the fractal and the diffusion. The main
result is to obtain uniform upper and lower bounds for the transition
density of the Brownian motion on the fractal in terms of this metric. The
bounds are not tight as there are logarithmic corrections due to the
randomness in the environment, and the behavior of the shortest paths in
the effective resistance metric is not well understood. The results are
deduced from the study of a suitable general branching process.

1. Introduction. The study of diffusion on fractals has concentrated on
� �fractals with spatial symmetry. The randomization used in 14 preserved

this property, which was crucial to the analysis. In this work we introduce a
random recursive fractal with statistical self-similarity and extend the theory
of diffusion on fractals to a simple family of Sierpinski gaskets from this
broader class of fractals. The fractal is based on the Sierpinski gasket as this
is a simple multiply connected fractal and provides an instructive example
where the behavior of random recursive fractals can be seen. A more general

� �class of random recursive fractals based on nested fractals, 23 , or affine
� �nested fractals 8 , could be constructed but provides more work in the

� �construction of a diffusion. Recently T. Hattori 15 has considered processes
on scale irregular gaskets, another class of sets which are not exactly

� �self-similar and include the homogeneous random fractals considered in 14 .
The random recursive Sierpinski gasket is a random recursive construction

� � � � � �in the sense of 25 , 12 or net fractal in the terminology of 6 . A family of
sets of contraction maps is used recursively to generate the fractal. We will

� �consider sets from the family of Sierpinski gaskets defined in 14 , examples
Ž .of which are shown in Figure 1. The fractal SG � from the family has

Ž Ž . . Ž .dimension d � log � � � 1 �2 �log � and can be described by a � � � 1 �2-f
ary tree in which the nth generation branches of the tree correspond to the
sets in the fractal at the nth level of construction.
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FIG. 1. The first two stages in the construction of three fractals from the family of Sierpinski
gaskets.

The random recursive gasket can be described using a random tree. A
branch is associated with each subset of the fractal of a given size and each
splits into more branches, according to a simple Galton�Watson process,
which describe the evolution of that component of the fractal. This tree will
provide a means of discussing the geometry of the fractal. A version of the

Ž . Ž .random recursive gasket formed from SG 2 and SG 3 is shown in Figure 2.
In this fractal the graph formed from the vertices and edges of the

triangles after n iterations of the contractions has no well defined length
scale. However, such a scale will be imposed using the electrical resistance of
the fractal. The resistance of each edge in the graph approximation to the
fractal is determined by the need to maintain a unit resistance across the
graph of unit side length. The contraction maps are then iterated until
the resistance of each edge is approximately e�n. This provides a sequence of
graphs G , convergent to the fractal, with the property that each edge hasn
roughly the same resistance, and hence a random walker will move along any
edge with roughly equal probability.

The construction of a diffusion process on the random recursive gasket will
be accomplished using Dirichlet forms. The method uses the connection
between reversible Markov chains and electrical networks. By our choice of
resistance the graphs G form a compatible sequence of networks in then

� �sense of 20 . The resistance also gives rise to a natural measure � on the
fractal which is equivalent to the Hausdorff measure in the effective resis-
tance metric. From the associated sequence of Dirichlet forms and the
corresponding Markov chains we can construct a natural diffusion process, Xt

Ž Ž .. 2Ž .associated with the limiting Dirichlet form EE, DD EE on L � which will be
called ‘‘Brownian motion’’ on the fractal G.

Ž . Ž .Let �, FF, � be a probability space of infinite trees specified in Section 2 .
For each tree there is a corresponding fractal, and a diffusion process can be
constructed via its Dirichlet form.

THEOREM 1.1. For each � � � there exists a continuous symmetric strong
� 4 Ž .Markov process X : t � 0 on the space G � .t

The properties of this process can be deduced with a further assumption,
that there are only a finite number of possible gasket types. Then the results
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FIG. 2. The graph formed from the first stages in the construction of a random recursive
Sierpinski gasket.

that we will state, concerning the properties of processes on random recursive
gaskets, will be �-almost sure results on the space of fractals �.

In order to determine the properties of the fractal we introduce a general
branching process which describes the behavior of the sequence of approxi-
mating graphs. This will enable us to show that the box counting dimension
is equal to the Hausdorff dimension. A feature of the geometry of the fractal
is the existence of points in the fractal with widely differing ancestry, as the
proportions of triangle types in each branch do not converge uniformly over
the fractal. We also obtain uniform estimates on the measures of triangles
in G .n

The effective resistance between two points x, y � G can be defined in
terms of the Dirichlet form as

�1d x , y � inf EE f , f : f � DD EE , f x � 0, f y � 1 .� 4Ž . Ž . Ž . Ž . Ž .Ž .r
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� �In 20 this was shown to be a metric, and it will be the appropriate metric
with which to discuss the analytic properties of the fractal.

� �Recent work of 18 shows that the similarity dimension of the fractal
provides a useful intrinsic notion of dimension. This is the Hausdorff dimen-
sion of the set in the effective resistance metric. The similarity dimension �
is defined as the unique solution to the following equation:

N
s� � s : � r � 1 ,Ý i½ 5

i�1

where r is the resistance of the ith component, of which there are N. For thei
Ž . Ž .case of the Sierpinski gasket based upon the two generators SG 2 and SG 3 ,

chosen with probability p and q, respectively, the similarity dimension is the
number s which satisfies

s s3 73 p � 6q � 1.Ž . Ž .5 15

� �From work in 19 , where it is shown for P.C.F. self-similar sets, the similar-
ity dimension can be written in terms of the spectral dimension as

ds
� � .

2 � ds

� �In 20 this relationship is conjectured to hold in much greater generality. We
Ž .will denote by � the corresponding parameter associated with SG � . The �� �

are seen to be increasing in � , as for this family of gaskets the spectral
� �dimension increases to 2 as � � � 27 . We write K for the maximum value

of � . In the case where � � 2, the similarity dimension of the Sierpinski
Ž . Ž .gasket SG 2 is log 3�log 5�3 .

The effective resistance metric does not reflect the geometry of the fractal
very well. In order to establish heat kernel estimates, we need to know how
the shortest paths scale with effective resistance. The results in Section 7
show that there is a constant � such that, if a denotes the number of stepsn
in the shortest path on G required to cross the fractal G, thenn

1.1 � � exp log 2�log 5�3 	 lim inf a1� n 	 lim sup a1� n 	 � .Ž . Ž .Ž .2 n n
n�� n��

Transition density estimates for Brownian motion on fractals were first
� � � �obtained in 4 . The techniques were refined in 3 , and applied to nested

� � � �fractals in 21 and affine nested fractals in 8 . We will show how these
techniques can be extended to incorporate the random recursive gaskets
which are not spatially homogeneous. The spatial inhomogeneity in the
structure leads to logarithmic corrections for the heat kernel. To express the

Ž . Ž .aresults, we define the function g z � log z 
 1 , z � 0, and the positivea
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exponents
� �

b � � 1, b � 1 � , 	 � b � b ,2 K 2 K� �2 K


 � b � 2	 , 
 � 
� � 	 , 
 � �	 � b ,ˆ2 1 2 K

log � log � � �Ž .2
� � , � � for � � 0.2 �� � 1 � log � � � 1 � log � � �Ž .2

Combining the effective resistance metric and the similarity dimension, we
will obtain the following transition density estimates.

THEOREM 1.2.

Ž .i For each � � �, there exists a jointly continuous real-valued function
Ž . Ž � Ž . Ž .p x, y on 0, 1 � G � � G � .t
Ž . Ž . Ž .ii There exist constants c � , c � such that1.1 1.2

Ž .1� ��1�� �Ž��1.p x , y 	 c � t g 1�tŽ . Ž . Ž .t 1 .1 b2

�
� 1� �2� exp �c � D x , y , t log D x , y , t ,Ž . Ž . Ž .Ž .Ž .1 .2 �

0 � t 	 t , 
 x , y � G , �-a.s.,0 R
� Ž . Ž .��1 Ž Ž ..where D x, y, t � d x, y �tg 1�d x, y .r 
 r

Ž . Ž .For � � 0 there exist constants c � , c � such that1.3 1.4
Ž .�1� ��1�� �Ž��1.p x , y � c � t g 1�tŽ . Ž . Ž .t 1 .3 
̂

��� exp �c � D� x , y , tŽ . Ž .1 .4ž
�

2log � �1�d x , yŽ .r� 
̂�log D� x , y , t log ,Ž .Ž .Ž .� � ž /ž /t /
0 � t � t , x , y � G , �-a.s.,0 R

Ž . Ž .��1 Ž .where D� x, y, t � d x, y �tg 1�t and G is a suitably small neigh-r �
 Rˆ
Ž .borhood in G � and t � 1.0

Ž .REMARKS. i The bounds are not tight. The fact that even the on-diagonal
bounds are not tight is due to the local inhomogeneities in the structure.
There will almost always exist neighborhoods in the fractal which have
atypical behavior.

Ž . Ž .��1 �1ii The exponents for the leading term in the exponential, d x, y t ,r
differ in the bounds as it has not been possible to establish the existence of a
shortest path exponent in the effective resistance metric for these fractals. In

Ž .order to do this, we would need the existence of the limit in 1.1 .
Ž .iii The estimates for the transition density on the homogeneous random

� �Sierpinski gasket 14 differ as the nth term in the constructing sequence is
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equivalent to choosing about e� n random variables in the random recursive
model. The set of trees which are used to construct the homogeneous random
gaskets form a null set in the space of all random recursive gaskets.

Ž .iv The transition density estimates for the Brownian motion on the
Sierpinski gasket in the effective resistance metric can be recovered from the

Ž .above. We set � � � � � � log 3�log 5�3 , so that all the correction expo-2 K
Ž .nents are 0. Also the shortest path exponent log � � d � log 2�log 5�3 willc

control the path uniformly at each level, allowing us to remove the � and the
Ž .final term in the lower bound from the proof to obtain

Ž .d � ��1�dc c��1�� �Ž��1. �1p x , y � c t exp �c d x , y t ,Ž . Ž .Ž .t 1 2 rž /

 x , y � G , 0 � t � 1,

where the constants c , c differ for the upper and lower bounds.1 2

2. A random recursive Sierpinski gasket. We define a class of ran-
� � � � � �dom sets that have statistical self-similarity, following 11 , 12 , 25 or

� �alternatively 6 . The fractal is formed recursively from the family of contrac-
� �tions described in 14 . At each stage a member of the set of possible

contraction maps is chosen according to a probability distribution, for each
copy of the original set. We begin by constructing a space of trees, which
controls the number of components of the fractal and their position. We then
form the random recursive gasket by considering the limit set obtained by
associating triangles with the branches of the tree.

Let I � � n �k and I � � I be the space of arbitrary length se-n k�0 k k
quences. We write i, j for concatenation of sequences. For a point i � I � In

� � � �denote by i the sequence of length n such that i � i , k for a sequence k.n n
We write j 	 i, if i � j, k for some k, which provides a natural ordering on

� �branches. Also denote by i the length of the sequence i.
The infinite random tree, T, is a subset of the space I, defined as the

sample path of a Galton�Watson process. Let the root be T � I , the empty0 0
sequence. Let U , i � T be positive i.d. random variables, indicating thei
number of offspring of an individual, with probability distribution

P U � � � � 1 �2 � p , � � 2, 3, . . . .Ž .Ž .i �

� � � � � �Then i � T if i � T � I for each n 	 i , where i � T if we have then n n n n
following:

� �1. i � T .n�1 n�1
� � � �2. There is a k: 1 	 k 	 U such that i , k � i .�i � n�1 nn� 1

There is also a labeling of the tree given by the associated random
variables

V � � if U � � � � 1 �2.Ž .�i � �i�n n

�Ž . 4Then the pair U , V ; i � T denotes a labeled tree. There is a naturali i
Ž .probability space associated with these trees given by �, FF, � , where the
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�-algebras are
�

FF � � U ; i � T � , FF � FF ,Ž .Ž . �n i n�1 n
n�1

and the probability measure, �, is determined by the Galton�Watson process
� 4with offspring distribution p : � � 2, . . . . Taking expectations with respect�

to this probability space of all constructing trees will be denoted by �. For
these random recursive fractals, the branching process will be supercritical
with no possibility of extinction.

