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A BERRY-ESSEEN BOUND FOR FINITE POPULATION
STUDENT’S STATISTIC!

By M. BLOZNELIS

Vilnius University and Institute of Mathematics and Informatics

A general and precise Berry—Esseen bound is proved for the Studen-
tized mean based on N random observations drawn without replacement
from a finite population. The bound yields the optimal rate O(N~1/2) under
minimal conditions. If the Erdés—Rényi condition holds this bound implies
the asymptotic normality of Student’s statistic and the self-normalized
sum.

1. Introduction and results. Let {x} denote a sequence of real numbers
Xq,...,%, and let X;,..., Xy, N < n, denote random variables with values
in {x} such that X = {X,..., X5} represents a simple random sample of
size N drawn without replacement from {x}. We shall assume that E X; =0
and o2 =E X? > 0.

Let

t=t(X)=X/&

denote the Student statistic, where

N
X=NXX;+---+Xy) and 62=N"1>(X;,-X)>
i=1
Put t = 0 if 6 = 0. By the finite population central limit theorem (CLT)
[see Erdés and Rényi (1959)] for large N, the distribution of v/ Nt can be
approximated by a normal distribution. In this paper we estimate the rate of
the normal approximation. We construct a bound for

K

Sy = supiP{\/N_/qt(X) <x}—d(x)

where ®(x) denotes the standard normal distribution function,

p=N/n and ¢g=1- p.

THEOREM 1.1. There exists an absolute constant ¢ > 0 such that

K

1.1 13 —_—
( ) NS \/a m03’

Bs =E|X

Received August 1997; revised May 1999.

1Supported in part by the Alexander von Humboldt Foundation.

AMS 1991 subject classifications. Primary 62E20; secondary 60F05.

Key words and phrases. Berry—Esseen bound, Student statistic, central limit theorem, finite
population, self-normalized sum.

2089



2090 M. BLOZNELIS

A similar Berry—Esseen bound but for the finite population sample mean
was proved by Hoglund (1978). The estimate of Theorem 1.1 holds for any fixed
sample size N and population size n. If 83/0® is bounded and q is bounded
away from 0 as N — oo and n — oo, then (1.1) establishes a Berry—Esseen
bound O(N~'2). Note that the factor 1/,/q in the right-hand side of (1.1)
cannot be removed or replaced by ¢* with @ > —1/2 [cf. one-term Edgeworth
expansion for P{,/N/qt(X) < x} given in Babu and Singh (1985)].

Write w = ./n pq.
THEOREM 1.2. There exists an absolute constant ¢ > 0 such that
c c
(1.2) 6N = ;EX% l]\X1|>a'w+ l§|)(1|3 ”\X1|§O'LU'

wod

Theorems 1.1 and 1.2 can be considered as a particular extension to the case
of simple random sampling of Berry—Esseen bounds for Student’s statistic
based on i.i.d. observations, proved recently by Bentkus and Goétze (1996).
Indeed, the case where n — oo and N is fixed corresponds to the i.i.d. situation
and in this way we obtain Theorems 1.1 and 1.2 of Bentkus and Gétze (1996) as
corollaries of Theorems 1.1 and 1.2. It could be mentioned that our techniques
are related to those of Bentkus and Gotze (1996), Bloznelis and Gotze (1997)
and Hoglund (1978).

Next we apply Theorem 1.2 to prove the CLT for the Studentized mean.
Consider a sequence of populations {x}, = {x,1,..., %, ,} such that >, x,,; =
0, for every n = 2,3,.... Let X,y = {X,1,-.., X, 5} denote a sample of
size¢ N = N, drawn without replacement from {x},. Write 02 = E X2, and
assume that o2 > 0, for every n = 2,3, .... Write p, = N,/n and q,, = 1— p,,.
Erdés and Rényi (1959) proved that if
(1.3) Ve > 0, lim o, °E X%1U|xn1\zwnwn =0, w2 =np,q,

n—oo

then the sequence S, = S({x},) = (X,,; +...+ X, n,)/(0,w,) converges in
distribution to the standard normal distribution as n — oco. Note that (1.3)
implies N,, — oo as n — oo. Hajek (1960) showed that the Erd6s—Rényi con-
dition (1.3) is also necessary for the asymptotic normality of S,. One conse-
quence of Theorem 1.2 is that this condition is sufficient also for the asymptotic
normality of the Studentized mean.

COROLLARY 1.3. Assume that (1.3) holds. Then \/N,/q, t(X, y ) converges
in distribution to the standard normal distribution.

Maybe more interesting is the fact that it may happen that /N, /q,t(X, N,)
is asymptotically standard normal when S, does not. Such a situation is ex-
hibited in the following example.

ExamMpPLE. Let {x}, be a sequence of populations as above. Assume that
this sequence satisfies (1.3) and that o, = 1. Construct a new sequence of
populations {x}, , by putting {x},,, = {x}, U{—n, n}. Choose the sequence
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N, so that N, p, — 0 and let X, n, denote a simple random sample of size
N,, drawn from the population {x},. It is easy to see that in this case (1.3)
fails and S({x},) converges to a degenerate distribution. Furthermore, since

P{{-n, n} CX,on,,} <2N,2D,,2 > 0,

the limiting behavior (as n — oc0) of distributions of t(X, 5 ) and (X0 Npo)
is the same, that is, both are asymptotically standard normal.

REMARK. All the results stated above remain valid if instead of the stan-
dardized Student statistic +/ Nt one considers the self-normalized sums
Xi+--+ Xy
\/ X244+ X%

In particular, Theorems 1.1 and 1.2 hold with 8 replaced by &'y, where

— d(x)|.

