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WHITE NOISE INDEXED BY LOOPS

BY OGNIAN B. ENCHEV

Boston University

Given a Riemannian manifold M and loop �: S1 � M, we construct a
Gaussian random process S1 � � � X � T M, which is an analog of� � Ž� .
the Brownian motion process in the sense that the formal covariant
derivative � � � X appears as a stationary process whose spectral mea-� �

sure is uniformly distributed over some discrete set. We show that X
Ž .satisfies the two-point Markov property reciprocal process if the holon-

omy along the loop � is nontrivial. The covariance function of X is
calculated and the associated abstract Wiener space is described. We also

Ž .characterize X as a solution of a special nondiffusion type stochastic
differential equation. Somewhat surprisingly, the nature of X turns out to
be very different if the holonomy along � is the identity map I: T M ��Ž0.
T M. In this case, we show that the usual periodic Ornstein�Uhlenbeck�Ž0.
process, associated with a harmonic oscillator at nonzero temperature,
may be viewed as a standard velocity process in which the driving
Brownian motion is replaced by the process X.

1. Overview and motivation. The present paper grew out of the desire
to construct a stochastic process � , t � R , with values int �

�� �L M � � � CC 0, 2� � M lim � � � � 0 ,Ž . Ž . Ž .Ž .½ 5
��2�

the space of loops over a Riemannian manifold M, which incorporates as
much symmetry as possible. More specifically, we want the probability distri-
butions in the cross-section of TM above � of the formal differential � �

Ž . Ž . Ž . Ž .d� � � d � � and its formal covariant derivative � � � d� � both tot t t � t
Ž .be Gaussian and invariant under rotation along the loop, with � � � d� �� t

Ž .having uniform spectral density white noise along the loop � . If parallel
translation along � is possible, by choosing an orthonormal frame in T M�Ž0.

Ž .and moving it parallel along � in positive direction, � � d� � could bet
treated as a Gaussian process in Rd indexed by � � R, which is stationary
and pseudoperiodic, in that its value at � � 2� is the one at � twisted by the

Ž .holonomy along �. In terms of Dirichlet forms, processes on L M were
� �constructed in 1 by considering probability distributions in the cross-section

Ž .of TM above � � L M derived from the abstract Wiener space construction
associated with the Hilbert space HH of absolutely continuous mappings
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1 Ž .S � � � h � � T M endowed with the scalar product�Ž� .

1 12� 2�
� ² : ² :h k � h � , k � d� � � h � , � k � d� , h , k � HH ,Ž . Ž . Ž . Ž . Ž .H H � �2� 2�0 0

² :where � , � � the Riemannian metric on M. It is easy to check that
although this construction yields a rotation-invariant process the spectrum of

Ž .its formal covariant derivative is not flat. In fact, this is precisely the
periodic Ornstein�Uhlenbeck process described in Section 4 with m � 1.

Ž .Alternatively, one may incorporate symmetry in the process � � d� � byt
requiring it to be a reciprocal process, that is, to share the two-point Markov

Žproperty, in addition to being rotation-along-the-loop invariant obviously,
the standard Markov property does not make sense for processes indexed by

. � �the circle . This approach was taken in the recent work 3 , which extends
� �some of the results of 2 on periodic Osterwalder�Schrader positive pro-

cesses. Unfortunately, if the holonomy along the loop � is trivial, the require-
ment that S1 � � � X be two-point Markov contradicts the requirement�

that S1 � � � � X has a flat spectrum. On the other hand, in the case of� �

nontrivial holonomy, the flatness of the spectrum of S1 � � � � X entails� �

that S1 � � � X is two-point Markov. These statements, which we establish�

in Section 3, have two interesting consequences. First, while one would expect
‘‘white noise’’ to be a much more restrictive property than ‘‘Markov,’’ this is
not always the case; in fact, somewhat surprisingly, it fails to be the case in
the simplest possible scenario: loops with trivial holonomy. The second obser-

Ž .vation is that replacing the index space R by some loop � � L M makes�
the Markovian nature of the white noise process more intriguing. So, we treat

Ž . Ž .the case Holonomy � � Id separately from the case Holonomy � � Id and
in each case give a complete description of the covariance nature and of the

Ž . � Ž . Ž .�Markovian nature or the lack thereof see 4.4 and 4.10 of the white noise
process in TM which is above the loop �. The velocity process associated with

Ž .the circular white noise from 4.10 is proved to be nothing but the usual
periodic Ornstein�Uhlenbeck process�see Section 4. General description in
terms of the covariance function of the class of all real two-point Markov

� �processes indexed by the circle is given in 4 . It should be noted that, in the
present context, it is essential to work with complex-valued processes and
that the respective theory is very different from its real-valued counterpart if
the holonomy is nontrivial.