Ž . Ž .For example in the case of the 2, 3 -gasket G � , shown in Figure 2, we
Ž . 3 6have generating function for the offspring distribution f u � pu � qu and

V � 2 if U � 3, V � 3 if U � 6.i i i i
We now define a sequence of sets to be attached to the branches and we

drop the reference to the underlying probability space. Let E � E be the0
unit equilateral triangle, and let G denote the complete graph on the0
vertices of E . Let0

� � � 1Ž .
� �� � � , i � 1, 2, . . . , ,i½ 52

denote the family of contraction maps of type � , which involve dividing the
side of the equilateral triangle by � . Then set E , i � T , geometricallyi n
similar to E, to be

E � � E � �
V�i �1 ��� �

V�i � n E .Ž . Ž .ž /ž /i i �i� �i�1 n

A random gasket can then be defined by
�

G � � E .Ž . � � i
n�1 Ž .i�T �n

Ž .The Hausdorff dimension of the set G � can be found by applying the
� � � �results of 6 , 25 and is given by,

�� � � � 1 1Ž .
2.1 d G � � inf � : p � 1 a.s.Ž . Ž .Ž . Ýf � ž /½ 52 ���2

� �REMARK. The homogeneous random fractal of 14 , generated by a set of
trees which is a null set in �, has Hausdorff dimension

Ý� p log � � � 1 �2Ž .Ž .��2 �
d � .f �Ý p log ���2 �

� �We can also use 12 to find the exact Hausdorff measure function for this
random recursive construction.

Ž .LEMMA 2.1. The exact Hausdorff measure function for G � is given by
1�d �2d ff � �h t � t log log t , �-a.s.Ž . Ž .

Ž Ž ..where d � d G � .f f
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� � � �PROOF. We apply 12 , Theorem 5.2, which, by 12 , Theorem 5.4 will
follow if

n
0E H � 1,Ý iž /

i�1

where n is the maximum number of new components and the H , the ratio ofi
the component sizes, take only finitely many values. Also a condition on
nondegeneracy is needed:

n
d fP H � 1 � 0.Ý iž /

i�1

For the case of a finitely ramified fractal, the first condition is trivial and the
second follows provided there is a p with 0 � p � 1. Thus the Hausdorff� �

measure function is given by
�d f � �h t � t log log t ,Ž . Ž .

where
Ž .d � 1�1�af� � � 1 1Ž .�1� � sup a: a � 1, 	 1, � � 2, 3, . . . .½ 5ž /2 �

Evaluating this gives the result. �

The random recursive Sierpinski gasket G will be the set considered from
� 4now on. For a given realization of the constructing tree, let G be an n� 0

sequence of graphs formed from the vertices of the triangles such that
G � G . For each n, G � G , and the random fractal G can be recoveredn n�1 n �

Ž .as G � cl G . The corresponding set formed from the union of the triangles�

in G will be denoted by E . We will not explicitly refer to the underlyingn n
probability space when referring to the fractal or associated graph approxi-
mations. The results obtained will depend on this realization of the fractal

Ž .and hence constants followed by a � will denote a constant dependent on
Ž .the environment. For x � G , we will denote by N x the points in the graphn n

Ž .G directly connected to x by an edge. For x � G � G , let 
 x denote then � n
Ž Ž ..n-level triangle containing x, and let N 
 x denote the n-level trianglesn n

Ž . Ž . Ž . Ž Ž ..having a common vertex with 
 x . Then let D x � 
 x � N 
 x ,n n n n n
the n-neighborhood of the n-triangle containing the point x. For a point

Ž .x � G we define D x to be the union of the n-triangles containing x. Wen n
Ž .may also write 
 i for i � T � T , the triangle associated with the branchn �

� � Ž .i and then E � � 
 i .n n i� T nn

3. General branching processes. In order to discuss the random gas-
ket, we introduce a description of the set via a general branching process.
The random tree used to construct the fractal is just the realization of a
Galton�Watson process. It contains information about the number of sets at
each level but not about the size of the sets at a given level. This can be
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incorporated by using a general branching process. We begin by discussing a
strictly supercritical general branching process without referring to the spe-
cific process needed in the discussion of fractals. The general branching

� � � �process is described in 16 and 1 . The set-up is as follows.
Ž .We have a reproduction point process 	 t , which describes the birth

� .events as well as a life-length � and a function � on 0, � called a random
characteristic of the process. We make no assumptions about the joint distri-
butions of these quantities. The individuals in the population are ordered
according to their birth times � . As we can have multiple births, this will notn
be a strictly increasing sequence. We denote the attributes of the nth

Ž .individual by 	 , � , � , . . . . At time 0 we have an initial ancestor so thatn n n
� � 0. The process that we wish to consider is written as1

Z� t � � t � � .Ž . Ž .Ý n n
n , � 	tn

An example of a random characteristic is

� t � I ,Ž . �� � t4

�Ž .so that Z t is the total number of individuals alive at time t. This process,
for the current population size, will be denoted by z . We also define the meant

Ž . Ž . Ž .reproduction measure m t � E	 t . We will assume that m 0 � 0 and in
the supercritical case that it is Malthusian, so there exists an � � 0 such
that

�
�� te m dt � 1.Ž .H

0

We also assume that each individual has at least two offspring so there is no
possibility of extinction and the process will grow rapidly. We will write

m� t � E e�� tZ� t ,Ž . Ž .Ž .�

for the discounted mean of the process with random characteristic �. We now
introduce a martingale, analogous to the standard branching process martin-
gale, which will enable us to discuss the asymptotic growth of this process.
This plays an important role in the discussion of random recursive fractals.

Let

AA � � 	 , � , � Ž1. , . . . : 1 	 k 	 n .Ž .Ž .n k k k

Observe that the birth time of individuals is determined by their parents’
reproduction process, so that the birth times � are AA measurable. Nowk k�1
define

�
�� � lR � e I .Ýn �l is a child of 1 . . . n4

l�n�1

Then we have the following theorem.
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Ž� � . � 4�THEOREM 3.1 1 , Chapter VI, Theorem 4.1 . The quantity R is an n�1
nonnegative martingale with respect to AA andn

W � lim R exists.n
n��

Also W � 0 if and only if
� �

�� t �� tE e 	 dt log e 	 dt � �.Ž . Ž .H Hž / ž /0 0

Otherwise W � 0, a.s.

We will also need to look at various characteristics of the process and so we
� �will state here 1 , Chapter VI, Theorem 5.1 and its Corollary 5.3.

THEOREM 3.2. Let � , i � 1, 2 be characteristics with sample functionsi
that are right continuous and satisfying the following:

Ž . Ž �a t Ž ..i E sup e � t � � for some 0 � a � � , i � 1, 2;t � 0 i
Ž . �b t Ž .ii � � 0, lim e m t � � for some 0 	 b � � .t ��

Then
Z�1 t m�1 �Ž . Ž .�

lim � a.s.,
� �2 2Z t m �t�� Ž . Ž .�

and also

3.1 lim e�� tZ� i t � Wm� i � a.s. i � 1, 2.Ž . Ž . Ž .�
t��

It will be useful for estimating properties of the process to have estimates
on the tails of the random variable W. For the left tail upper bound the

� � � �approach will be similar to that used in 2 and 13 , where a loose estimate
on the distribution function can be used with the branching structure to get
an improved estimate.

LEMMA 3.3. For a uniformly integrable family of nonnegative random
� 4variables X : a � CC there exist constants c � 1 and c such thata 3.1 3.2

P X � sE X 	 c � c s 
 s � 0, 
 a � CC .Ž .Ž .a a 3 .1 3 .2

Ž .PROOF. Let Y � X �E X and observe that, by uniform integrability, fora a a
Ž .� � 0 there exists a K such that E Y ; Y � K � � . Thena a

K
1 	 1 � P Y 	 s ds � � ,Ž .Ž .H a

0

1 � � 	 K 1 � P Y 	 KŽ .Ž .a

and thus
1 � � 1 � �

P Y 	 s 	 1 � � s, s � 0,Ž .a 2K K
as desired. �
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We now use this estimate with a decomposition of the branching process
� 4martingale. Let S � inf m: � � n , the number of births when the firstn m

birth occurs after time n. Then there will be more than bn offspring alive at
Žthis time, where b is the minimum family size born in a time unit assumed

.strictly bigger than one . Thus the weighted sum of the offspring up to the
stopping time S will be bigger than the sum of the weighted sums of then
offspring of the first bm individuals run for time n � m, giving

bm

3.2 R � exp ��� R .Ž . Ž .ÝS S S , in m n�m
i�1

As R is a convergent martingale and S � � as n � �, we can let n � �n n
Ž .in 3.2 to get

bm

�� m3.3 W � W e .Ž . Ý i
i�1

Using this we have the following result on the tail of the random variable
W.

LEMMA 3.4. There exist constants c , c such that if � � log b,3.3 3.4

P W � � 	 c exp �c ��� �Ž��� . , � � 0.Ž . Ž .3 .3 3 .4

PROOF. By Lemma 3.3 we have a loose estimate for W of the form

P W � �E W 	 c � c � .Ž .Ž . 3 .1 3 .2

We can write
P We�� m � � 	 c � ce� m � .Ž . 3 .1

Ž . � �Now apply 3.3 and 2 , Lemma 1.1, to obtain
1�2m m � mlog P W � � 	 �cb � C b e �Ž . Ž .

C 1�2m Ž��� .m� �cb 1 � e � .Ž .ž /c

3.4Ž .

We can now choose an appropriate value of m to obtain the bound. That is,
Ž 2 2 . Ž . � �let m � log C �4c � � � � � . Then, for m � m ,0 0

21 C
Ž��� .me � 	 .ž /4 c

Hence
C 1�2Ž��� .m1 � e � � cŽ . ˆ
c

and
�cbm 	 �c���� �Ž��� . .

Ž .We can now substitute this in 3.4 to obtain the result for small values of � .
By choice of c we can extend the bound to all � � 0. �3.3
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In the case of the random recursive Sierpinski gasket generated from two
types, the general branching process can be described explicitly. This is a
Bellman�Harris or age dependent branching process as the offspring are
born at the moment of death. In the case of this fractal, the life length is
either log 3, when six offspring are produced, or log 2, when three appear.
Thus from a single individual at time 0, there evolves a branching process,
z , where individual x has life and offspring according tot

log 2, 3I with probability p ,Ž .�t�log 24
� , 	 �Ž .x x ½ log 3, 6I with probability q.Ž .�t�log 34

Thus the number of individuals in the branching process z , at time n, is then
number of sets of diameter at least e�n in the fractal. Using the general
branching process, results about the Hausdorff dimension and the upper
bound for the Hausdorff measure function can be recovered.

However, we will approximate the fractal via graphs with the conductance
determining the construction of the graph, as this determines the appropriate

Ž . Žmetric to use on the fractal. Let � denote the conductance of SG � it is easy�

� �.to calculate that � � 5�3, � � 15�7; see 14 . In this case the appropriate2 3
life length and reproduction point process are

� � � 1Ž .
3.5 � , 	 � log � , I with probability p .Ž . Ž .x x � �t�log � 4 ��ž /2

Thus the fractal G is approximated by the graph G given byn

G � � G ,Ž .�n i 0
˜i�Tn

˜where T is the family tree of the general branching process. This is a
sequence of cut sets of the tree T. It is this approximate graph that will be
considered from now on.