X X
o= sup [ L4+ Xy

\/X2 +X2

In contrast to the case of independent and identically distributed observa-
tions, where the normal approximation of the Studentized mean and related
statistics was studied by a number of authors [see, e.g. Chung (1946), Efron
(1969), Logan, Mallows, Rice and Shepp (1973), Chibisov (1980), Helmers and
van Zwet (1982), van Zwet (1984), Slavova (1985), Bhattacharya and Ghosh
(1978), Hall (1988), Griffin and Mason (1991), Sharakhmetov (1995), Bentkus
and Gotze (1996), Bentkus, Bloznelis and Gotze (1996), Gine, Gotze and
Mason (1997), Bentkus, Gotze and van Zwet (1997), Putter and van Zwet
(1998) and so on] there are only a few results concerned with the rate of the
normal approximation of finite population Student’s statistic. Praskova (1989)
constructed a Berry—Esseen bound for the Studentized mean based on the ob-
servations drawn without replacement from a finite set of random variables,
assuming that each of them is of zero mean. Rao and Zhao (1994) proved the
Berry—Esseen bound,

¢ E|X,* |4
oy < —
VIVN ot

which establishes the rate O(N~1/2) but involves the fourth moment. Babu
and Singh (1985) studied a higher order asymptotics of the distribution func-
tion of v/ N t. Berry—Esseen bounds for some other nonlinear finite population
statistics were obtained by Zhao and Chen (1990), Kokic and Weber (1990)
and, as a particular case of the rate of convergence of general multivariate
sampling statistics, by Bolthausen and Gotze (1993).
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2. Proofs. This section is organized as follows. In the beginning we for-
mulate a general result; see Theorem 2.1 below. Then we give proofs of The-
orems 1.1 and 1.2 and Corollary 1.3, which are simple consequences of Theo-
rem 2.1. The proof of Theorem 2.1, is postponed to the end of the section.

Define the number a > 0 by the truncated second moment equation,

a® = sup{b: E X3ly2p,2 > b}.
It is easy to check that a < o and a is the largest solution of the equation
a’=E X%I]le‘faw.
In the case where a is positive we write
y=a202-1, a=uw?EY,, u=w?E|Y,? Y,= a_lw_leﬂ‘X”ﬁaw

and note that |Y,| < 1, EY? = w2 and N"'/2 < w™! < pu, by Lyapunov’s
inequality (EY?)? < (E|Y,|?)%.

THEOREM 2.1. There exists an absolute constant ¢ > 0 such that
(2.1) Sy < cw’P{|X|>aw}+c(Z+vl,.,), R =a+pu,

whenever a > 0.
Theorem 1.1 is an immediate consequence of Theorem 1.2.

ProOF OF THEOREM 1.2. We may and shall assume without loss of gener-
ality that o = 1. This implies a < 1.

In the case where a? > 1/4 we derive (1.2) from (2.1). Introduce the events
A ={|X| > aw}, Ay = {aw < |X | < w} and A3 = {|X| > w}. Combining
the identity I, = [,, +1[,, (here [, denotes the indicator function of the event
A) and Chebyshev’s inequality, we get

1 1
P{|X,| > aw}=El, +EIl, < WE|X1|3I]A2 + EExiuAg,
a’y = 0% —a? = EX3l, =EX]l, +EX}l,

1 3 2
= SEX P, +EXG,,

awEY | = [EX [ | < E[X Iy, + E|X |,
1

1
a2w2E|X1|3I]A2 + EEX%I]AS.

In the last step we used EX; = 0. Using these inequalities we obtain bounds
for P{| X| > aw}, a, y and w. Substitution of these bounds in the right-hand
side of (2.1) yields (1.2).

In the case where a? < 1/4 we have EX%”\Xﬂgw/z < 1/4 and, therefore,

E X%I]‘X > 3/4. Furthermore,

1|>w/2 =

3/4 <E X3lx |ou2 < 20 B | X Pl o x, <0 + E X3x 0
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Since 6 < 1, we obtain

Sy <1< SwE|X Pl,0 x, <0+ sE X3l x

1>w>

thus completing the proof of Theorem 1.2. O

PrOOF OF COROLLARY 1.3. We may and shall assume without loss of gen-
erality that o, = 1, forn = 2,3, ....

Introduce the events A,; = {|X,,1| > w,} and A,, = {| X 1| < w, }. In view
of Theorem 1.2 it suffices to show that for every ¢ > 0,

(2.2) lim SUP(EX?H”AM + w:LlE|Xn1|3”An2) <e

Let us show (2.2). Given ¢ > 0, introduce the events A, 3 = {| X ,,1| > ew, } and
A,y ={|X,1] < ew,}. We have

EX2.0,  +w,'E|X, Pl <EX2,l, +eEX2 1, <EX2l, +e.
Now (2.2) follows from (1.3). O

It remains to prove Theorem 2.1. We shall assume that a > 0 in what
follows. Before the proof we introduce some notation. In what follows ¢, cy, ...
denote generic absolute constants. By c(ay, @y, ...) we denote constants which
may depend only on the parameters a;, ay,.... We write A <« Bif A <c¢B.
The expression exp{ix} is abbreviated by e{x}.

Fork=1,2,..., write Q, ={1,..., k}. Givenasum S = s;+---+s,, denote
S =8 —s;. Given A C O, write Sy =3 jcas;.

Let 0, 65, ... denote independent random variables uniformly distributed in
[0, 1] and independent of all other random variables considered. For a complex
valued smooth function 4 we use the Taylor expansion

n+1

h(x) = h(0) + h'(0)x + - -+ + h(”)(O)% +E, R (0,2)(1 - 6,)" xn’ :
Here E, denotes the conditional expectation given all the random variables
but 6;. In particular, we have the mean value formula, A(x) — A(0) =
Ey h'(01x)x.