2. Objectives and notation. Throughout, M will denote a fixed Rie-
mannian manifold of dimension d � 2 endowed with the Riemannian connec-
tion and �: S1 � M will be some fixed loop on M. Here, S1 will be identified

� �with the interval 0, 2� in the obvious way, which, in turn, endows � with
positive and negative direction. We suppose that parallel translation along �
is possible; this is always the case if � is smooth or is a sample path of a

Ž . 1 � Ž .semimartingale. Next, let V � , � � S , 1 � d � dim V � � d, be a continu-
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ous distribution of tangent spaces along �, which is invariant under parallel
1 Ž .translation. That is, � � � S V � is a vector subspace of T M and as such�Ž� .

Ž .is obtained by parallel translation of V 0 along � in the positive direction
Ž . Ž .from � 0 to � � . The continuity assumption implies that the parallel

Ž .translation of V 0 along the entire loop results in a rotation, possibly the
Ž . Ž .trivial one, inside V 0 . This rotation splits V 0 into orthogonal subspaces of

dimension less than or equal to 2, every one of which is invariant under its
Ž .action. Thus � � V � is just an orthogonal sum of continuous translation

invariant distributions of dimension less than or equal to 2.
Our goal is to study continuous random processes X , � � S1, which take�

values in TM above � and which are supported by the distribution V, in that
1 Ž .� � � S X is randomly distributed in the vector space V � � T M.� � Ž� .

Because of the remark just made, the interesting case is d� � 2. If d� � 2,
Ž . 1after choosing some orthonormal frame 	 in V 0 , X , � � S , could be0 �

� �treated as a complex-valued process x � C, � � 0, 2� , chosen so that � x� �

and � x are nothing but the coordinates of X in the frame 	 � the¨� � �

Ž . Ž .translate of 	 along � in positive direction from � 0 to � � . Furthermore,0
x could be extended to a continuous process x � C, � � R, with the prop-� �

Ž . i
 � �erty x � � 2� � e x � � � R, where 
 � 0, 2� describes the rotation of�

Ž .	 inside V 0 caused by parallel translation in positive direction along the0
Ž .entire loop �. It is to be noted that since the rotation group O 2 is commuta-

tive, in general, 
 will depend on the loop � and on the tangent subspace
Ž .V 0 , but not on the frame 	 . Of course, the process x depends on 	 and0 0

saying that its distribution is independent of 	 is equivalent to the claim0
Ž .that the distribution of X is invariant under the action of O 2 . The case

d� � 1 is easy to reduce to the one just described by taking either 
 � � in
Ž .case the parallel translation along � reverses the direction in V 0 , or 
 � 0

if it preserves it, after which X , � � R, could be identified with the real part�

of x , � � R.�

From now on, our only concern will be the case where d� � 2 and where
X , � � S1, is continuous, stationary, symmetric and Gaussian in the sense�

2 Ž .that x , � � R, is a L -continuous, stationary wide sense , complex Gaussian�

� 4 � 4 �
�process with E x � E x x � 0, � � , � � R. Clearly, if dim V � 2, a sta-� � �

tionary symmetric Gaussian process supported by V is simply the sum of
Ž .appropriately normalized such processes supported by the orthogonal distri-

Ž .butions of dimension less than or equal to 2 ; V is being split into by the
holonomy along �. So, we will be working only with the case



2.1 x � exp i � k � � ,Ž . Ý� kž /ž /2�k�Z

where � , k � Z, are independent complex Gaussian r.v.’s withk

2� 4E � � � � and E � � E � � 0 � k � Z.� 4 � 4Ý k k k k
k�Z
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If, in addition,
2


� k E � � � �,� 4Ý k k2�k�Z
2 Žthen the L -derivative of � � x note that this is nothing but the covariant�

.derivative of � � X is well defined and given by�


 

2.2 i � k exp i � k � � .Ž . Ý kž / ž /ž /2� 2�k�Z

Ž .Thus, the spectrum of � � x could only be inside the set 
	 2� � k, k � Z.�

Consequently, if � , k � Z, are chosen so thatk


2
 

2.3 E � � � constant � � k , k � Z, k � 
 ,� 4Ž . k k 2� 2�

Ž .then � � � X � � covariant derivative along � will have the meaning of� �

white noise process, for in that case the spectral measure of � � x will be�

uniformly distributed on the biggest possible set the spectrum could live on.
Ž .Of course, in this later case the expression in 2.2 cannot give meaning to

Ž .� � � X , or, equivalently, to � � x � .� �
� Ž .To summarize, we will only consider the case where d � dim V � 2 and