We will now assume that the number of components that can be chosen is
� �finite. Thus the random variable V � 2, K where we let K denote thei

maximal family of maps. As a corollary to Lemma 3.4, we state the general
branching process result for the process used here. Let � denote the Malthu-�

sian parameter corresponding to the general branching process of only type
Ž . Ž Ž� , that is, the similarity dimension of the fractal SG � , which is � � log � ��

. . Ž . Ž Ž .. Ž .� 1 �2 �log � . As noted before, � � d � � 2 � d � and as d � �2 as� � s s s
� � �, we see that � is increasing in � .�

Ž .COROLLARY 3.5. For the general branching process determined by 3.5 ,

P W � � 	 c exp �c � �2 �Ž� 2�� . 
 � � 0.Ž . Ž .3 .3 3 .4

PROOF. This follows by calculating the minimum family size possible in a
time unit. �
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We can now provide an estimate on the right tail of W for the general
branching process which is used here. First, observe that we can decompose
W at the time of the first birth,

U1
��3.6 W � � W .Ž . Ý V i1

i�1

In order to use large deviations, we must estimate the moment generating
Ž . Ž Ž ..function, M � � E exp � W . Observe that the number of offspring is

bounded over a unit time interval and hence the moment generating function
Ž .will exist. Using 3.6 , this satisfies the following inequality:

M � � E exp � W ,Ž . Ž .Ž .
K

Ž .� ��1 �2��� p M ��Ž .Ý � �
��2

Ž .� ��1 �2��	 max M �� .Ž .�
2	�	K

By iterating this inequality, we have
Ž Ž . .n� ��1 �2�� n3.7 M � 	 max M �� .Ž . Ž . Ž .�

2	�	K

LEMMA 3.6. There exist constants c , c such that3.5 3.6

M � 	 c exp c � �K �� 
 � � 0.Ž . Ž .3 .5 3 .6

PROOF. Let c be defined by3.6

c � sup ��� K �� log M � .Ž .3 .6
� ��� 1, �K

� �Assume that the result holds for � � 1, c for some c � � . Now consider theK
� � � � � �� � � Ž .interval c, � c . Then, for all � � 2, K , � � � 1, c . By 3.7 and the fact2 �

that the � are increasing in � , we have�

Ž .� ��1 �2��M � 	 max M ��Ž . Ž .�
2	�	K

� ��K��	 max exp c �� � � � 1 �2Ž .Ž .Ž .Ž .3 .6 �
2	�	K

	 max exp c � �K ��� ���� KŽ .3 .6 �
2	�	K

	 exp c � �K �� .Ž .3 .6

By repeatedly applying this procedure, we can extend the interval from
� � Ž .� � 1, � to � � 1. For � � 1, we use the fact that M � is increasing in �K

and set c � ec3.6 to give the result. �3.5

THEOREM 3.7. There exist constants c , c such that3.7 3.8

P W � � 	 c exp �c � �K �Ž� K�� . 
 � � 0.Ž . Ž .3 .7 3 .8
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PROOF. Using Markov’s inequality,

P W � � � P exp � W � exp ��Ž . Ž . Ž .Ž .
	 exp ��� M � 	 c exp ��� � c � �K �� ,Ž . Ž . Ž .3 .5 3 .6

and now optimize over � . �

4. The Dirichlet form and the diffusion. A natural method for con-
structing processes on finitely ramified fractals is via their Dirichlet forms
Ž � � � � � �.see 10 , 17 , 20 . We assign electrical conductances to each edge in the
graph G and use this to determine the approximating Markov chains andn
invariant measure on the set.

We consider the sequence G of approximating graphs constructed fromn
the general branching process. Let the corresponding family tree be denoted

˜ Ž .by T . The conductance assigned to the edges of the triangle 
 i , i �n n
˜T � T is the birth time of the individual corresponding to the triangle, thatn�1

is,
�

iŽ .k �n� i � � , x , y � G � 
 i ,Ž . Ž . Ž .Łn � n n
��2

where
Ž .n i �1

ik � � I ,Ž . Ýn �V �� 4�i � j
j�1

m
nn i � inf m: � � e .Ž . Ł V�i �½ 5jj�1

Ž .We will then write the conductance of edge x, y in the graph G asn
Ž . Ž . Ž .� x, y � � i , if x, y � G � 
 i . We can also define the weight on eachn n n n

Ž . Ž .node x � G as � x � Ý � x, y and the associated measure � onn n y � N Ž x . n nn

the graph by

� xŽ .n
� x � , x � G .Ž .n nÝ � xŽ .x � G nn

Ž .By our construction of the graph G , the conductance � x, y is boundedn n
above by en and below by c�en.

The random walk moving according to the conductance of each edge in the
graph is the natural random walk on a graph. For a continuous time random
walk, the time for it to take each step is also determined by the conductance,

Ž .being exponential with rate � x . The natural Laplacian associated with then
graph is determined by this conductance, and we write it as

� f x � f y � f x � x , y .Ž . Ž . Ž . Ž .Ž .Ýn n
Ž .y�N xn

The Laplacian on the fractal is obtained by taking the limit of this sequence
as it is suitably normalized by our choice of conductance.
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Ž .Now let � � Ý � x and rewriten x � G nn

� x , yŽ .n
� f x � � f y � f x � x ,Ž . Ž . Ž . Ž .Ž .Ýn n n� xŽ .nŽ .y�N xn

and then the Dirichlet form for the sequence of chains is defined as

EE f , g � � f , � gŽ . Ž .n n

1 � x , yŽ .n� � f x � f y g x � g y � x .Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ýn n2 � xŽ .n

Note that the Laplacian is determined when we fix the measure �, and any
finite measure with full support could be used. We choose this measure as it
will turn out to be equivalent to the �-dimensional Hausdorff measure in the
effective resistance metric.

The crucial property of this sequence of quadratic forms is that it is nested.
This allows the construction of the process to be completed.

LEMMA 4.1. Let the graph G have edge conductivities c � c for all edges0 x y
xy. If the graph G is of type � then, if the conductivity placed on each new1
edge is of the form � c, the network conductivity is unchanged.�

PROOF. That there is a resistance which leaves the network conductivity
� �unchanged follows as these are nested fractals 23, 26 . As they have three

essential fixed points, there is a unique fixed point for the conductivity map;
� � Ž .see 14 for the explicit case of SG � . �

Ž .A consequence of this result is that the sequence of Dirichlet forms EE f, fn
is monotone increasing. To see this write Q for the q-matrix, the genera-n�1
tor of the Markov chain corresponding to the random walk on the graph G .n�1

Ž . Ž .Then the n � 1 -level Dirichlet form can be written as EE f , g �n�1
�f tQ g. If we writen�1

A Bn�1 n�1Q � ,n�1 C Dn�1 n�1

Žwhere A determines transitions on G to itself it is diagonal for nestedn�1 n
. Tfractals ; B and C � B give transitions from G to G and vicen�1 n�1 n�1 n n�1

versa, and D denotes transitions from G � G to itself. Then, by then�1 n�1 n
Ž .choice of � and hence � x , the generator on G satisfies� n n

4.1 Q � A � BT D�1 B .Ž . n n�1 n�1 n�1 n�1

� �This is the compatibility condition of 20 and ensures that the forms have
the property that

�4.2 EE g , g � inf EE f , f : f � g for g � C F .� 4Ž . Ž . Ž . Ž .Fn�1 n n�1n� 1
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Thus the sequence of forms is monotone increasing and there exists a limiting
Ž Ž ..bilinear form EE, DD EE given by

DD EE � f : sup EE f , f � � ,Ž . Ž .½ 5n
n

EE f , f � lim EE f , f , f � DD EE ,Ž . Ž . Ž .n
n��

In order to prove we have a Dirichlet form, we need some further results.
Ž . Ž . Ž .We extend the definition of � x to all x � G by setting � x � � i , ifn n n

Ž Ž ..x � int 
 i . Define an n-harmonic function h to be the function whichn
� � � �satisfies 
 h � 0. Following 17 and 22 it can be shown that this functionn

is unique and can be extended uniquely to a function which is harmonic on
Ž .the fractal G. For f � C G we write H f for the function which takes then

values of f on G and is harmonic everywhere else.n
� �From 20 there is an effective resistance defined by the limiting Dirichlet

form
�1d x , y � inf EE f , f : f x � 0, f y � 1 ,� 4Ž . Ž . Ž . Ž .Ž .r

which is a metric on G.

LEMMA 4.2. For x, y � � 
 then there exist constants c , c such thatn 4.3 4.4

c e�n 	 d x , y 	 c e�n .Ž .4 .3 r 4 .4

PROOF. This follows from the construction of the Dirichlet form. By
Ž . Ž . Ž .definition we have for all f with f x � 0, f y � 1 with y � N x ,n

cen 	 � x , y 	 EE f , f 	 EE f , f .Ž . Ž . Ž .n n

Thus there is a constant such that
�1 �ninf EE f , f : f x � 0, f y � 1 	 c e .� 4Ž . Ž . Ž .Ž . 4 .4

For the lower bound, we take the n-harmonic function f which is 1 at y and1
0 at all other points of G . Thenn

inf EE f , f : f x � 0, f y � 1 	 EE f , f � EE f , f 	 cen ,� 4Ž . Ž . Ž . Ž . Ž .1 1 n 1 1

and we have the lower bound. �

� �Using the limiting form we have the following result from 20 :
24.3 f x � f y 	 d x , y EE f , f 
 f � DD EE , 
 x , y � G ,Ž . Ž . Ž . Ž . Ž . Ž .r

which allows us to control the continuity of functions in the domain.

Ž . Ž .LEMMA 4.3. For any 
 z we have that for all f � DD EE ,n

�1�2 1�2sup f x � f y 	 c � z EE f , f .Ž . Ž . Ž . Ž .4 .2 n
Ž .x , y�
 zn

Ž .The proof follows by combining Lemma 4.2 and 4.3 .
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Ž Ž ..THEOREM 4.4. The bilinear form EE, DD EE is a local regular Dirichlet
2Ž Ž . .form on L G � , � .

An immediate corollary of this result is the existence of a diffusion process
upon the fractal.

COROLLARY 4.5. For each � � �, there exists a continuous, strong Markov
� Ž .diffusion process X on the set G � , which is symmetric with respect to thet

measure ��.

� Ž . Ž .The law of the process X on G � started from the point x � G � willt
be denoted by P x, �, though we will usually suppress the �.

REMARK. By Lemma 4.1, the addition of new nodes and edges with the
given conductivities within a given triangle only affect the fractal through the
vertices of that triangle. This decomposition into separate pieces allows this
technique to be used for any sequence of cutsets of the constructing tree.

Ž .PROOF OF THEOREM 4.4. Fix a fractal G � . To prove that the limiting
form is a Dirichlet form, observe that the Markov property is inherited from
the Markov property for the Dirichlet forms in the approximating sequence

� � � �and the closability can be proved as in 17 , Theorem 7.2, or 22 , Theorem
4.14.