Let g be a three-times differentiable real function with bounded derivatives
such that

g(x)=x"Y2 for |x—1/<c¢; and |g(x)—1|<¢; forxeR.

The (small) constant 0 < ¢; < 1 will be specified later.

Let X* = (X4, ..., X,) denote a random permutation uniformly distributed
over permutations of the sequence {xi,...,x,}. In particular, X,,..., Xy
represents a simple random sample of size N drawn without replacement
from {x}. Let v = (v{,...,v,) denote a sequence of independent Bernoulli
random variables independent of X* and having probabilities

P{Vizl}zp, P{ViZO}Zq, 1§l§n
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.....

the conditional expectation given all the random variables, but v; , ..., v;, (re-
spectively, X; ,..., X; ).
Write

1 .
Yi:EXimXi‘Saw’ ZLZY?—EY?, 1§l§n,

Zi’ Y/ = Z Yi’ Z/ = Z Zi7
1 i=N+1 i=N+1

M=

N
23 y_yvy, z=
i=1

~
Il

S=(Y -EY)g(l+qZ2), S =—(Y -EY)g(1-qZ2),
and note that
EZ? < E|Z[? < E|Y* = w2u,

(2.4)
E|Y; —-EY,? <8E|Y;|? = 8w 2pu.
Below we shall use the following simple inequality. Given {i{,...,i,} C Q,
and j € O, \ {iy,..., i} let X7 be a measurable function of X ;. We have
(2.5) EC ) X < . CE|X5|,  fora>0.

We shall apply this inequality to random variables Y ;, Z;,Y ; — EY ;, and so
on.

Given a random variable W, write Ay, = sup, |P{W < x} — ®(x)|. Let W’
be a random variable defined on the same probability space as W. Then

(2.6) Ay < Ay + emax |®'(x)| + P{|{W — W'| > &} Ve > 0,

@.7) Ay — Ay | < P{|W 2 W'[}.

The proof of Theorem 2.1 consists of two steps. In the first step (see Lemma
2.1) wereplace X, ..., Xy by truncated random variables Y, ..., Y 5 and re-
place the statistic \/ N/qtby S (respectively, by S’) in the case where p < g (re-
spectively, p > q); see (2.3). Furthermore, the Berry—Esseen smoothing lemma
reduces the problem of estimation | P{S < x} — ®(x)| to that of the estimation
the difference |E exp{itS} — exp{—¢2/2}|. In the second step we estimate this
difference by means of expansions. For p > g, we estimate |P{S’' < x} — ®(x)|
in much the same way.

LEMMA 2.1. Assume that a > 0 and N > 2. Then

(2 8) aNiAsﬂqu+AS/ﬂp>q+Ce@1,

' Py = w?P{|X| > aw} +a+p+yl,,.

PROOF. We may and shall assume that o« < 1 and u < 1. Otherwise (2.8)
follows from the inequality 6, < 1.

Let us prove (2.8) in the case where p < g, that is, 1/2 < q. Introduce the
statistic S = Yg(1+ qZ — qY%2/N) based on the sample Y = (Y;,..., Y ).
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Since \/N/qt(X)=,/N/qt(Y) on the event A; = {X=awY} and /N/qt(Y) =
Son Ay, ={q|Z —Y?/N| < ¢}, we have
P{/N/qt(X) # S} < 1-P{A; N A}
<1-P{A;}+1-P{A,} < #,.

(2.9)

Indeed, 1 — P{A;} < NP{|X,| > aw} < 2w?*P{|X,| > aw} and

1-P{A,} <Plz|> 21 1P ¥ _oa < cE|Z]P? + SEY? «
2 = 2 N 2~ N H

In the last step we used the inequalities
(2.10) EY? <e, E|ZP?<cu

and N-2 < w=! < u. To prove (2.10) we combine Hoeffding’s (1963) Theo-
rem 4 and the Marcinkiewicz—Zygmund inequality. It follows from (2.9) and
(2.7) that

(2.11) 16y — Ag| < %;.

Decompose S = S + R, + Ry, where R; = g(1+ qZ)EY and R, = S —
Y g(1+ qZ) satisfy

IR/ < NEY,|(14¢;)<4a and |R,| <c|Y?N71,
by the mean value theorem. Fix ¢ = 5a + N~1/2 and note that
(2.12) P{S—S|>¢&} <P{|Ry| > N2} < N"V2E|YP <« N"V2 < pu.

Here we used the inequality E|Y|? < ¢, which is proved in much the same
way as (2.10). Finally, (2.6) applied to S and S in combination with (2.12) and
the simple bound max, |®'(x)| < ¢ implies Ag < Ag + ca + cu. This inequality
together with (2.11) yields (2.8), for p < q.

Let us prove (2.8) in the case where p > g. We may and shall assume that
2y < ¢1/2. Otherwise, (2.8) follows from the inequalities 6 <1 < 7.

It follows from the identities >7 ; X; = 0 and Y. ; X? = no? that
n \2 n
> X?—(iz) where X' = ) X,.

i=N+1 i=N+1

- =X o2 1
X=_"_ 2= _
N 775 N

Therefore, on the event A3 = {(Xy,1,-.., X,) =aw(¥Y yi1,-.., Y ,)} we have
VN/qt(X) = -Y'(1-qZ + R3)™"*  where Ry=v/p - qN '(Y')*.

