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Let ��·� be a nondecreasing convex function on �0�∞�. We show that
for any integer n ≥ 1 and real a,

E���Mn − a�+� ≤ 2E���Sn − a�+� −��0�

and

E�Mn ∨ medSn� ≤ E�Sn − medSn��

where X1�X2� � � � are any independent mean zero random variables with
partial sums S0 = 0, Sk = X1 + · · · +Xk and partial sum maxima Mn =
max0≤k≤n Sk. There are various instances in which these inequalities are
best possible for fixed n and/or as n → ∞. These inequalities remain valid
if �Xk� is a martingale difference sequence such that E�Xk � �Xi� i �=
k�� = 0 a.s. for each k ≥ 1. Modified versions of these inequalities hold if
the variates have arbitrary means but are independent.

1. Introduction. Let S1� S2� � � � be a sequence of random variables. Put
S0 = M0 = 0 and Mn = max0≤k≤n Sk. We first want to describe the general
notion of a prophet problem. Consider any fixed n ≥ 1 and any nondecreasing
convex function ��·� on �0�∞�. Able to foresee the future, a prophet would
know the entire sequence S+

1 � � � � � S
+
n beforehand. As these variates unfolded

s/he would therefore be able to select the index j for which S+
j = Mn. Thereby,

the prophet would acquire a real-time reward of E��Mn�, on the average. By
contrast, a mere mortal is limited to stopping times. Consequently, s/he can at
best achieve an average reward of sup�E��S+

τ �� τ is a stopping time bounded
by n�. Whenever S+

1 � � � � � S
+
n is a submartingale (which will always be the case

in the sequel), this supremum is E��S+
n �. A so-called prophet problem result

ideally delineates the set of possible ordered pairs �E��Mn��E��S+
n �� and at

least specifies some guaranteed aspect of this set, such as bounding how the
ratios or differences of the components of these points can vary among all ��·�
and �S1� � � � � Sn� in some given family. An excellent survey of various prophet
inequality problems and results may be found in Hill and Kertz (1992).
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For the purposes of the present paper, let Xj = Sj−Sj−1 (for j ≥ 1). Partly
inspired by earlier work of Doob, Klass (1989) proved that for i.i.d. mean zero
Xj’s,

�1�1� EMn ≤ �2 − �1/n��ES+
n �

Subsequently, (1.1) was extended [Klass (1993)] to nondecreasing convex non-
negative functions ��·� on �0�∞�. It was shown that for �X1� � � � �Xn� having
independent components but otherwise arbitrary mean zero marginal distri-
butions that

�1�2� E��Mn� ≤ cE��S+
n �

for c = 5, with c = 3 − �1/n� in the i.i.d. case.
We want to improve (1.2) to c = 2. How might this be accomplished? Letting

��x� = �x− y�+, (1.2) for c = 2 certainly implies that for y ≥ 0,

�1�3� E�Mn − y�+ ≤ 2E�Sn − y�+�
Conversely, all nondecreasing convex functions can be represented as ��0�
plus an integral of �x − y�+ against a positive measure. To be more explicit,
letting �′�·� denote the right-hand derivative of ��·�, we may write (for x ≥ 0)

�1�4� ��x� = ��0� + x�′�0� +
∫ ∞

0
�x− y�+ d�′�y��

Substituting Mn for x, taking expectations and appealing to Fubini’s theorem,

E��Mn� = ��0� +EMn�
′�0� +

∫ ∞

0
E�Mn − y�+ d�′�y��

Assuming (1.3) for y ≥ 0,

�1�5�

E��Mn� ≤ ��0� + 2ES+
n�

′�0� +
∫ ∞

0
2E�Sn − y�+ d�′�y�

[since �′�0� ≥ 0 and d�′�y� ≥ 0]

= −��0� + 2E���0� +S+
n�

′�0� +
∫ ∞

0
�S+

n − y�+ d�′�y��

= −��0� + 2E��S+
n ��

Thus (1.5), a slight improvement of (1.2) even with c = 2, is equivalent to the
subfamily of less imposing inequalities (1.3) for y ≥ 0.