Ž . Ž .where x , � � R, is given by 2.1 , assuming that 2.3 holds with constant � 1.�

The covariance of x , � � R, is then given by�


 exp ik � � 
 �Ž .Ž .� �R � 
 � � exp i � 
 � ,Ž . Ž . Ý 2ž /2� � �
	2� � kk�Z

� �where 
 � 0, 2� is uniquely determined by the loop � and the distribution
Ž . Ž .� � V � ; if V 0 is identified with C via some orthonormal frame, then after

Ž .parallel translation along the entire loop � in positive direction any z � V 0

i 
 Ž .� C arrives at e z � V 0 � C. Our main objective is to find a more

Ž .tractable expression for R � and derive the Markovian nature of the process
X, or, equivalently, of x.

3. The Hilbert space of X. The case 
 � 0 differs in an essential way
from 
 � 0 and requires different treatment: if 
 � 0, the path-space of x
contains no constants and if 
 � 0, it does. First we study the simpler case

 � 0.

Ž . ŽDEFINITION 3.1. A mapping R � � � z � � C with the property z � �
. i
 Ž .2� � e z � � � � R will be called 
-periodic. The space of all absolutely

continuous, that is, continuous and a.e. differentiable, 
-periodic complex-val-
ued functions on R will be denoted by HH and will be endowed with the usual


scalar product

1
� �² � :h k � h � k � d� , h , k � HH .Ž . Ž .H 
2� � �0, 2�
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In fact, HH consists of absolutely continuous mappings from S1 into V as


explained in the following remark.

Ž R I . Ž .REMARK 3.2. Let 	 � e , e , be some orthonormal frame in V 0 and let0 0 0
Ž R I .	 � e , e � the parallel transport of 	 along � from T M to T M.� � � 0 � Ž0. � Ž� .

� � Ž . R Ž . I Ž .Given z � C, set 	 z � � z e � � z e � V � and notice that if R � �� � �

Ž .� z � � C is 
-periodic and continuous then

� �0, 2� � � � 	 z � � 	 z � � V �Ž . Ž . Ž . Ž .�

Ž .is continuous too. Thus, the correspondence HH � z 	z � V allows identifying


HH with the space of all continuous vector fields above � which are supported


by V and admit covariant derivatives at almost every point on the loop �.
This association will be often blurred in the sequel, and, with a slight abuse
of terminology and notation, continuous complex 
-periodic functions on R
will be treated also as functions from S1 into TM supported by the distribu-

Ž . Ž 1 .tion � � V � . The space of all such functions will be denoted by CC S � V


and we will no longer distinguish between the C-valued process x and the
process X � 	 x � V.

� � Ž . Ž .For t � 0, 2� let TT : HH � HH be the usual shift operator TT h � � h � 
 t ,t 
 
 t
� � R, and given h � HH , consider the vector field


� �
 	h � � 	 TT h � � V � , � � 0, 2� .Ž . Ž . Ž . Ž .t � t

Ž .Ž . ŽIt is easy to see that 
 	h � is obtained by rotating by way of parallelt
. Ž .Ž .transport the vector field 	h � along � in positive direction; for example

Ž .Ž . Ž .Ž .
 	h t is obtained by parallel translation of 	h 0 from T M to T M.t � Ž0. � Ž t .
� �Next, given t � 0, 2� , let

i
t 
 � 2� e
i
 � �� � � e 1 � � 1 � 
 , � � 0, 2�Ž . Ž . Ž .t �0, t� � t , 2� � i
 2i
1 
 e 1 
 eŽ .

� � � Ž . �we assume that for t � 0 0, t � � and 1 � � 0 , extend � to an�0, t� t

-periodic complex function on R and notice that, so defined, � is in fact ant

� � Ž .element of HH and that � � TT � � t � 0, 2� ; equivalently, 	� � 
 	� ,
 t t 0 t t 0
Ž .for any choice of frame 	 in V 0 � T M. More importantly, notice that�Ž0.

ei
 1
�� � � 40, 2� � t � � � 
� � � 1 � � 1 � � CŽ . Ž . Ž .t �0, t� � t , 2� �i
 i
1 
 e 1 
 e

� �is just the circular Heaviside function with jump at t � 0, 2� , in that
� Ž . 1
� � is constant on S � t andt

lim 
 �
� � � lim �

� � � 1;Ž . Ž .t t
��t ��t

Ž .consequently, � � is an integral kernel for the evaluation map HH � h �t 


Ž .h t � C in the sense of the following proposition.
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� �PROPOSITION 3.3. For any choice of h � HH and t � 0, 2� , one has


� �² � :h 2�� � h � � � d� � h t � C.Ž . Ž . Ž .Ht t
� �0, 2�

Next, notice that
exp i 
	2� � k �Ž .Ž .