Furthermore, on the event A, = {q|Z’ + (Y'")?/N| < ¢;/2} we have —Y'(1 —
qZ — Ry)" V2 =S, where S’ = —Y'g(1 — qZ' + R3). Hence, \/N/qt(X) = S’
on the event A;N A,. It is easy to show [cf. (2.9)] that 1 - P{A; N A} < ;.
Therefore, by (2.7), |6y — Ag| < #;. The remaining part of the proof is much
the same as that of the case where p < q. O
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PROOF OF THEOREM 2.1. By Lemma 2.1, it suffices to show Agl,., < #
and Agl,., < #. We give the proof of the first inequality only. The proof of
the second inequality is much the same.

We shall assume that p < 1/2 < q in what follows and show that Ag <« #.
We may and shall assume that for a small constant c,,

(2.13) a < Cg, Mm < Cq.

Indeed, if at least one of these inequalities fails we obtain Ag <1 « Z#.
Denote

() =Ee{tS},  y(t)=Ee{t(Y —EY)},
$,.(t) = exp{—t2r?/2}, r>0.

Given two complex valued functions f and h, write

Ig.o(f, h) = t| 71 F () — h(t)\dt, d=>0.
walfs = [  WCN@ =Rl e>dz

The Berry—Esseen smoothing inequality [see Feller (1971), page 538] yields
(2.14) As < Ty, d1) + H Y, H = c3buq’.
Here we denote

b2 =w?’E(Y, -EY,)?=1-2w? wo = w?E|Y, —EY 3.

The (small) constant c; will be specified later. Since u, < w and, by (2.13),
b2 < ¢, we have H™! < #. It remains to show I, (¢, ¢1) < #. Write

Lo, my(@, 1) < Tio, (e, ) + Ljo, iy (&, b6) + Ljo, (Do D1)-

Clearly, Ij. gry(dp, 1) < (1 — %) < #, by (2.13). It follows from Hoglund
[(1978), formula (8)] that I o, z1(¢, ¢p) K b~3u,, provided that c; is sufficiently
small. By (2.13), b2 u, < wo < u. Therefore, it remains to bound Lo, 1y, ).
We split I1o, g)(@, ¥) = Ljo,c,)(®, ¥) + 11, my(®, ) and estimate the summands
separately.

Let us show

(2.15) L, m(e, ) < 2.

To this aim we represent the characteristic functions ¢ and ¢ in Erdos—
Rényi (1959) form; see (2.16) below. Write

TZZTia QZZQ;', SZZSia
i=1 i=1

iz
T;=(Y,-EY,)(v — p), Q;, =qZ;(vi — p), S; =w '(v; — p).
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We have

o= /\/#w Ee{tTg(1+ Q)+ sS}ds,
(2.16) il
¥ = )\/ Ee{tT + sS} ds,

with A7! = 27wP{S = 0}. Hoglund (1978) showed that 27127 < 71 <
(2m)Y/2. Given a number L > 0 and a complex valued bivariate function f,
write [ < L if

f |t|7 | f (s, t)|dsdt <« L where 2 ={(s,t): ¢, < |t| < H, |s| < mw}.

g)

Given two complex valued functions f, h, write f ~ hif f — h < A.
Introduce the integer valued function

(217 m=m(s,t)~2 \cynutInu, u=t+s2 (s, t) e 2.

A simple calculation shows that 10 < m(s, t) < n/2, for (s, t) € 2, provided
that c, is sufficiently large. Write z := mpqw 2 = m/n < v 'Inu. We shall
often use the following fact. For ay, ay, a3, ay > 0 satisfying a3 + a4 > a7 +
ay +1/2,

(2)1(s?)22%u™" < c(ay, ag, ag, ay).
Denote
A=, B=0,\Q,, 8o = 8&(1+ Q@p), g1 =81+ Qp).
Split
T'=T4+Tp, Q=Qa+Qp
TyQa=Ds+U,, TpQp=Dp+Usp,

(2.18)

where we denote

jeG i, jeG,i#]j

Introduce the random variables

szvi;—271tTij, UthTJg0+SSJ,
n n n

V=> v, V*=Zv’;, V*=Zv;,
Jj=1 Jj=1 Jj=1
Hg=|Eg e{Vg}, ¢ = |Eg e{Vg},

Hy=[Bg e{Vi}l.  GCQ,

Several useful inequalities to be used below are collected in the next two
lemmas.
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LEMMA 2.2. Assume that (2.13) holds. We have

(2.20) Hu <« 1, H?E(Y, -EY,)? <,
(2.21) EU% « 2%u, E|U,Q.| < 2°pu,
(2.22) E[TsQ%* <zp,  E|TpQ4*” < zp,
| |3/4 | N
(2.23) Ei > TjQi’ <zp, E %TijQEj)l < 2232,
Jje

JjeA
Forany G C Q, and i1,149,15 € Q, \ G, we have
(2.24) Elv2B)|T " «e, 0<r<6.

LEMMA 2.3. Let G C Q, and |G| = m/4. There exists a small constant
¢, > 0 such that the inequality cy, ¢y, c5, c5* < c, implies

2.25) ECVHZ <4710 ECD(HE? <u™0,  ECI(HE)? <u™0,
2.26) EC“VH, <u®,  E“IHL <u®  ECIHL <u™,

forany i, j € O\ G. Furthermore, Hj, < 5(1;/2, {a = Tlreg {p, where {;, are given
by (3.7).