Ž . Ž .Let f � C G and take f � H f � FF � C G . Then from Lemma 4.3 wen n
Ž . Ž . Ž .see that FF � C G is dense in C G in the sup norm and as EE f , f �n

Ž .EE H f, H f we can prove the density in FF. Thus the form is regular. Then n
� �local property can be proved in the same manner as 17 . �

5. The geometry of the fractal. We begin by computing the other
dimensional indices of the fractal with respect to the Euclidean metric. The

Ž .Hausdorff dimension is given in 2.1 . The box counting dimension of a set A
is formed by covering the set with balls of fixed radius, � , finding the

Ž .minimum number N A , and setting�

log N AŽ .�
d � lim sup .ub �log �� �0

LEMMA 5.1. The box counting dimension of G is given by
d � d , �-a.s.ub f

PROOF. Let � � e�n. We regard the sequence of approximating graphs as
those formed by constructing each set until its length is less than e�n . Then
each set in E is of side length at least e�n and at most Ke�n. By using then
population size of the general branching process z , corresponding to then
fractal in the Euclidean metric, the set G can certainly be covered by

5.1 N �n G 	 K 2 zŽ . Ž .e n
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�n Žballs of size e . That this is in fact close enough to the minimum number of
balls required will follow from the fact that value of the box counting

.dimension obtained is equal to the Hausdorff dimension. Now

1�n
�nd � lim sup log N G ,Ž .ub e

n��

Ž . Ž .and by a simple application of 3.1 with characteristic given by � t � IŽ� � t .
we see that

c � esn � z � c w esn , �-a.s.Ž . Ž .1 n 2

Ž .with s in the required form. Thus, letting n � �, and using 5.1 , gives

1
�nd � lim sup log N GŽ .ub enn��

1
2	 lim sup log c � K � sn , �-a.s.Ž .Ž .2nn��

K � � � 1 pŽ . � �u log �� s � inf u: e � 1 � d , �-a.s.Ý f½ 52��2

as desired. �

Thus the geometric dimensions coincide and the set is fractal in the sense
� �of Taylor 28 . The natural measure for the diffusion on this set is determined

not by the Hausdorff measure in the Euclidean metric but by the Hausdorff
measure in the effective resistance metric. The dimensions of the set can now
be stated in terms of the effective resistance metric.

Ž .THEOREM 5.2. The Hausdorff dimension of the set G w in the effective
resistance metric is given by

K � � � 2Ž .
r r �s� � d � d � s : p � � 1 , �-a.s.Ýf ue � �½ 52��2

PROOF. Following Lemma 5.1, using Lemma 4.2 and the general branch-
ing process z in which the lifetimes are determined by the conductance, wen
have that d 	 � .ub

For the lower bound we use the mass distribution given by the measure �̃
obtained by putting weight 1�z on each set in E . From the growth of then n
general branching process, z 	 c We� n for large n. Thus for � � 0 theren 1

Ž . � � ���exists a constant c such that � U 	 c U , for all sets U with diameter˜ r2 2
� � �n � �in the effective resistance metric U � e . By 6 , Theorem 4.2, the lowerr

bound on the Hausdorff dimension in the effective resistance metric will be �
as desired. �

The behavior of the measure � introduced in Section 4 can be described.
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Ž . Ž .LEMMA 5.3. There exist constants c � , c � such that5.1 5.2

c � eŽ��1.n 	 � x 	 c � eŽ��1.n 
 n � 0.Ž . Ž . Ž .Ý5 .1 n 5 .2
x�Gn

PROOF. To see this we use the general branching process with random
characteristic given by

� t � e�I .Ž . �� � t4

As the births in the general branching process are determined by the conduc-
tivity, each individual alive at time t corresponds to a subset of the fractal
with conductance given by its birth time e�. Thus

Z� � � x .Ž .Ýn n
x�Gn

By the assumption of boundedness of the components, there exists a constant
c� such that for all individuals alive at time t, their conductivity e� i satisfies
c�et 	 e� 	 et. Now we can estimate the growth of the characteristic. For the
upper bound we write z for the population size of the general branchingn
process at time n; then there is a constant c such that

Z� � e� i IÝn �� � n�� 4i i
i

	 enzn

	 cWeŽ��1.n , �-a.s.

for large enough n. The lower bound is treated similarly. �

This allows us to prove the following result for the measure �. Let
S � � � � . . . be the shift on sequences y in the tree �.nŽ y . nŽ y .�1 nŽ y .�2

THEOREM 5.4. The measures � converge weakly to a measure � equiva-n
lent to the �-dimensional Hausdorff measure in the effective resistance metric
on the fractal G.

PROOF. The weak convergence follows from Lemma 5.3 and the definition
Ž .of � . For any 
 x � G we haven n

Ý � yŽ .y � 
 Ž x .� G mn m� 
 x � limŽ .Ž .n Ý � ym�� Ž .y � G mm

Ý � yŽ .y � G ŽS � . m�nm� n nŽ x .� lim � xŽ .n Ý � ym�� Ž .y � G mm

W S � eŽ��1.Žm�n.Ž .nŽ x .n	 ce lim Ž��1.mW � em�� Ž .
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for some constant c. Thus

5.2 � 
 x 	 c � e�� n ,Ž . Ž . Ž .Ž .n 5 .3

Ž . Ž . �1Ž .where the constant is given by c � � c sup W S � W � . We de-3.5 
 nŽ x .n
Ž .note the corresponding lower bound constant by c � . Then for any � � 05.4

there exist c , c such that1 2

c 	 � 
 x eŽ��� .n 	 � 
 x eŽ��� .n 	 c 
 x � G , 
 n � 0.Ž . Ž .Ž . Ž .1 n n 2

� �By using a density theorem, 7 , Proposition 4.9, we see that the measure �
must be equivalent to the �-dimensional Hausdorff measure in the effective
resistance metric on the fractal. �

We now obtain finer estimates on the measure of triangles 
 . These willn
be crucial to the later estimates on the transition density for the Brownian
motion.

Ž . Ž .THEOREM 5.5. There exist constants c � , c � such that for all n � 05.5 5.6
Ž .and x � G � ,

�b �� n2c � log n e 	 � 
 xŽ . Ž . Ž .Ž .5 .5 n
5.3Ž .

b �� nK	 c � log n e , �-a.s.Ž . Ž .5 .6

Ž . Ž .There exist constants c � , c � such that for all n � 0,5.7 5.8

c � n�b 2 e�� n 	 min � 
 	 max � 
Ž . Ž . Ž .5 .7 n n

 
n n5.4Ž .

	 c � nbK e�� n , �-a.s.Ž .5 .8

Ž . Ž . Ž . Ž .PROOF. For 5.3 consider 5.2 in which the constants c � and c �5.3 5.4
can be written in terms of W. For the lower bound, consider a given x � G,
then for all n,

W S �Ž .nŽ x . �� n5.5 � 
 x � c e .Ž . Ž .Ž .n W �Ž .

As a function of n the random variable W is a constant. Thus all we need is
Ž .an estimate on the size of the fluctuations in W S � , each of which hasnŽ x .

the same distribution as W.
For the lower bound, we use the estimates on the tail of W obtained in

Corollary 3.5 and the first Borel�Cantelli lemma. As

� W S � 	 � 	 c exp �c � �2 �Ž� 2�� . 
 n ,Ž .Ž . Ž .n 3 .3 3 .4

Ž .Ž� 2�� .� � 2if we set � � c log n , then

�b �c c2 3 .4� W S � 	 c log n 	 c n .Ž . Ž .Ž .n 3 .3
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Hence, as

W S � cŽ .n �b �b2 2� 	 log n � � W S � 	 c log n ,Ž . Ž . Ž .Ž .nž /W W

we see that

W S � cŽ .n �b �c c2 3 .4� 	 log n 	 c n � �,Ž .Ý Ý3 .3ž /W Wn n

by the choice of c. Thus

W S �Ž .n �b2� c � log n , �-a.s.Ž . Ž .
W

For the upper bound we follow the same approach and use Theorem 3.7 to
Ž .obtain the upper bound on the fluctuations in W S � .n

Ž . Ž .For 5.4 we need to estimate the maximum and minimum of W S �nŽ x .
over level n. As the number of possible triangles on level n is bounded above

�K n Ž .by e and each W S � is independent and identically distributed wenŽ x .
can use the following:

e �K n

P max W S � � � 	 1 � 1 � P W S � � �Ž . Ž .Ž .Ž .n nž /
n

	 e�K nP W S � � �Ž .Ž .n

	 cn with c � 1,
if � 	 c nbK , by choice of c in Theorem 3.7. In which case1 1

max W S � 	 c nbK , �-a.s.Ž .n 5 .8

n

as desired. As above we use the first Borel�Cantelli lemma to obtain the
result. Similar methods yield for the lower bound. �

We conclude with another indication of the type of bad behavior that will
occur within the fractal. Define the ratio of types of map at level n for a
branch by

n1

 i � I , i � T � T .Ž . Ýn �V �24 ��i � jn j�0

Ž .For each i � T � T , 
 i � p , pointwise; however, the convergence is not� n 2
uniform.

Ž .LEMMA 5.6. If p � 2�� � � 1 for � � 3, then�

lim inf 
 i � 0 a.s.Ž .n
n�� i�T�T�

If p � 1�3, then2

lim sup 
 i � 1 a.s.Ž .n
n�� i�T�T�
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PROOF. We consider the case p � 1�6 as the other case follows in the3
ˆsame way. The process which generates type 3 triangles, Z , has generatingn

Ž . 6function f u � 1 � p � p u and is supercritical for p � 1�6. Hence it has3 3 3
Ž .an extinction probability p � f p � 1.e e

Let � � 0 and consider
n

P inf 
 i � � � P I � n� , 
 i � T � T .Ž . Ýn �V �24 �ž / �i � jž /i�T�T� j�1

For this event to occur, we require that, for each of the individuals alive at
ˆ� �generation n� , all their Z offspring must become extinct. As the minimumn

number of individuals at this generation is 3� n� �,

P inf 
 i � � 	 p3� n� � 	 pc n
,Ž .n e ež /

i�T�T�

for c � 1. By the Borel�Cantelli lemma, as

P inf 
 i � � � �,Ž .Ý nž /
i�T�T�n

then

P inf 
 i � � i.o. � 0.Ž .nž /
i�T�T�

This holds for each � , which gives the result. �

6. Resolvent and local time for the process. The Dirichlet form has
an associated resolvent which is approximated by the sequence of resolvents
associated with the sequence of forms. In this section we will approximate the
process by the sequence of Markov chains associated with the resolvents. Let
X n denote the Markov chain on G moving according to the conductivitiest n
assigned to the edges of G . By construction this is the process on G watchedn

Ž � �.only when it is in G see 14 .n
Let the local time at x for the chain X n be denoted by

tx n
nL X � I ds.Ž . Ht �X �x4s

0

We normalize the local time by writing

Lx X nŽ .tx n� X � 
 x � G .Ž .t n� xŽ .n

n � n c4We will write T � inf t: X � A for the exit time from a set A. TheA t
normalized resolvent densities for the Markov chain killed upon leaving an
open connected set A are defined as

n I nT �X �y4A sn x x y n
nr x , y � E ds � E � X 
 x , y � G .Ž . Ž .HA T nA� yŽ .0 n

We begin by proving some elementary results for the sequence of resolvents.



BROWNIAN MOTION ON A RANDOM FRACTAL 1081

LEMMA 6.1.

� x , y � x , zŽ . Ž .mn n6.1 i r x , y 	 � r z , y , x , y � G ;Ž . Ž . Ž . Ž .ÝA A m� x � xŽ . Ž .m mŽ .z�N xm

6.2 ii r n x , y � r k x , y 
 k � n , x , y � G ;Ž . Ž . Ž . Ž .A A n

6.3 iii r n x , y � r n y , x 
 x , y � G .Ž . Ž . Ž . Ž .A A n

� �The proof is essentially the same as 14 , Lemma 7.1.
Ž .From Lemma 6.1 ii we can work with the limiting resolvent. Let

r x , y � lim r n x , y 
 x , y � G , 
 m.Ž . Ž .A A m
n��

For each n, by the strong Markov property of the process, we can write

r n x , y � � n x , y r n y , y ,Ž . Ž . Ž .A A A

nŽ . xŽ n n. n � n 4where � x, y � P T � T with T � inf t: X � y . Thus continuityA y A y t
properties of the resolvent can be recovered from these first passage time
probabilities. The existence of the limit of the sequence of first passage
time probabilities follows from the convergence of the resolvents, which is
a consequence of the convergence of the Dirichlet forms; hence

r x , yŽ .An6.4 � x , y � lim � x , y � .Ž . Ž . Ž .A A r y , yn�� Ž .A

In order to get bounds on the passage time probabilities, we need bounds on
� �ratios of resolvents. The methods to be used will be the same as those in 4 .