2. Identifying the approach. Suppose we attempt to establish (1.3) for
y ≥ 0 by a direct induction. What difficulties lurk? Let S�j� k� =

∑
j<i≤k Xi and

M�j� k� = maxj≤m≤k S�j�m�. Note that S�j� k� = M�j� k� = 0 for j ≥ k. Fix any
y ≥ 0. Then E�Mn − y�+ = E�M�1� n� − �y−X1��+. Since y−X1 could easily
be negative, we suddenly discover that our induction hypothesis need not be
preserved. Clearly, a different hypothesis is required, giving due consideration
to negative values. What makes this development vexing is that (1.3) for y ≥ 0
is the minimal hypothesis that must be proved. Moreover, if we strengthen it
to (1.3) for all y, we again lose control of our hypothesis form. To see that it
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too is unstable, note that for y < 0,

E�Mn − y�+ = E�−y ∨ �M�1� n� − �y−X1��+��
Thus the need to extend the validity of inequality (1.3) from y ≥ 0 to all y
evidently necessitates the concomitant introduction of a less stringent version.
What might it be? Note that when y < 0, (1.3) can be expressed as

�2�1� −y+EMn ≤ 2E�Sn − y�+�
Though (2.1) is formally weaker than (1.3) when y ≥ 0, a straightforward
stopping time argument produces (1.3) from it. Hence, the crux of our paper
depends on proving (2.1) for all y.

3. Results. For easy reference we record the following well-known fact,
which will be used repeatedly: for every finite mean random variable Y,

�3�1� 2EY+ = E�Y� +EY�

Theorem 3.1. Let n ≥ 1. Let X1� � � � �Xn be independent random variables
with zero means. Then, for every y ∈ R, we have

�3�2� −y+EMn ≤ 2E�Sn − y�+�

Proof. We shall prove (3.2) by induction. Take n = 1 and suppose y ≤ 0.
Then EX+

1 ≤ E�X1−y�+ and −y = �E�X1−y��+ ≤ E�X1−y�+ by Jensen’s in-
equality. Summing these two inequalities, it follows that −y+EM1 ≤ 2E�X1−
y�+. For y > 0 it is clear that −y + EM1 ≤ E�M1 − y�+ = E�X1 − y�+ ≤
2E�X1 − y�+.

We assume that (3.2) holds for 1 ≤ k ≤ n and all y and all sequences
of independent mean zero random variables. Define S�k� j� and M�k� j� as in
Section 2. Define τ = inf�k ≥ 1� Sk > y�. Then, for y ≥ 0,

−y+EMn+1 ≤ E�Mn+1 − y�+

= E�Mn+1 − y�I�τ ≤ n+ 1�
= E��Sτ − y� +M�τ� n+1��I�τ ≤ n+ 1�
= E�E��Sτ − y� +M�τ� n+1� � τ�Sτ�I�τ ≤ n+ 1��
≤ 2E��Sτ − y� +S�τ� n+1��+I�τ ≤ n+ 1�
= 2E�Sn+1 − y�+�

where we make use of (3.2) for 1 ≤ k ≤ n in the second-to-last inequality.
Using (3.1), this implies

�3�3� EMn+1 ≤ 2E�Sn+1 − y�+ + y = E�Sn+1 − y�� y ≥ 0�

Hence (3.2) holds for n + 1 if y ≥ 0. For any random variable Z, let medZ
denote the midpoint of the medians of Z, so that med�−Z� = −medZ. To
extend (3.3) and (3.2) to all y, note that it suffices to establish (3.3) for y =
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medSn+1, since med Sn+1 minimizes E�Sn+1 − y�. We need to consider two
cases.

Case (i): medSn+1 ≥ 0. Putting y = medSn+1, (3.3) gives

EMn+1 ≤ E�Sn+1 − medSn+1��
which proves (3.2) for n+ 1 in Case (i).