These lemmas are proved in Section 3. We shall assume that cq, cg, ¢c5 and
c; ! are choosen small enough so that (2.25) and (2.26) hold.
In view of the inequality A < 2271, (2.15) follows from

2.27) f~f* where f =Ee{tTg(1+ Q)+sS}, f*=Ee{tT+sS}.
Let us prove (2.27). The proof consists of the following steps:
(2.28) [~y f1=Ee{W}, Wi =V"+tTQa8:,
(2.29)  f1~ 2 fo=Ee{Wy;+tTpQ481}, Wy=Va+ Vg,
2.30) fo~fs  fa=Ee{V,+ Vil
(231 fs~f4 fa=Ee{V'},
(2.32)  fy4~ s fs=Ee{Vy+Vg},
(2.33) fs~ 1"
ProOF OF (2.28). Expanding in powers of @4, we get g(1+ Q) = g¢ +

Qa8 + Q4r, where r is a bounded function of @4, @p. Substituting this
expansion we obtain tTg(1+ Q) + sS = W, + tTQ%r and therefore,

(2.34) |f = f1l < Ele{tTQ%r} —1I.
By (218), TQ2 = Rl + R2 + R3, where R]_ = TBQ?A’ R2 = UAQA and R3 =

R3 = R3; + Ry, Ry =3 TJ'QJQ(AJ)> Ryp= ) TjQ?’-
JjeA JjeA
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Now, applying the inequality
(2.35) le{x} — 1] < 2|x|", 0<7<1, x € R,
several times, with 7 = 1 and 7 = 3/4, we get from (2.34),
|f — F1l < |t|(E|Ry| +E|Rg4 ) + [¢|/*(E|Ry |*/* + E|Rg,*'*)
< (232 + 23232 + ¢ 2,
by Lemma 2.2. We obtain |f — f;| < #, thus proving (2.28). O
PrROOF OF (2.29). Write TQ 4 = TpQ4 + D4 + U4 [see (2.18)] and expand

g1=8(1+Qp)=-2"1+Qprtoget Dyg, =—-2"'D, + D,Qpr, where r is
a bounded function of @ . Now we have

Wi=Wo+tTpQ48, + wy + wy, wy =tU, 81, wy =tD,4Qpr.

First, we shall show f; ~ f¢, where fs = Ee{Wy+tT5Q 4 g; +w;}. By (2.35),
|f1— fs] < E|lwy|. Let us show E|w,| < #. By the symmetry,

(2.36) Ejw,| < m[t|E|T1 Q1 Q5| = m[{|EIT1Q:|E™|Qp|.
Since v; — p, 1 < j < n, are independent centered random variables, we have

EVQ% =Y EVQ%=|B|pgE"Z2,
JjeB

by the symmetry. Furthermore, combining (2.5) and (2.4) we obtain E(I)QQB <
w and, therefore, EV|Qp| « w/2. Substituting this bound in (2.36) and es-

timating E|T,Q,| <« pqE|Y|? we obtain E|lw,| < |t|zu®? < [t|Y2zu < A.
In the last step we used the inequality |¢|u <« 1, which holds for |¢| < H;
see (2.20).

Let us show fg ~ 9. Expanding the exponent in powers of iw;, we get

fe=Ffa+fr+R,  fr=Ee{W,+tTpQ,8 }iw, with|R| < ’EUY.
By (2.21), |R| « t?2%u < #. Therefore, f, ~ fo + f7. Next we show
(2.37) f1~7fs,  fs=Ee{Ws}tiw;.
An application of (2.35) with 7 = 3/4 gives

7= fsl < [tEIT5Qa"*|U 4| < [t|"*(EIT5Q47*)V*(EU%)"2,

by Cauchy—Schwarz. Invoking inequalities of Lemma 2.2, we obtain |f;—fg| <
|¢|77423/2u < # and thus (2.37) follows.
We complete the proof of (2.29) by showing fg < #. By the symmetry,

(2.38) fs =it(m® —m)fy, fo=Ee{W,y}T Q8.
Recall that Wy = V 4, + V3 and write
fo=Ee{V, + Vi}e{v; +v:}T1 Q281 A" = A\{1,2}.
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Expanding
e{vy +va} =(1+vyry) e{vy}
=e{vy} +vy7r1(1+ vary), r;= iEej e{0;v;},

and using the fact that the conditional expectation of T'i(respectively, @)
given all the random variables, but v;(respectively, v,) is zero, we obtain

fo=Ee{Va + Vi}Rg, R =T, Qv var7s.
Since |g;| < ¢ we can write
fol <E|R|H, < EREM?H,,,  R=T,Q,0,0,.

Combining the inequality EY2YH A < u”® (see Lemma 2.3) and the sim-
ple bound E|R| « p?q?w*uu, we obtain |fy| « n~2u~*u. Substituting this
inequality in (2.38) we get fg < #, thus completing the proof of (2.29). O

PROOF OF (2.30). Split A =A; UAy,UA;3sothat A,NA; =@, fori# j,
and |Aj|~m/3 and je€ A}, for j =1,2,3. Write

tTpQ 81 = w1 + wy + ws, w;=tTpQa 81, j=1,2,3
and denote W3 = W, + wy + ws. First, we show
239 fa~ [+ f10=Ee{Ws}, fu=Ee{Ws}iw,.
Expanding the exponent in fy = Ee{W3 + w;} in powers of iw,, we obtain
fo=Fw+ut o f12 = Ee{W3lwiry,

where r; is a bounded function of w;.
Let us show [, < #. Expanding

e{wy + w3} = (1 + wyry) e{ws} = e{ws} + wors(1 + wsry),
where r; is a bounded function of w j, for j = 2, 3, we obtain
fi2="rf121+ F122 + f1235 fio1 =Ee{Wy + wy}wir,,
f12.2 =Ee{W2}w%w2r1r2, f123= Ee{Wg}w§w2w3r1r2r3.
We shall show that f1, ; < #, for j =1, 2, 3. Clearly,
|f121] < EHAZW%, [f12.2] < EHAgw%|wz|> |123] < Ew}lwawy|.