First, we bound the resolvent on the diagonal.

LEMMA 6.2. There are constants c , c such that6.1 6.2

c6 .1
6.5 r x , x � , x � G � A , 
 x � A ,Ž . Ž . Ž .A � m� xŽ .m

c6 .2
6.6 r x , x 	 � max r z , z 
 x � G .Ž . Ž . Ž .A A �� x Ž .Ž . z�� 
 xm m

Ž . Ž .PROOF. For 6.5 , let A � D x ; then, doing some simple calculations onm
the interior of one possible neighborhood, shown in Figure 3,

2 � a, bŽ .m�1r a, a � � a � r b , a ,Ž . Ž . Ž .Ž .A m A� aŽ .m

1r b , a � r a, a � r b , a ,Ž . Ž . Ž .Ž .A A A4

r c, a � r d , a � r e, a � 0.Ž . Ž . Ž .A A A

Solving this gives

3 �1r a, a � � c � a ,Ž . Ž .Ž .A m3� a � 2 � a, bŽ . Ž .m m
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FIG. 3. A neighborhood of x for the random recursive gasket.

ˆand over all the interior points, there are constants C, C such that

�1 �1ˆC � a 	 r �, � 	 C � a .Ž . Ž . Ž .Ž . Ž .m A m

A similar calculation can be done for each possible neighborhood. For points
in G � G the equations will be the same as for a triangle of that type, them m�1
only complications occur at the higher level vertices, such as a in Figure 2,
where we introduce the terms dependent upon the environment. As there are
only a finite number of neighborhoods, though there may be a large number,

� Ž . Ž Ž ..�14we can always find a constant c � min c: r �, � � c � a , which gives6.1 A m
Ž . Ž . Ž . Ž .the bound for a � G . Then r x, x � r z, x � r x, z , by 6.4 and sym-n A A A

Ž .metry, for z � � 
 x . Som

r x , z � P x X � a r a, zŽ . Ž .Ž .ÝA T A
 m
Ž .a�� 
 xm

� min r a, zŽ .A
Ž .a�� 
 xm

6.7Ž .

�1� c � a , a � D x � G � G .Ž . Ž .Ž .6 .1 m m m m�1

Ž . � �For 6.6 , we follow 4 , Lemma 5.4, in a similar fashion to the lower bound.
�

Let

r y , y � r x , yŽ . Ž .A A
6.8 � x , y � 1 � � x , y � .Ž . Ž . Ž .A A r y , yŽ .A

LEMMA 6.3. There exist constants c , c such that if 
 � A, then6.3 6.4 m

�16.9 � x , z r z , z 	 c � z , x � 
 , z � � 
 x ,Ž . Ž . Ž . Ž . Ž .A A 6 .3 m m m

�16.10 r y , y � r z , z 	 c � z , y � 
 , z � � 
 y .Ž . Ž . Ž . Ž . Ž .A A 6 .4 m m m
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Ž . Ž .PROOF. For 6.9 , we recall 6.1 and rearrange to get

� z , bŽ .m �1r z , z � r b , z 	 � z , z � G .Ž . Ž . Ž .Ž .Ý A A m m� zŽ .mŽ .b�N zm

Ž .Thus for a � N z , we havem

� z , a � z , bŽ . Ž .m m
r z , z � r a, z 	 r z , z � r b , zŽ . Ž . Ž . Ž .Ž . Ž .ÝA A A A� z � zŽ . Ž .m mŽ .b�N zm

�1	 � z , a, z � G � 
 x .Ž . Ž .m m m

Ž .Rearranging gives, for a, z � G � 
 x ,m m

� a, z r z , z � r z , z � r a, zŽ . Ž . Ž . Ž .A A A A

�1 �1	 � z , a 	 c � z .Ž . Ž .m 1 m

6.11Ž .

Ž .To extend this to the interior of the triangle we use the fact that r �, z isA
harmonic within 
 and thus attains its extreme values on the boundary. Som

Ž .for x � 
 and z � � 
 x the result holds.m m
Ž . Ž .For 6.10 , use 6.6 ,

�1r y , y 	 c � z � max r z , z 
 y � G .Ž . Ž . Ž .A 6 .2 m A �
Ž .z�� 
 ym

Ž . Ž . Ž . Ž .Then using 6.11 and r a, a � r z, a � r a, z , we getA A A

�1r y , y � r z , z 	 c � z ,Ž . Ž . Ž .A A 2 m

and we have the result. �

We now have a fixed upper bound on the resolvent diagonal, when the set
Ž .A � D x .m

COROLLARY 6.4. There exist constants c , c such that for x � G ,6.5 6.6 �

�1 �16.12 c � x 	 r x , x 	 c � x .Ž . Ž . Ž . Ž .6 .5 m D Ž x . 6 .6 mm

For the proof, the lower bound is given in Lemma 6.2. The upper is similar
� �to 4 , Lemma 5.8.

Ž .Now we obtain a loose bound on the denominator in 6.8 .

LEMMA 6.5. There exists a constant, c , such that,6.7

r y , y � r x , y 	 c d x , y 
 x , y � G .Ž . Ž . Ž .A A 6 .7 r �

�m �1 Ž . �mPROOF. Let m be such that e 	 d x, y 	 e . By Lemma 4.2 andr
Ž . Ž . Ž .our choice of graph, 
 x � 
 y � �, and we can choose z � � 
 x �m m m
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Ž .� 
 y . Thenm

r y , y � r x , y � � x , y r y , yŽ . Ž . Ž . Ž .A A A A

	 � x , z � � z , y r y , yŽ . Ž . Ž .Ž .A A A

� � x , z r z , zŽ . Ž .A A

� 1 � � x , z r y , y � r z , zŽ . Ž . Ž .Ž . Ž .A A A

� � z , y r y , y � r y , y � r z , z .Ž . Ž . Ž . Ž .A A A A

Ž . Ž . Ž . Ž . Ž . Ž .Using � z, y r y, y � r y, y � r z, z � � y, z r z, z we get thatA A A A A A

r y , y � r x , y 	 2� x , z r z , zŽ . Ž . Ž . Ž .A A A A

� 2 r y , y � r z , z .Ž . Ž .Ž .A A

6.13Ž .

By Lemma 6.3 we have bounds on both terms in this expression,

�1 �1r y , y � r x , y 	 2c � z � 2c � zŽ . Ž . Ž . Ž .Ž .A A 6 .3 m 6 .4 m

�1� C� z .Ž .m

Ž .�1 �m Ž .Now by the choice of m, we get � z 	 ce 	 c d x, y , the requiredm 6.7 r
upper bound. �

Thus the resolvent is uniformly continuous in both variables and can be
extended uniquely to a continuous function on G � G. The estimates obtained
above will hold for all x, y � G and we then have the following corollary.

Ž . xŽ .COROLLARY 6.6. i The process X hits points, P T � 0 � 1.t x
Ž .ii The fine topology on G is the ordinary topology.

For the proof, these results can be obtained from the above estimates in
� �the same way as 4 , Corollary 5.14.

We end this section with some estimates on exit times from neighborhoods.

Ž . Ž .LEMMA 6.7. There exist constants c � , c � , such that �-a.s. for each6.8 6.9
x � G and all m � 0,

�b �Ž��1.m x2c � log m e 	 E TŽ . Ž .6 .8 D Ž x .m6.14Ž .
b �Ž��1.mK	 c � log m e ,Ž . Ž .6 .9

Ž . Ž .and constants c � , c � such that �-a.s. for all m � 0,6.10 6.11

c � m�b 2 e�Ž ��1.m 	 inf E xTŽ .6 .10 
 Ž x .mx�G

	 sup E xT 	 c � mbK e�Ž ��1.m .Ž .
 Ž x . 6 .11m
x�G

6.15Ž .
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PROOF. The exit time from an m-level triangle can be written

E xT � E x L y � dy � r x , y � dy .Ž . Ž . Ž .H HD Ž x . T D Ž x .m D Ž x . mmŽ .D x Dm mŽ x .

Ž . Ž . Ž . Ž .�1By Corollary 6.4, r x, y � r y, x 	 r x, x 	 c � x . ThenD Ž x . D Ž x . D Ž x . 6.7 mm m m

�1 bx �Ž��1.mKE T 	 c � x � D x 	 c � log m e ,Ž . Ž . Ž . Ž .Ž .D Ž x . 6 .6 m m 6 .9m

Ž .by Theorem 5.5 5.3 .
For the lower bound we use the Holder continuity of the resolvent. If we¨

write

r x , y � r y , y � r y , y � r x , y ,Ž . Ž . Ž . Ž .Ž .D Ž x . D Ž x . D Ž x . D Ž x .m m m m

then, applying Corollary 6.4 and Lemma 6.5, we see that there are c , k such1
Ž .that for y � 
 x ,m� k

�1r x , y � c � x .Ž . Ž .D Ž x . 1 mm

Then
�1xE T � c � x � 
 x ,Ž . Ž .Ž .
 Ž x . 1 m m�km

and applying Theorem 5.5 gives the desired result.
Ž .For the second result we apply the same approach but use 5.4 from

Theorem 5.5. �

From this result we can obtain the following results on the oscillations in
the mean exit times.

COROLLARY 6.8. There exist constants c , c , c , c , dependent on �6.12 6.13 6.14 6.15
such that

E0T
 Ž0.mc � 	 lim infŽ .6 .12 �b�Ž��1.m 2m�� e log mŽ .
E0T
 Ž0.m	 lim sup 	 c � , �-a.s.Ž .6 .13b�Ž��1.m Ke log mŽ .m��

and

E0TB Ž0.rc � 	 lim infŽ .6 .14 �b2��1r �0 r log log 1�rŽ .Ž .
E0TB Ž0.r	 lim sup 	 c � , �-a.s.Ž .6 .15bK��1r log log 1�rŽ .Ž .r �0

Ž .PROOF. The first result is a simple consequence of 6.14 . For the second
Ž . Ž . Ž . �mresult observe that B 0 � 
 0 � B 0 if r � e . �c r m c r4.3 4.4
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7. Shortest paths and crossing times. Now that we have some prelim-
inary resolvent estimates, we can obtain an estimate on the crossing time of a
triangle. This will then be used to obtain some more resolvent estimates and

� �then estimates on the transition density using the techniques developed in 3
� � � �and 8 . We use 2 , Lemma 1.1 and Lemma 4.3, to show how the mean

crossing times determine the tail behavior of the actual crossing time.
Let

n � 4T � � inf t � 0: X � G ,Ž .0 t n

T n � � inf t � T n � : X � G � � X n ,� 4Ž . Ž . Ž .� 4i�1 i t n T Ž� .i

˜n n nT � � T � � T � ,Ž . Ž . Ž .i i i�1

denote the sequence of crossing times for the process on G .n
A simple extension of Lemma 6.7 leads to the following lemma.

Ž . Ž .LEMMA 7.1. There exist constants c � , c � , such that �-a.s. for all7.1 7.2
m � 0,

c � m�b 2 e�Ž ��1.m 	 inf E xT m 	 sup E xT mŽ .7 .1 1 1
x�G x�G7.1Ž .

	 c � mbK e�Ž ��1.m .Ž .7 .2

We now give an elementary technical lemma which will be useful.