Case (ii): medSn+1 ≤ 0. For 1 ≤ k ≤ n + 1, let X̃k = −Xn+2−k, S̃0 = 0 and
for 1 ≤ k ≤ n + 1, S̃k = ∑k

j=1 X̃j. Note that med S̃n+1 = −medSn+1 ≥ 0.
Applying Case (i) to the X̃k’s, we see that

EMn+1 = E�Mn+1 −Sn+1� = E max
0≤k≤n+1

S̃k

≤ E�S̃n+1 − med S̃n+1�
= E�Sn+1 − medSn+1��

which implies (3.2) as in Case (i). This completes the proof of Theorem 3.1. ✷

As a byproduct of the above proof, we have the following somewhat stronger
result. How it may be used to prove Theorem 3.4 below was already described
in Section 2.

Corollary 3.2. Let X1� � � � �Xn be independent random variables with
zero means. Then

�3�4� E�Mn − y�+ ≤ 2E�Sn − y�+� y ∈ R

and so

�3�5� E�Mn ∨ medSn� ≤ E�Sn − medSn��

Proof. We see that when y ≤ 0, (3.2) and (3.4) are the same. That (3.4)
holds for y > 0 is contained in the proof of Theorem 3.1.

Secondly, combining (3.4) and (3.1), for every y ∈ R,

�3�6� E�Mn ∨ y� = E�Mn − y�+ + y ≤ 2E�Sn − y�+ + y = E�Sn − y��
which implies (3.5). ✷

Remark. We could have proved (3.3) for y ≤ 0 without using medians by
noting that

E�Mn+1 − y�+ = −y+EMn+1

= −y+E�Mn+1 −Sn+1�
= −y+E max

0≤k≤n+1
�Sk −Sn+1�
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= −y+E max
0≤k≤n+1

S̃k

≤ −y+E�S̃n+1 + y� [by (3.3)]

= −y+E�Sn+1 − y�
= 2E�Sn+1 − y�+�

Using linearity of the expectations, we can upper bound the expected length
of the convex hull of �Sk� 0 ≤ k ≤ n� as a subset of R.

Corollary 3.3. Let X1� � � � �Xn be independent random variables with
zero means. Then

�3�7� E
(

max
0≤k≤n

Sk − min
0≤k≤n

Sk

)
≤ 2E�Sn − medSn��

Observe that for any real a and any y ≥ 0,

�3�8�
E��Mn − a�+ − y�+ = E�Mn − �a+ y��+

≤ 2E�Sn − �a+ y��+ [by (3.4)]

= 2E��Sn − a�+ − y�+�
Using the integral representation (1.4) and proceeding much as in (1.5), we
obtain the following refinement of Theorem 3.1 and of Corollary 3.3.

Theorem 3.4. Let ��·� be a nondecreasing convex function defined on
�0�∞�. Let X1�X2� � � � be independent random variables with zero means.
Then, for any integer n ≥ 1 and real a,

�3�9� E���Mn − a�+� ≤ 2E���Sn − a�+� −��0��

Corollary 3.5. If ��·� is any nondecreasing convex function on �0�∞� with
��0� = 0 and if Mn�− = max0≤k≤n�−Sk�, then

�3�10� E���Mn� +��Mn�−�� ≤ 2E���Sn���

Remarks. (a) Notice that for Brownian motion �Bt� t ≥ 0� and its maximal
process Mt = sup0≤s≤t B�s�, we have P�M�t� ≥ y� = 2P�B�t� ≥ y�, for y ≥ 0.
Hence for any nondecreasing function � on �0�∞�, with ��0� = 0,

E��Mt� = 2E��B+
t ��

By an obvious weak convergence argument, the inequalities in (3.4) to (3.10)
are best possible as n → ∞.