Using the symmetry and the fact that conditionally, given X*, the random
variables @ ;, j € (), are uncorrelated, we construct bounds for f15;, j =
1,2, 3. We have

123 < 'ET3Q%,1Q4, Q4,1 = t' A [ETEQ1|Q4,Q 4, < *m’ETLQ1 Q2 Qs).
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Combining the bound E(I’Z’S)T% < c [see (2.24)] and the inequalities
EQI|Q.Qs| < P°¢’EZY|Z,Zs| < p**(B|Z,|*)(E|Zo|)(E|Zs)) < p’q’w°n
[here we use (2.4) and (2.5)] we obtain f55 < t*2%u < #. Similarly,
12| < [tPm*EH 5 |T5° Q1| Qs
< |tPm? P P2 Zo ECD H o | T,
By Holder’s inequality, (2.25) and (2.24),
(2.41) ECPH, Ty < (BHPHE )VAESITEHY < u®.

(2.40)

Substituting (2.41) in (2.40) and then using the inequalities
EZ3|Z,| < BZIE| Z,| < w™n,
[here we apply (2.5) and (2.4)] we obtain f5, < |t[2u"5u < #. Finally,
|F121] < £ AL [EH T} Q% < £?mpgEZIEV H y T,

Combining the inequalities E(l)HA3T23 < u7® [ef (2.41)] and EZ? <« w2
[see (2.4)] we obtain |f19 1| < t?u%zu < #, thus completing the proof of (2.39).
Let us show

f11 < # where
(2.42) fu1=Ee{Ws}tiw,,
Ws=Va+ Vi +w,+ ws.
By the symmetry, f{; = it|A;|[Ee{W3}T35,Q,. Expanding the exponent in

powers iv; and using the fact that the conditional expectation of @, given all
the random variables but v; is zero, we get

f11 =%t/ A|Ee{V 4 + Vi + wy + ws}Tpg1Qru171, A'=A\{1},
where r; is a bounded function of v,. Clearly,
|1l < [t{mE|Q v, Tp|H 5 < |t|mE|Q161|E(1)|TB|HA/1, A=A\ {1}

Combining the inequality EVH A, |T 5| < u™® [cf. (2.41)] and the simple bound
E[Q,0:| < pq(|t| + [s|)w™?n we obtain |f1;| < (|| + |s))u~>w < p, thus prov-
ing (2.42).

Let us show f1y ~ f3. Write wy := wy + w3. We have W3 =V 4 + V3 + wy.
Expanding the exponent in f,, in powers of iw,, we obtain

fi0=Fs+f13+f1a fis =Ee{V,+Vi}iw,, fa=Ee{V,+Vi}wir,

where r is a bounded function of w,.The proof of 5 < # (respectively, f14 <
#) is much the same as that of f;; < # (respectively, f191 < #) above.
Therefore, 19 ~ f3. Now, invoking (2.39) and (2.42), we obtain (2.30). O
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PrOOF OF (2.31). Split A = A; U A, so that
(243) A NAy=C and |Ajl~m/2 and jeA,for j=1,2

Write Dy = Dy + Dy, [see (2.19)] and denote w; = —tDAjZ‘l, for j =1,2.
We have 3 = Ee{V* + w; + ws}. Expanding the exponent in powers of iw;
and iw, we get

fa=Fs+t 15+ 16 fi5 =Ee{V'}wry, f16 =Ee{V* +w;}wyry,
where r; is a bounded function of w;, j = 1, 2. By the symmetry,

F15| < [HE[D s, |Hy, < [t]|A[E|T;Qq|Hy,.

Similarly, |f 1] < |¢]|A2[E|T3@;|H 4,. Combining the inequalities BV H? <
u™® and E®H, <« u~® [see Lemma 2.3] and the simple bound E|T;Q;| <
pqw~2u, we obtain f15 < #, and f,5 < #, thus proving (2.31). O

PROOF OF (2.32). Split V* =V + Vi and V}; =V} + V7 , where A; U
Ay = A satisfy (2.43). In order to prove (2.32) we shall show

(2.44) fa~ fir fir =Ee{W,}, Wy=Viy +Vi,us

and f17 ~ f5.
Let us prove (2.44). Expanding g, = g(1+ Q5) = 1 — Qp/2 + Q%r we get

*Al =V:41+wl+U)2 with w1=—tTA1QB/2, wzthAleBr,
where r is a bounded function of @z. Furthermore, expanding the exponent
in fy, =Ee{W, + w; + wy} and in powers of iw, and iw; to obtain

fa=fi+ s+ 19+ 20, f1s = Ee{W }iw,,
19 =Ee{W }iwir,, foo =Ee{W4+ w;}iwyry,

where r; is a bounded function of w;, j =1, 2.

To show f19 < # we use symmetry, and the fact that conditionally, given
all the random variables but v;, i € B, the random variables Q,, i € B are
uncorrelated,

|F19l < PEQ}TY HY < t*|B|pgEZ2T% 7.

Combining the bounds EZ2 « w2y and E™T% ¢}/ « u™ [cf. (2.41), (3.8),
(3.9)] we obtain f19 < #.The proof of fyy < # is much the same.

Let us show f15 < #. By the symmetry,

f1s=—27"it|A,||BEe{W}T:Q,.

Write V7 = V7, +vj, where A} = A\ {1} and V7 =V p + v, where
B'= B\ {n}. Expanding g) = g(1+ @p + Q,) = 8(1+ @p) + Q,r,, we get

a,u = W5+ ws, where

Ws=1tTa,up8(1+ Qp)+sSa,up and wz=v, +tT 4,0 Qnls-
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Here r, is a bounded function of @,. We have W, = Vj%i + W5+ ] +ws3 and
therefore,
f1s = —27"it| A || BEe{V), + W; + v] + w3}T1Q,.