LEMMA 7.2. If, for x, y � e, there exist positive constants c , c such that1 2
for some a, b,

bac y 	 x log x 	 c y ,Ž .1 2

then there exist positive constants c , c such that3 4
�b�a �b�a1� a 1� ac y log y 	 x 	 c y log y 
 x , y � e.Ž . Ž .3 4

The effective resistance metric does not take into account the geometry of
the shortest paths on the fractal. We determine bounds on the growth rate in
n of the number of steps in the shortest path on G across the unit fractal.n

Ž .For x, y � G , m � n, let � x, y denote the set of all paths from x to yn n, m
� �on G . Let � denote the number of steps in the path � and letm

� �a x , y � inf � : � � � x , y� 4Ž . Ž .n , m n , m

be the number of steps in the shortest path on G between x, y � G .m n

LEMMA 7.3. There exists a constant � such that, for each pair x, y � G ,0
1�m

� � exp log 2�log 5�3 	 lim inf a x , yŽ . Ž .Ž .2 0, m
m��

1�m	 lim sup a x , y 	 � , �-a.s.Ž .0, m
m��

PROOF. The lower bound is just the trivial worst case bound. The upper
bound uses a branching argument. The following subbranching inequality
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holds:
Ž .a x , y0, m

7.2 a x , y 	 a x , x 
 m, n � 0,Ž . Ž . Ž .Ý0, m�n m , m�n i�1 i
i�1

Ž . Žwhere a x , x � a � a in distribution and we suppressm , m�n i�1 i m , m�n 0, n
.the reference to the points x, y . We then follow the proof of a similar result

� �in 5 . First, taking expectations and using the independence, we have a
submultiplicative sequence and hence there exists � such that

1�n 1�nlim � a � inf � a � � .Ž . Ž .0, n 0, n
n�� n�0

Ž .By inequality 7.2 we have
a0, n k

a 	 a i .Ž .Ý0, Žn�1.k 0, k
i�1

Then consider a branching process Z with offspring distribution given byn
a , so that a 	 Z . Now let u � � and consider0, k 0, Žn�1.k n�1

� a � unk 	 � Z � unk 	 � Z � cn ,Ž .Ž . Ž .0, nk n n

k Ž . kwhere c � u � m � � a � � . From the boundedness of a , using the0, k 0, k
ideas of Lemma 3.6 and Theorem 3.7, we have an exponential tail for the
limiting random variable of the standard branching process martingale,
W � lim Z �mn. Thus there are constants c , c such thatn�� n 1 2

7.3 � Z � � mn 	 c� W � � 	 c exp �c � 
 � � 0.Ž . Ž . Ž .Ž . ˆn 1 2

Hence
nn� Z � c 	 c exp �c c�m ,Ž .Ž . Ž .n 1 2

and thus
� a � unk � � 
 u � � .Ž .Ý 0, nk

n

We can approximate the general case using, for all v � 0,

� a � v nk�j 	 � a � v nk , j � 1, . . . , kŽ . Ž .0, nk�j 0, nk�j

and, for all c � 0,

� a � c 	 � a � c , j � 1, . . . , k .Ž . Ž .0, nk�j 0, Žn�1.k

Thus we have
k

n nk�j� a � v � � a � vŽ . Ž .Ý Ý Ý0, n 0, nk�j
n n j�1

	 � a � v nkŽ .Ý Ý 0, nk�j
nj

	 k � a � v nk � �,Ž .Ý 0, Žn�1.k
n

for all v � � . Hence lim sup a1� n 	 � , �-a.s. �n�� 0, n
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The shortest paths on G between points on G will not necessarily bem 0
straight. Thus we can find an upper bound on � using a general branching
process which describes the growth of the number of steps in the straight
path. In this case the appropriate life length and reproduction point process
are

� , 	 � log � , � I with probability p .Ž . Ž .x x � �t�log � 4 ��

The parameter � 	 � , the Malthusian parameter for the branching process, isˆ
given by

K
�s� � s : �� p � 1 .ˆ Ý � �½ 5

��2

We need a uniform bound on the length of the shortest path between two
points in the fractal, where the step size is determined by the resistance
metric.

LEMMA 7.4. For � � 0 there exists a constant c such that for all i, n � 0,7.3
Ž .if x, y � G with y � N x , theni i

n
a x , y 	 c i � 1 � � � , �-a.s.Ž . Ž . Ž .i , n�i 7 .3

1� nŽ .PROOF. By the previous lemma we know that a x, y converges and we0, n
wish to determine how the convergence depends on x, y. We begin by
considering the behavior in n:

�a x , yŽ .i , n�i n
7.4 � sup � � 	 � a x , y � � � � � .Ž . Ž . Ž .Ž .Ýn i , n�iž /� � �Ž .n n�0

Ž . Ž .We know that a x, y , for x, y � G with x � N y , is a boundedi, n�i i i
Ž .discrete random variable equal in distribution to a x , y , where x , y �0, n 0 0 0 0

G , and that0

1�k
� � lim � a .Ž .0, k

k��

Ž . Ž .kHence for � � 0 there exists a k such that � a � � � � for all k � k .0 0, k 0
Fix such a k and let Z be the branching process with offspring distributionn

Ž .a . Then a 	 Z and, as in 7.3 , we have0, k 0, Žn�1.k n�1

n n� a � � � a 	 � Z � � m 	 c exp �c � .Ž . Ž .Ž .Ž .0, nk 0, k n 1 2
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From this we can deduce that for any l, which we can write l � nk � j, we
have

l�k n�j�k
� a � � � a � � a � � � aŽ . Ž .Ž . ž /0, l 0, k 0, nk�j 0, k

n�1 j�k�1	 � a � � � a � aŽ . Ž .Ž . Ž .ž /0, Žn�1.k 0, k 0, k

j�k�1	 c exp �c � a �Ž .Ž .ž /1 2 0, k

	 c exp �c � .Ž .1 3

Ž .Using this in 7.4 we have
�a a0, n 0, n

� sup � � 	 � � �Ýn nž / ž /� � � � � �Ž . Ž .n n�0

n� a � � �Ž .0, n	 � � �Ý n�k n�kž /� a � aŽ . Ž .Ž . Ž .n�0 0, k 0, k

n� � � �
	 c exp �c �Ý 1 2 1�kž /ž /� aŽ .Ž .n�0 0, k

	 c exp �c � ,Ž .3 4

by choice of k � k .0
Finally,

a ai , n�i i , n�i
� max sup � � 	 � sup � �Ýn nž / ž /x , y�G � � � � � �Ž . Ž .i n nx , y�Gi

	 c exp 2� i exp �c � .Ž . Ž .5 4

Hence there exists a constant c such that6

ai , n�i
� max sup � c i 	 exp �c i ,Ž .n 6 7ž /x , y�G � � �Ž .i n

and Borel�Cantelli gives the result. �

From Lemma 7.4 we can control the number of steps in the shortest path.
Ž .First, we extend the definition of � x, y to all x, y � G by settingn, m

Ž . Ž .� x, y � � x , y , where x , y � G are given by the lower leftm m , m m m m m m
Ž . Ž .corners of 
 x and 
 y , respectively. Hence we can definem m

� �a x , y � inf � : � � � x , y .� 4Ž . Ž .m m

THEOREM 7.5. For � � 0, there exists a constant c such that for all7.4
Ž . �kx, y � G with d x, y 	 e and for each m there exists a path � �r

� 4 Ž .x , . . . , x � � x, y such that0 �� � k�m
m

� �� 	 c k � 1 � � � , �-a.s.Ž . Ž .7 .4
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Ž . �kPROOF. For any points x, y � G with d x, y 	 e , we can find a se-r
� 4k�m Ž .quence of points x , y where x , y � G and x � 
 x , x �˜ ˜ ˜ ˜ ˜ ˜ ˜i i i�k i i i i i i�1 k�m

Ž . Ž .
 x , and similarly for y and x � N y . The path � between x, y on˜ ˜ ˜k�m k k k
G can then be constructed as the concatenation of the shortest paths onk�m
G linking the points x , x , . . . , x , y , . . . , y . The length of˜ ˜ ˜ ˜ ˜k�m k�m k�m�1 k k k�m
this path is then bounded by

k�m k�m

� �� 	 a x , x � a x , y � a y , y .˜ ˜ ˜ ˜ ˜ ˜Ž . Ž . Ž .Ý Ýk�m i i�1 k�m k k k�m i i�1
i�k�1 i�k�1

By Lemma 7.4 we have a uniform bound on the length of each piece of path
and, if M is an upper bound on the number of steps across G on G , then0 1
�-a.s. we have

k�m
mk�m�i� �� 	 2c M i � 1 � � � � c k � 1 � � �Ž . Ž . Ž . Ž .Ý7 .3 7 .3

i�k�1
m

m� i	 c i � k � 1 � � �Ž . Ž .Ý1
i�0

m	 c k � 1 � � � ,Ž . Ž .2

as desired. �

We now turn our attention to the tail of the crossing time distribution. We
� �follow the same idea as 3 but, as the mean crossing time for a cell is a

random variable, we must first establish a weak uniform estimate on the
crossing time distribution.

Ž . Ž .LEMMA 7.6. There exist constants c � , c � such that for all n � 0,7.5 7.6
i � 1 and all x � G, �-a.s.,

x ˜n �	 b2 Ž��1.n7.5 P T � s 	 1 � c � n � sc � n e , s � 0.Ž . Ž . Ž .Ž .i 7 .5 7 .6

� � nPROOF. We use 2 , Lemma 4.3. Consider T and condition on the position1
of the process at T n to get0

x ˜n z ˜m x
mP T � s � P T � s P X � z .Ž .Ž . Ž .Ý1 1 T0

Ž .z�� 
 xn

For the process started at a point z � G we can writen

˜n ˜n ˜nT 	 s � T � s I T � s .Ž . Ž .1 1 1

Taking expectations, using the Markov property and the fact that starting
from z, T m is a first hitting time, gives1

z ˜n z ˜n XsE T 	 s � P T � s E T .Ž .Ž . Ž .1 1 D Ž z .n
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Ž . Ž . Ž .Taking suprema using D z � D x for z � � 
 x and then rearranging,n n n
we have

z ˜nE T sŽ .1z n˜P T � s 	 1 � �Ž .1 x xsup E T sup E TŽ . Ž .x � G D Ž x . x � G D Ž x .n n


 n , i � 0, s � 0.

Thus

x ˜nE T sŽ .ix n˜P T � s 	 1 � �Ž .i x xsup E T sup E TŽ . Ž .x � G D Ž x . x � G D Ž x .n n


 n , i � 0, s � 0.

Ž .From an application of both the upper and lower bounds from 6.15 and the
Ž .lower bound from 7.1 , we obtain the result. �

This leads to the general estimate on the crossing time distribution. Let
Ž . 
 Ž��1.n Ž x n.�1 �2 	 Ž .� � c � n e 
 1, so that E T 	 n � for all x � G by 7.1 .n 7.1 1 n

Ž . Ž .LEMMA 7.7. There exist constants c � , c � � 0 such that for each7.7 7.8
n � 0 and each x � G,

�
�� 1x n 2P T � t 	 c � exp �c � � t log 1�� tŽ . Ž . Ž . Ž .Ž . Ž .Ž .1 7 .7 7 .8 n � n7.6Ž .

 t � 0, �-a.s.