(b) There is also a family of highly asymmetric distributions for which (3.5)
and (3.7) are asymptotically best possible, having some extensions to (3.8)
and (3.9). These distributions barely have first moments and their partial
sums converge to +∞ or −∞ in probability. To be specific, let X be a non-
constant mean zero random variable such that (i) E�X2 ∧ y2�/�yL�y�� → 0
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where L�y� = E�X�I��X� ≥ y�, and (ii) EX+I�X ≥ y�/E�X�I��X� ≥ y� → λ
where λ = 0 or 1. Then (i) implies that L�y� and E�Sn�/n are slowly varying
in y and in n, respectively. Combining (ii) and (i), we have

Sn

ES+
n

→P 1 − 2λ�

and the fact that whenever an’s satisfy nL�an�/an → 1, then an/E�Sn� → 1.
It follows that

EMn =
n∑

k=1

ES+
k

k
∼

n∑
k=1

L�ak�
2

∼ nL�an�
2

∼ ES+
n �

To approximate the right-hand side of (3.5) it suffices to consider the
case λ = 0. It follows that medSn/ES

+
n → 1 and there exist εn ↘ 0

such that P�Sn ≤ �1 − εn�medSn� → 0. Moreover, it can be shown that
E�Sn − medSn�+ = o�ES+

n �. Hence EMn ∼ ES+
n ∼ E�Sn − medSn�, showing

that (3.5) is best possible as n → ∞. For more detailed calculations, see
Theorem 5 and Corollary 4 of Klass and Teicher (1977).

(c) These results have certain optimality properties even for fixed n, as we
now illustrate for Theorem 3.4. For each integer k ≥ 1, there exist i.i.d. mean
zero two-point random variables Xk1�Xk2� � � � with E�Xk�j�+ ≡ 1 such that
for any n ≥ 1 and any convex nondecreasing function ��·� on �0�∞�,
�3�11� lim

k→∞
2E���Sk�n −medSk�n�+� −��0� −E���Mk�n −medSk�n�+� = 0�

To see this, let pk = 2−k, and

Xk�j =




1
1 − pk

� w.p. 1 − pk

− 1
pk

� w.p. pk�

Let kn equal first k ≥ 1� pk < 1 − 2−1/n. For k ≥ kn,

medSk�n = n

1 − pk

= ess supMk�n�

Therefore,

2���Sk�n − medSk�n�+� −��0� −���Mk�n − medSk�n�+�
≡ 2��0� −��0� −��0�
= 0 for all k ≥ kn�

which establishes our claim in trivial fashion.
Whenever ��x� = Lx �L > 0�, the inequality in (3.5) is also optimal for

each n ≥ 1 for the related family of random variables X̂k�j = −Xk�j. To verify
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this claim, put Ŝk�0 = M̂k�0 = 0, Ŝk� j = ∑j
i=1 X̂k� i and M̂k�j = max0≤i≤j Ŝk� i.

Note that

lim
k→∞

E�M̂k�n − med Ŝk�n�+ = n+ lim
k→∞

n∑
j=1

E�Ŝk� j�+
j

= n+ lim
k→∞

n∑
j=1

E�Sk�j�+
j

(since EŜk�j = 0�

= 2n
(

since
E�Sk�j�+

j
→ 1 as k → ∞

)
�

Moreover,

lim
k→∞

2E�Ŝk�n − med Ŝk�n�+

= lim
k→∞

�E�Ŝk�n − med Ŝk�n� +E�Ŝk�n − med Ŝk�n��

= lim
k→∞

E�Sk�n − medSk�n� + n

= lim
k→∞

�2E�Sk�n − medSk�n�+ −E�Sk�n − medSk�n� + n�

= lim
k→∞

�E�Mk�n − medSk�n�+ + 2n� [by (3.11)]

= 2n�

Therefore

�3�12� lim
k→∞

�2E�Ŝk�n − med Ŝk�n�+ −E�M̂k�n − med Ŝk�n�+� = 0�

4. Extension to nonzero means and unordered martingale differ-
ence sequences. We generalize the results of Section 3 in two ways.