Expanding the exponent in powers of iv] and then in powers of iw; and using
the fact that the conditional expectation of T'; (respectively, @,) given all the
random variables, but v, (respectively, v,) is zero, we get

f1s =27'it|A;|| BIE e{Viy, + W5}T 101 Q,wsrs,
where rj is a bounded function of v] and wj. Clearly,
|f1sl < [¢]|A1[|BIE|T v} @, |Hy, (14T 4, )(|0n] + [tQn]).

Combining the bound E™(1 + |T 4 yp
simple inequality

JHy, < u™® [see (2.41)] and the

E|T1v1Q,|(15,] + [tQ,]) < p’¢*uw™*p

we obtain f;3 < #, thus completing the proof of (2.44). The proof of f1; ~ f5
is much the same. We arrive at (2.32). O

Proor or (2.33). Expanding

80=8(1+Qp)=1+Qpg(Qp), g2(Qp) =Ey g'(1+6,Qp),
we obtain Vi = V3 +tTgQpgy(Qp). Split T g = Up + Dy and write

B=Vp+w +wy, w; =tUpg2(Qp), wy =tDpga(Qp).
We have f5 = Ee{V*+ w; + wy}. Expanding in powers of iw; and iw, we get
f5=1"+Fo1+ oo+ fos for=Ee{V'}iw,,
fa2=Ee{V3wir, fos =Ee{V'+w twyry,

where r; is a bounded function of w;, j =1, 2.

Let us show f9s < # and fy5 < #. Using the fact that given X*, the
random variables T; @ ; and T; Q; , for iy # ji, iy # j,, are conditionally
uncorrelated unless the sets {i;, j;} and {iy, jo} coincide, we get

(245) EgU%= Y EpZ, Z, ;=T;Q"+T,Q,T,Q,.
i, jeB, i#j
Therefore, by the symmetry,
|fool < PEURHY = ¢*(|B* — |B)EZ,, ,_1H}.
Furthermore,
|fos| < |t|E[Dg|HY < [t||BIE|T, Q,|HY.

Combining the bound E(I’Z)H;\ < u~® [see (2.26)] and the inequalities
E|T,Q,| < pqw 2w and E|Z| « p%q*w *u, we obtain fey < |tlu®u < 2
and f23 < t2u75/.1/ < A.
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We complete the proof of (2.33) by showing f9; < #. By the symmetry,

(2.46) fa1 = (IBI* = |B)itf o, foa=Ee{V}T,Q, 18:(Qp).
Write Q= Qp + @,,, B = B\ {n}. Expanding g, in powers of @, we get
fos = fo5 + Ry, fos =Ee{V*}T,Q,_18:(Qp),

Combining (2.26) and the simple bound E|T, @, Q,,_;| < p?q*w*u, we obtain
|R| <« n 2u"%p.

Expanding the exponent in powers of v} and using the fact that the con-
ditional expectation of T', given all the random variables, but v, is zero, we
obtain

fo5 = fa6s fos = Ee{V;),H}Tn Qn_182(Q@p v,y

where 7} is a bounded function of v;.

Write B” = B’ \ {n — 1}. Expanding g, in powers of @,_; we obtain fo5 =
for + Ry, where fo; is defined in the same way as foq, but with g5,(@p)
replaced by g4(Qp ) and

|Ry| < E|T,v,| Q4 1 Hy < u™([t] + [s)n?p.

In the last inequality we apply (2.26) and the simple bound E|T v} | Q?L_l <
(1t + [s]) p*Pw™*p.

Finally, expanding the exponent in f,; in powers of v} _; and using the fact
that the conditional expectation of @,_; given all the random variables but
v,_; 1s zero, we obtain

(2.47) |Forl < EIT,03Q, 10} 1| HY < (] + [s])un 2y,

by (2.26) and the simple bound E|T,v% Q,_1v:_;| < (|t| + |s])? p?q?wu.

It follows from (2.47) and the bounds for R;, R, that |f4| < u™*n"2u. Now,
by (2.46), 91 < #, we obtain (2.33) and thus complete the proof of (2.27).

We arrive at (2.15). The proof of the inequality I},.,) < # is similar to the
proof of (2.15), but simpler. We have Iy, ) < # and this completes the proof
of the theorem. O

3. Auxiliary inequalities. Denote, for brevity, Y; = Y; —EY ;, 1 <
J=<n.

PrOOF OF LEMMA 2.2. Let us prove (2.20). It follows from the inequalities
E|Y,|? <4E|Y;]? +4|EY,|? and E|Y;? > (E|Y}|?)%2 = w303 that u < 4pu, +
dw=*a® and py > w b, Therefore, ug'u < 4+ 4w3b~3a® and py2E|Y}? <
b~*. Finally, by (2.13),

Hup =csb’uylu <c and HZE|Y3? = c2b'uy BV < 2.
Let us prove (2.21). We have [see (2.45)]
(3.1) EU% = (AP - JADE(T}Q3 + T1Q: T Q).
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Combining the bounds
(32 E(Y)’<w?  EZ}<EBIZ[”<w’n  EYiZ|<w’p
and (2.5) we obtain
ET1Q} = p’q"E(Y{)?Z3 < n”?p,
E|T:Q,T5Q:| = p*¢*E|Y Z,Y5Z,| < n 22

These inequalities in combination with (3.1) and (2.13) give EU 2A < 2.

The second inequality in (2.21) follows from EUZ <« 2%u and EQ?4 < zu,
by Cauchy—Schwarz. To prove EQ%\ &« zw we use the identity E,Q% =
Y ica E4Q%, the symmetry and (3.2),

(3.3) EQ4=EE, Q%) =|AIEQ? = mpg®EZ} <« mpquw 2 = zp.