PROOF. The crossing time random variable T n satisfies the following1
inequality:

� m
2

n n�m˜7.7 T � T ,Ž . Ý1 i
i�1

as � m is a uniform bound on the minimum number of steps on G2 n�m
˜krequired to cross the cell of G . This differs from the usual case as the T aren i

not identically distributed.
In order to estimate the tail of the probability distribution for the crossing

x ˜n� � Ž �time we will use 2 , Lemma 1.1 and thus we must estimate P T � �i
˜n .T , 1 	 j � i . By Lemma 7.6 and the strong Markov property, we have thatj

x ˜n ˜n �	 b2 Ž��1.n�P T � � T , 1 	 j � i 	 1 � c n � �c n e .ž /i j 7 .5 7 .6
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Ž . � �This estimate, with our branching inequality 7.7 , allows us to use 2 ,
Lemma 1.1, to deduce that there are constants c , c , c , c such that for all1 2 3 4
m � 0,

log P x T n � tŽ .1

�	m	 c � log 1 � c n � mŽ .Ž .1 2 7 .1

1�2bm 2� c � n � m exp � � 1 n � m t ,Ž . Ž . Ž .Ž .Ž .2 2

�	 m	 �c n � m �Ž .3 2

�
1�2


1 � c n � m exp � � 1 � log � m exp � � 1 n t .Ž . Ž . Ž .Ž .Ž .Ž .ž /4 2

Ž .Using the fact that mn � m � n �2 for m, n � 1 we have

�	x n mlog P T � t 	 �c nm � 1 � c nm exp � � 1 � log � mŽ . Ž . Ž .Ž . Ž .Žž1 3 2 4 2

1�2
exp � � 1 n t .Ž .Ž . . /

Hence there is a t such that for 0 � t � t we can choose an m � 1 such1 1
that

2c3 �12 
 
7.8 c m exp � � 1 � log � m 	 n exp � � 1 n t ,Ž . Ž . Ž .Ž .Ž .Ž .4 2 ž /2

and then
c3x n �	 �	 m7.9 log P T � � t 	 � n m � , 0 � t � t , �-a.s.Ž . Ž .Ž .1 2 12

Ž .From 7.8 , using Lemma 7.2, there are constants c , c such that5 6

Ž .Ž . �
� ��1�log �1� ��1�log � 2m 2e 	 c � t log 1�� t ,Ž . Ž .Ž .5 n n

Ž . Ž .and m � c log 1�� t . Using this in 7.9 , we obtain6 n

�
 1�� �1x n 2P T � � t 	 exp �c � t log � tŽ . Ž . Ž .Ž . Ž .ž /1 7 .8 n � nž /

 0 � t � t , �-a.s.1

Ž . Ž Ž . �� 2 Ž .
1.By setting the constant c � � exp c � t log 1�t , we obtain7.7 7.8 1 1
the result for all t � 0. �

Ž . Ž .THEOREM 7.8. There exist constants c � , c � � 0 such that for all7.9 7.10
0 � � � 1, 0 � t � 1, x � G, �-a.s.,

P x sup d X , X � �Ž .r s 0ž /
s	t

�
� 12��1 ��1� �
	 c � exp �c � log ,Ž . Ž .7 .9 7 .10 �ž / ž /ž /tg 1�� tg 1��Ž . Ž .ž /
 


7.10Ž .
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Ž . Ž .PROOF. To prove the assertion we choose n such that D x � B x, � , son
that e�n � � . Then

P x sup d X , X � � 	 P x T n � t ,Ž . Ž .r s 0 1ž /
s	t

Ž .and using 7.6 , with Lemma 7.2 we obtain the result. �

The �-resolvent can now be defined for the process X and is given byt

�
x ��tR f x � E e f X dt .Ž . Ž .H� t

0

� Ž . Ž . 4The existence of resolvent densities r x, y ; � � 0, x, y � G � G follows�

� �as in 4 , Section 5, and then we can write

R f x � r x , y f y � dy .Ž . Ž . Ž . Ž .H� �
G

We need to estimate the probability of exiting a large triangle before a
random exponential time. Let � denote a random variable which has the�

exponential distribution with parameter �.

Ž . Ž .LEMMA 7.9. There exist constants c � , c � , such that �-a.s. for all7.11 7.12
m � 0,

1x �b Ž��1.mK7.11 sup P T � � 	 for � 	 c � m e ,Ž . Ž .Ž .D Ž x . � 7 .102m
x�G

1x b Ž��1.m27.12 sup P T 	 � 	 for � � c � m e .Ž . Ž .Ž .D Ž x . � 7 .112m
x�G

� � Ž .PROOF. This follows the proof of 3 , Corollary 3.5. For 7.11 , we use
Lemma 7.1 to bound the tail of the probability distribution of the hitting time

P x T � t 	 t�1E xT 	 c � mbK e�Ž ��1.mt�1 � 1 
 x � G.Ž .Ž . Ž .D Ž x . D Ž x . 7 .2m m

Then integrating this estimate against �e�� t and observing that the integral
Ž . bK �Ž ��1.mdecreases as �c � m e decreases, gives the result.7.2

Ž . Ž . xŽ . Ž m .For 7.12 we use 7.6 and that P T 	 t 	 P T 	 t , so thatD Ž x . 1m

�
�� 1x 2P T 	 t 	 c � exp �c � � t log 1�� t .Ž . Ž . Ž . Ž .Ž .Ž . Ž .D Ž x . 7 .9 7 .10 m � mm

Integrating then gives

P x T 	 �Ž .D Ž x . �m

� �
�� 12	 c � � exp ��t exp �c � � t log 1�� t dtŽ . Ž . Ž . Ž . Ž .Ž .Ž .H7 .9 7 .10 m � m
0

�
 1�� 2� u� �m� c � exp �u exp �c � log duŽ . Ž . Ž .H7 .9 7 .10 �ž / ž /ž /ž /� u�0 m

� I v x , � ,Ž .Ž .
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Ž . Ž . Ž .where v x � � ��. Thus I v � 0 as v � 0. By choosing c � such thatm 7.12
Ž Ž ..I c � 	 1�2, and using the form of � , we have the result. �7.12 m

Ž . Ž .LEMMA 7.10. There exist constants c � , c � such that for � � 0,7.13 7.14

Ž .�1� ��11�Ž��1.c � � g � 	 inf r x , xŽ . Ž . Ž .7 .13 b x � G �K

	 sup r x , xŽ .x � G �7.13Ž .
Ž .1� ��11�Ž��1.	 c � � g � .Ž . Ž .7 .14 b2

� �PROOF. As in 3 , Lemma 4.3, conditioning on the exit time we have, for
all x � G,

r x , x � r x , x � E x I r X , xŽ . Ž . Ž .Ž .A � �T � � 4 A �A � �

� E x I r X , x .Ž .Ž .�T � � 4 � TA � A

7.14Ž .

Rearranging gives
�1xr x , x 	 P T � � r x , x .Ž . Ž . Ž .� A � A

Ž .For A � D x , by Corollary 6.4 and Lemma 7.9 we havem

r x , x 	 2c e�m if � � c � mb2 eŽ��1.m .Ž . Ž .� 6 .6 7 .12

Using Lemma 7.2 we obtain the result.
Ž . Ž .For the lower bound we use 7.14 again with A � D x , so thatm

r x , x 	 r x , x � P � 	 T r x , x .Ž . Ž . Ž .Ž .D Ž x . � � D Ž x . D Ž x .m m m

Rearranging and applying Lemma 7.9 and Corollary 6.4 again we have
c6 .5 �m �b Ž��1.mKr x , x � e if � 	 c � m e .Ž . Ž .� 7 .112

Once again Lemma 7.2 gives the result. �

This demonstrates that the spectral dimension of the fractal is d �s
Ž . � �2�� � � 1 , which agrees with the conjecture made in 20 .

The estimates derived from the potential theory also allow us to bound the
first passage time Laplace transform.

Ž .THEOREM 7.11. There exists a constant c � such that7.15

Ž .�1� ��1
1 � � x , y 	 c � �g � d x , y .Ž . Ž . Ž . Ž .Ž .� 7 .15 b rK

� �PROOF. Using the techniques in 14 , estimates can be obtained for the
�-resolvent. Substituting these estimates into

r y , y � r x , yŽ . Ž .� �
1 � � x , y � ,Ž .� r y , yŽ .�

gives the result. �
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The continuity of the local time comes from the Holder continuity of the¨
Laplace transform of the first passage time as given in Theorem 7.11.

Ž .THEOREM 7.12. The Brownian motion X on G � has a jointly continuoust
local time �x , for x � G, 0 � t � 1, which is the density of occupation for thet
process with respect to the measure �.

Ž .PROOF. The local time continuity will follow from a bound on 1 � � x, y .1
ˆ Ž .The estimate obtained in Theorem 7.11 shows the metric d x, y �1

1�2 ˆŽ Ž . Ž . Ž .. Ž .r x, x � r y, y � 2r x, y is bounded by a function d x, y �1 1 1 1
Ž . Ž .� x � y where � u � Cu, which is of the correct form to apply the results
� �of 24 , Theorem 1, Theorem 8.4. The density of occupation result is standard

� �as in 4 , Theorem 1.11. �

8. Transition density estimates. Now that we have a process and
resolvent estimates, we can obtain estimates on the transition density using

� � � �the techniques developed in 3 , 8 . The fundamental crossing time estimate,
Lemma 7.7, will be the key result for the off-diagonal upper bound. The

Ž .bounds will be uniform for x, y � G � in a small region and for short times
0 � t � t � e�1 for �-almost every � � �.0

� �In the manner of 3 , we can use the Mercer expansion theorem to obtain
an eigenvalue expansion of the resolvent for the process killed on hitting the
boundary, the vertices of G . Thus there are strictly positive eigenvalues �0 j
and eigenfunctions � such thatj

�

r x , y � � � x � y 
 x , y � G � .Ž . Ž . Ž . Ž .Ý
 j j j0
j�1

Then the transition density for this process can be written as

�
�� tjp x , y � e � x � y 
 x , y � G � .Ž . Ž . Ž . Ž .Ýt j j

j�1

� �As in 3 , Section 8.5, it is easy to convert results about the killed process
Ž .to those for the reflected process. From now on we will use p x, y for thet

transition density of either process in a small region G away from theR
boundary and t will denote a small time. The on-diagonal upper bound is a0
consequence of our resolvent estimates in the previous section.

Ž . Ž .LEMMA 8.1. a p x, y is nonincreasing in t for 0 � t 	 t , for allt 0
x, y � G � G .0

Ž . Ž . Ž .1�2 Ž .1�2b p x, y 	 p x, x p y, y for 0 � t 	 t , for all x, y � G � G .t t t 0 0
Ž . Ž .c There exists a constant c � such that8.1

Ž .1� ��1�� �Ž��1.sup p x , x 	 c � t g 1�t , 0 � t � t , �-a.s.Ž . Ž . Ž .t 8 .1 b 02
x�GR
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Ž . Ž .PROOF. Parts a and b follow from Mercer’s theorem and Cauchy�
Ž . Ž . � �Schwarz. For c , the diagonal resolvent estimate 7.13 is used as in 3 ,

Lemma 5.2. �

We are now ready to derive global upper bounds on the transition density.

Ž .THEOREM 8.2. The heat kernel p x, y is continuous in t, x, y. For � � 0t
Ž . Ž .there exist constants c � , c � such that8.2 8.3

Ž .1� ��1�� �Ž��1.p x , y 	 c � t g 1�tŽ . Ž . Ž .t 8 .2 b2

�2��1d x , yŽ .r
�exp � c �Ž .8 .3 ž /tg 1�d x , yŽ .Ž .� 
 r

�
 1��1d x , yŽ .r
� log� ž /tg 1�d x , yž /Ž .Ž . 0
 r


 x , y � G , 0 � t � t , �-a.s.R 0

PROOF. For the continuity we can use the diagonal upper bound and the
� �general theory as indicated in 8 .