Theorem 4.1. Let X1� � � �Xn be independent random variables with finite
but otherwise arbitrary means. Let sk = ESk, 0 ≤ k ≤ n and s∗n = max0≤k≤n sk.
Then for every y ∈ R, we have

�4�1� E�Mn − y�+ ≤ 2E�Sn − sn + s∗n − y�+

from which it follows that

�4�2� E�Mn ∨ y� ≤ E�Sn − sn + s∗n − y� + s∗n�

�4�3� E�Mn ∨ �s∗n − sn + medSn�� ≤ E�Sn − medSn� + s∗n

and for any real a,

�4�4� E���Mn − a�+� ≤ 2E���Sn − sn + s∗n − a�+� −��0��
where � is any nondecreasing convex function defined on �0�∞�.
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Proof. Since s∗n − sk ≥ 0,

E�Mn − y�+ ≤ E
[

max
0≤k≤n

�Sk + s∗n − sk� − y
]+

= E
[

max
0≤k≤n

�Sk − sk� − �y− s∗n�
]+

≤ 2E�Sn − sn + s∗n − y�+�
where we apply (3.4) to �Xk − EXk� 1 ≤ k ≤ n� in the last inequality. This
gives (4.1). ✷

Remark. Observe that E��Mn� ≤ 2E��S+
n � − ��0� whenever sn = s∗n,

which includes the case of independent random variables with nonnegative
means.

Applying (4.3) to �Xk� 1 ≤ k ≤ n� and �−Xk� 1 ≤ k ≤ n�, we deduce the
following.

Corollary 4.2. Let X1� � � � �Xn be independent random variables with fi-
nite but otherwise arbitrary means. Let sk = ESk, 0 ≤ k ≤ n. Then

�4�5� E
(

max
0≤k≤n

Sk − min
0≤k≤n

Sk

)
≤ 2E�Sn − medSn� + max

0≤k≤n
sk − min

0≤k≤n
sk�

A reexamination of (3.2) and (3.4) reveals that their proofs do not depend
on the full strength of our independence assumptions. What is needed, rather,
is that the increments following any stopping time be a martingale in the
forward direction and the reverse direction. To produce sequences with this
property we make the following definition.

Definition. Let d = �d1� d2� � � �� be a sequence of integrable random vari-
ables. It is said to be an unordered martingale difference sequence if for each
k ≥ 1 the following condition is satisfied: E�di � � 0

i � = 0 almost surely, where
� 0
k is the σ-field generated by all the di for i �= k.
The proofs of Theorems 3.1 and 3.4 carry over to show the following theo-

rem.

Theorem 4.3. Let d = �d1� d2� � � �� be an unordered martingale difference
sequence.

Let f0 = 0, fn = ∑n
k=1 dk for n ≥ 1. Then

�4�6� E
(

max
0≤k≤n

fk − y
)+

≤ 2E�fn − y�+� y ∈ R�

Consequently

�4�7� E
(

max
0≤k≤n

fk ∨ y
)
≤ E�fn − y��

�4�8� E
(

max
0≤k≤n

fk ∨ medfn

)
≤ E�fn − medfn�
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and for any real a,

�4�9� E�
(

max
0≤k≤n

�fk − a�+
)
≤ 2E���fn − a�+� −��0��

where � is any nondecreasing convex function defined on �0�∞�.

Corollary 4.4. Let f = �f1� f2� � � �� be an L1-bounded martingale. Sup-
pose that the martingale difference sequence of f is unordered. Then f is uni-
formly integrable.

Proof. Write f∗
n = sup1≤k≤n �fk� and put ��x� = x in (4.9). Then

Ef∗
n ≤ E

(
max
0≤k≤n

fk + max
0≤k≤n

�−fk�
)
≤ 2E�fn� ≤ 2�f�1�

Hence, by monotone convergence, E supk≥1 �fk� < ∞ and so f is uniformly
integrable. ✷

Remark. As an example of such a sequence, let dk = XkYk, where the
Xk’s are arbitrary random variables having finite means and the Yk’s are
mutually independent mean zero variates, independent of �Xj�.
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