Let us prove (2.22). An application of Marcinkiewicz—Zygmund inequality con-
ditionally given all the random variables, but v;, i € A, gives E4|Q4]*? <«
> ica E4|Q;|%2. Therefore, by the symmetry,

E|T5*Q4"* < |AIE|Q,[?| T 5" « mpqE|Z,[**ED|Tg**.

Finally, combining (2.24) and (3.2), we obtain the first inequality of (2.22). The
proof of the second one is much the same.
Let us prove (2.23). By the symmetry and (3.2),

3/4
E Y T,Q% <mET,Q}" <« mpqE|Z,|"” « zp,
JjeA
| N 1 1
B\ 7,Q,Q| = mEIT\ Q1@ = mpaBIYi 2, [V Q) < 2777
JjeA

In the last step we used the bound E(1)|Q(Al) | < 212u'/2 which follows from
EV(QY)? « zpu [cf. (3.3)] by Cauchy—-Schwarz.

It remains to prove (2.24). The proof for r = 6 is straightforward. Us-
ing (2.24), with r = 6 and Lyapunov’s inequality, we obtain (2.24) for 0 <
r<6. 0

PROOF OF LEMMA 2.3. Inequalities (2.26) follow from (2.25), by
Cauchy—Schwarz. Let us prove (2.25). We shall prove the first inequality only.
The proof of the remaining two inequalities is similar, but simpler. Write

(3.4) HZ < T] &, &= 1B e{v,}.
keG

We shall majorize &, by a random variable, say ¢, which is a function of X,
and apply Hoeffding [(1963), Theorem 4] to the expectation of the product of
§k, ke@.
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Since v2 = v}, we can write (v, — p)? = v, — 2v, p + p?. Therefore,
TyQr= (= Dp)’Y3qZy = (v —p)(1-2p)Y3qZy+r,  r=(p-p)Y}qZ,,
and we write
v, = (v, — p)b, — 27 1tr, b, =ta,Y;+swt a,=80—2"1(1-2p)qZ,.
Since r does not depend on v,, we have
&, < |B(by)* where B(x) = Ee{x(r — p)},  x<cR.
Hoglund (1978) showed that, for any z, € [0, 7) and z satisfying |z| < 7 + 2,

T T+ 2

_ 2
B(z)* = 1= pa(2)"(2), @@a=(zw %)-

We apply this inequality to those b, satisfying |a,Y3| < H~1. We have |b,| <
7 + 1 and therefore ¢, < 1 — pgb?@(1). Combining this inequality with the
obvious bound ¢, <1,k =1,2,...,n, we obtain

(3.5) & <1— pgbi0(1)l,, e = Vpa,ys<1> 1<k <n.
Write b}, = tY3 + sw™!. The simple inequality (x + y)? > x?/2 — y? gives
(3.6) by > (})%/2 — (b, — b3)” = (b3)*/2 — dj, dy, = [tY}l(cr +[Z]).

Here we estimated |b, — b}| < d,, using |gy — 1| < c¢;. Furthermore, since
|Z,] < 2 and |gg] < 1+ ¢y < 2, we have |a,| < 3, and therefore [, > [} :=
liszrys|<1- This inequality in combination with (3.6) and (3.5) gives

8.7 &, =< g, 4 =1-2""pq((b})* — 2d}) 0D, 1<j=<n

Assume without loss of generality that 1 € G. By Hoeffding [(1963), Theo-
rem 4],

(3.8) EC) ] & < [TECVg = (B¢ 70)
keG keG

In the last step we used the symmetry. Next we show that, for some c5 > 0,
(3.9) E(i’j)fl <1-— c5n’1u, u=t>+s%
Note that by (3.9) and (2.17), the right-hand side of (3.8) is less than

1
(1—csn~tu)™/* < exp{ - %%u} < exp{ — §c5c4lnu} <u°

provided that the constant ¢4 in the definition of m is sufficiently large. This
bound in combination with (3.7) and (3.4) implies E* ) HZ, < 10,
In order to prove (3.9) we show that

(310) I,:=E“)®)% >2'uw? and E®d? <28 1w 2.
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The second inequality follows from the crude bound Ed? < 32t2w2(c? + )
and (2.13), provided that ¢; and ¢y are sufficiently small. To prove the first
inequality, write

n 1
I,= I, —
1™ h-2"%2 n-2
I2=I4—I5, I4=E(b’1()2 =uw72—t2w74a2, I5 ZE(b’l()zl]|3HY*l|>1'
Now it is easy so see that the first inequality of (3.10) follows from

(3.11) I; <20 'u(pg)™t, Is <20 luw™2

I, I, =E@®)M, Iy = (6] + (b5)°15,

and the inequality 2w *a® < t?w—*cZ, provided that c, is sufficiently small.
Let us prove the bound for I5. It follows from the inequalities
(b})? < 2t3(Y3)? + 252w 2,
*\2 *\2 1/3 *|3 %13)2/3

2/3
< 23(nE|Y}*)?? < 8<i)
bq
that I; < 16u(u?3(pq)~%? 4+ w=2). This bound in combination with (2.13)
yields the first inequality of (3.11) provided that c, is sufficiently small.
To prove the bound (3.11) for I5, we combine (3.12) and Chebyshev’s in-
equality,

t2 2
Iy <251+ 2%17, Is = w?E(Y})?3HY?), I, =E|3HY}?.

By the definition of H [see (2.14)] I = 3c5b? < 3c3. By (2.20), I; < 9¢2.
Choosing c; small enough, we obtain the second inequality of (3.11), thus
completing the proof of the lemma. O
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