� �For the upper bound we follow 3 , Theorem 6.2. Fix x � y � G and t, andR
Ž . Ž . Ž . z �let � � 6d x, y , C � B x, � � G, C � B y, � � G and � � � , z �Cr x y z

1 c� Ž . Ž .4x, y. Let A � z: d x, z 	 d z, y � G and A � A � G. Then1 r r 2 12

P � x
X � C � P � x

X � C , X � A � P � x
X � C , X � AŽ . Ž . Ž .t y t y t�2 1 t y t�2 2

� I � I .1 2

We begin by considering I . For z � C , use Lemma 7.7. Let n be the2 x
Ž . Ž .smallest such that D x � A , then by 7.10 ,n�1 1

P z X � A 	 P z T n � t�2Ž .Ž .t�2 2 1

�2��1d x , yŽ .r	 c � exp �c �Ž . Ž .7 .9 7 .10 ž /tg 1�d x , yŽ .Ž .� 
 r

�

�
 1��1d x , yŽ .r
log .� ž /tg 1�d x , yž /Ž .Ž . 0
 r

Ž . Ž � .Now let q z � P X � C X � z so that by the uniform diagonal uppert y t�2
Ž .bound, Lemma 8.1 c , we have

Ž .1� ��1�� �Ž��1.q z � p z , u � du 	 c � t g 1�t � C .Ž . Ž . Ž . Ž . Ž . Ž .H t�2 b y2
Cy
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Thus we estimate I as2

I � E � x
q X ; X � AŽ .Ž .2 t�2 t�2 2

Ž .1� ��1�� �Ž��1.	 C � � C � C t g 1�tŽ . Ž . Ž .Ž .x y b2

�
� 12��1 ��1d x , y d x , yŽ . Ž .r r
� exp �c � log .Ž .7 .10 �ž / ž /tg 1�d x , y tg 1�d x , yž /Ž . Ž .Ž . Ž .� 0
 r 
 r

We proceed similarly for I , observing that from the symmetry of the process1

P � x
X � C , X � A � P � y

X � C , X � A ,Ž . Ž .t y t�2 1 t x t�2 1

Ž . Ž .and applying the same approach as for I . Now divide by � C � C , let2 x y
Ž .� � 0 and with the continuity of p x, y , we obtain the result. �t

The final task is to prove a lower bound. Again we use the standard
probabilistic approach of obtaining an on-diagonal bound, using the Holder¨
continuity of the transition density and then a chaining argument.

Ž .LEMMA 8.3. There exists a constant c � such that8.4

Ž .�1� ��1�� �Ž��1.inf p x , x � c � t g 1�t , 0 � t � t , �-a.s.Ž . Ž . Ž .t 8 .4 
 0ˆ
x�GR

� �PROOF. Follow 3 , Lemma 7.1. Fix t and let a be a constant such that
�
 1�� 2c � exp �c a log 1�a 	 1�2.Ž . Ž .Ž .Ž .7 .7 7 .8 �

Ž .Then using 7.6 ,

P x X � 
 x � P x T n � t � 1�2 if � t 	 a.Ž . Ž .Ž .t n 1 n

Let n be such that � 	 a�t so thatn

�1 b Ž��1.n28.1 c � n e 	 a�t .Ž . Ž .7 .1

� �Thus, as in 3 , Lemma 7.1,

21 x	 P X � 
 x 	 � 
 x p x , x .Ž . Ž . Ž .Ž . Ž .t n n 2 t4

Ž .Once we have this result, we can appeal to Lemma 7.2 and 8.1 to get

Ž .�� ��1b � nK� 
 x 	 cn e 	 c tg 1�t g 1�t ,Ž . Ž . Ž .Ž . Ž .n 2 b b2 K

and we have the result by definition of 
. �ˆ

The extension to a ball about the diagonal follows from an estimate on the
Holder continuity of the heat kernel.¨
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Ž .LEMMA 8.4. There exists a constant c such that for all y � G � ,8.5

1�2�1	 �1sup p x , y � p x , y 	 c � x t p y , yŽ . Ž . Ž . Ž .Ž .t t 8 .5 n t
	x , x �
 n


 n � 0, 0 � t � t .0

2Ž . Ž . Ž . Ž .Ž .PROOF. As P : L � � DD EE , we see that p �, y � P p �, y � �t t t�2 t�2
Ž . Ž . 2Ž .DD EE if p �, y � L � . From the upper bound, we knowt�2

2 2p �, y � p z , y � dz � p y , y � �,Ž . Ž . Ž . Ž .Ht�2 t�2 t2
G

Ž . Ž .and hence p �, y � DD EE . Now we can use Lemma 4.3,t

1�2�1�2	sup p x , y � p x , y 	 c � x EE p �, y , p �, y .Ž . Ž . Ž . Ž . Ž .Ž .t t 4 .1 n t t
	x , x �
 n

Ž . Ž . � � Ž .Let u x � p x, y and use 9 , Lemma 1.3.3 i ,t�2

1 2 2 �1
 
 
 
EE P u , P u 	 u � P u 	 t p y , yŽ .Ž . 2 2ž /t�2 t�2 t�2 tt
as desired. �

Ž .We write 
 � 
� � � 1 .ˆ ˆ1

Ž .LEMMA 8.5. There exists a constant c � such that for all x � G ,8.6 R

c �Ž .8 .4 �1�� �Ž��1.p x , y � t g 1�tŽ . Ž .t 
̂12
�11�Ž��1.for y � z � G � : d x , z � c � t g 1�t , , 0 � t � t .Ž . Ž . Ž . Ž .½ 5r 8 .6 
 0ˆ

PROOF. We use the above estimate on the Holder continuity as follows:¨
p x , y � p x , x � p x , x � p x , yŽ . Ž . Ž . Ž .t t t t

�1
� xŽ .n� p x , x 1 � cŽ . )t 8 .5 tp x , xŽ .� 0t

Ž .if y � 
 x . Now we choose n such thatn

�1
� x 1Ž .n

1 � � ,) t inf p x , x 2Ž .x � G t

which gives the result. �

We can now obtain the lower bound on the transition probability using the
chaining argument. The proof can be used to give a slightly sharper bound
than the one stated, but this provides more complication than insight. Recall

Ž . Ž .��1 Ž .�1that D� x, y, t � d x, y �tg 1�t .r 
̂
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Ž . Ž .THEOREM 8.6. For � � 0 there exist constants c � , c � such that8.7 8.8

Ž .�1� ��1�� �Ž��1.p x , y � c � t g 1�tŽ . Ž . Ž .t 8 .7 
̂

� 
� ˆ��� exp �c � D� x , y , t log D� x , y , tŽ . Ž . Ž .Ž .Ž .8 .8 �ž
2log � �1�d x , yŽ .r

� log ,� ž /ž /t /
0 � t � t , x , y � G , �-a.s.0 R

PROOF. The chaining argument can be used with the shortest path link-
ing the points along which we can apply the lemmas. Fix x, y and t. The

Ž . 1�Ž��1. Ž .�1theorem follows immediately for d x, y 	 c t g 1�t by Lemmar 8.6 
̂1
Ž .8.5. Let D� x, y, t � c , and write � for � � � . We can find a constant c8.6 � 1

such that the following statement holds. For an m such that
�
̂mexp � � 1 � log � m log �Ž . Ž .Ž . Ž .� �

	 c D� x , y , tŽ .18.2Ž .
�
̂Žm�1.	 exp � � 1 � log � m � 1 log � ,Ž . Ž .Ž . Ž .Ž .� �

we have
Ž .1� ��1d x , y c tŽ .r 8 .6 �
�
 ˆˆ m	 log 1�t log � .Ž .Ž . Ž .Ž .�m mž /e 3ec �4 .4 �

As the following relationship holds for N, 1�t � 2,
1�28.3 2 log N log 1�t 	 log N�t 	 log N log 1�t ,Ž . Ž . Ž .Ž .

we have
Ž .1� ��1d x , y c tŽ .r 8 .6 �
̂m	 log � �t .Ž .Ž .�m mž /e 3ec �4 .4 �

Now choose k such that

e�k�1 	 d x , y 	 e�k .Ž .r

By Theorem 7.5 there is a path � on G given by x � x, x � y,k�m 0 N
Ž . � �x � G , 0 � i � N and x , x � 
 x , 0 	 i � N where N � � 	i k�m i i�1 k�m i

Ž . mc k � 1 � . Then, by our choice of G ,7.4 � k�m

Ž .1� ��1ec d x , y c tŽ .4 .4 r 8 .6 �
̂�k�m md x , x 	 c e 	 	 log � �t .Ž . Ž .Ž .r i i�1 4 .4 �m mž /e 3 ��

Ž . Ž .Using the same approach, with 8.2 and the lower bound in 8.3 , we have
a lower bound on the distance between points in the path. There is a constant
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c such that2

Ž .1� ��1�
�2ˆm m8.4 c t�� log � �t 	 d x , x .Ž . Ž .Ž . Ž .Ž .ž /2 � � r i i�1

Let B denote the ball of radius � about x , where � � c e�k�m. Then fori i 4.4
z � B , z � B ,i i i�1 i�1

Ž .1� ��1t �
̂�m �k m8.5 d z , z 	 2� � c e 	 c log � �t .Ž . Ž . Ž .Ž .r i i�1 4 .4 8 .6 �mž /��

Now we can apply the chaining argument:

p x , y � ��� p x , y ��� p y , y � dyŽ . Ž . Ž . Ž .H Ht t� N 1 t� N N�1 1
B B8.6Ž . 1 N�1

��� � dy .Ž .N�1

Ž . Ž .As we have 8.5 we can use Lemma 8.5 to bound the terms in 8.6 below to
get

N�1 N�1c8 .4 �
Ž . ˆ��� ��1 1m mp x , y � t�� log � �t � BŽ . Ž .Ž . Ž .Ž .Ł Łt � � i2i�0 i�1

�
Ž . ˆ��� ��1 1m m� t�� log � �tŽ . Ž .Ž .� �8.7Ž .
N�1 c8 .4 �
Ž . ˆ��� ��1 1m m� t�� log � �t � B .Ž .Ž . Ž .Ž .Ł � � i2i�1

Ž .Now by 5.4 we have
�b �� Žk�m.2� B � � 
 x � c k � m e 
 x � G .Ž . Ž . Ž .Ž .i k�m i 3 i k�m

Ž .By the choice of G we have, using 8.4 , thatk�m

�
Ž . ˆ�� ��1 2m m� B � c t�� log � �t ,Ž . Ž . Ž .Ž .i 4 � �

Ž .where 
 � 
��2 � b � 0. Hence, substituting this into 8.7 , we getˆ ˆ2 2

�
Ž . ˆ��� ��1 1m mp x , y � t�� log � �tŽ . Ž . Ž .Ž .t � �

�
N�
 �
ˆ ˆ1 2m mc log � �t log � �t ,Ž . Ž .Ž . Ž .ž /5 � �8.8Ž .

�
̂ 1�� �Ž��1.� c � t log 1�tŽ . Ž .Ž .6

� exp �c k � 1 � m c � 
 � 
 log log � m�t ,Ž . Ž .ˆ ˆŽ .Ž .Ž .7 .4 � 7 1 2 �

Ž .Using Lemma 7.2 on 8.2 we have

� 
̂m � ��8.9 � 	 c D� log D� .Ž . Ž .� 11

Ž .Observe that, with 8.9 ,
log �m �1 � c log log � �t 	 c log d x , y �tŽ .Ž . Ž .ž /12 � 13 r
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Ž . Ž .for m � 0, t � t . As k 	 �log d x, y , we have, by 8.3 , that0 r

k � 1 c � 
 � 
 log log � m�tŽ . Ž .ˆ ˆŽ .Ž .7 1 2 �

2log � �1�	 c log d x , y �t .Ž .Ž .ž /14 r

8.10Ž .

Ž . Ž . Ž .Putting estimates 8.9 , 8.10 into 8.8 gives the result. �
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