� � � , k � Z,Ž .k i 
	2� � kŽ .
form an orthonormal basis in HH , consisting, in fact, of eigenfunctions of the


2 2 Ž .Laplacian � � d 	d� and that, by choosing � , k � Z, as in 2.3 withk
� � Ž .constant � 1, the process x , t � 0, 2� , given by 2.1 could be written ast

exp i 
	2� � k tŽ .Ž .
² � :3.1 X � � � � 2�� � ,Ž . Ý Ýt k k t ki 
	2� � kŽ .k�Z k�Z

� 4 � 24where � , k � Z, are i.i.d. complex Gaussian r.v.’s with E � � E � � 0 andk k k
1� 4 Ž .E � � � 1. Plainly, if CC S � V is being treated as a probability spacek k 


equipped with the Borel �-field and the Gaussian probability law � derived
Ž 1 .from the canonical inclusion HH � CC S � V and the associated abstract
 


Wiener space construction, then the process X , � � R, and the complex-val-�

ued random process

R � � � 2� z � � C, z � CC S1 � V ,Ž . Ž .


are indistinguishable in the sense that their respective finite-dimensional
distributions are identical. In particular, this shows that

1
² � :R t � E X X � � 2�� � � t� 4Ž . Ž .0 t 0 t 02�

3.2Ž .
t �

� �� � , t � 0, 2� .i
 1 
 cos 
e 
 1
Now we develop the counterpart of the above for the case 
 � 0. In view of

Definition 3.1, HH � HH is simply the space of absolutely continuous and
�0
Ž .periodic with period 2� complex functions on R; that is, the space of

² � :1	2absolutely continuous functions on the circle. � � is no longer a norm
and we turn HH into a Hilbert space by decomposing it into the sum

HH � C � KK, KK � h � HH 
 h � 0 ,H½ 5� �0, 2�

and by setting
1

� �� ² � :c � h c � h � c c � h h � c c � h � h � d� ,Ž . Ž .Ž . H1 1 2 2 1 2 1 2 1 2 1 22� � �0, 2�

² � :1	2c , c � C, h , h � KK. Note that � � is a norm on KK and therefore HH1 2 1 2
Ž .1	2turns into a Hilbert space with norm �
 � . Similarly, by splitting each

Ž 1 .z � CC S � V into the sum
�0

1 1
� �z � � z � d� � z � 
 z � d� , � � 0, 2� ,Ž . Ž . Ž . Ž .H Hž /2� 2�� � � �0, 2� 0, 2�
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1 ˜ 1Ž . Ž .CC S � V could be written as C � CC S � V , the second component of0 0
Ž 1 .which is endowed with the standard sup-norm. We suppose that CC S � V0

˜ 1 1Ž . Ž .has the topology of the product C � CC S � V and endow CC S � V with0 0
probability law � which is the product of two independent probability laws �

˜ 1Ž .and �, respectively, on C and on CC S � V , � � the law of a complex˜ 0
� 4 � 24Gaussian r.v. � with E � � E � � 0 and � � the Gaussian measure on˜

˜ 1Ž .CC S � V derived from the abstract Wiener space associated with the0
˜ 1Ž .inclusion KK � CC S � V . To this end, we consider the space KK as a Hilbert0

² � :space with scalar product � � and choose an orthonormal basis in KK

Ž .formed by the eigenfunctions of the Laplacian Laplacian on KK, that is ,
1

ik� � 4� � � e , k � Z� 0 .Ž .k ik
� �In the present setting the circular Heaviside function with jump at t � 0, 2�

Ž . Žis 
1 times the derivative of the following quadratic rather than linear, as
.was the case where 
 � 0 function:

1 1 �2 � �� � � � 
 t 
 � 
 t � � 
 t 1 � � , � � 0, 2� ,Ž . Ž . Ž . Ž . Ž .t �0, t�4� 2 6
which, just as before, we extend to a periodic function on R and remark that

Ž . Ž . Ž .so defined it is an element of KK and that � � � TT � � � � � 
 t .t t 0 0
� � � � 4Obviously, � is no longer a constant on 0, 2� � t and the term ‘‘Heavisidet

function’’ is justified by

� �PROPOSITION 3.4. For any choice of h � KK and t � 0, 2� one has

� �² � :h 2�� � h � � � d� � h t � C,Ž . Ž . Ž .Ht t
� �0, 2�

where
1 1

� � � � 4� � � � 
 t 
 � 1 � , � � 0, 2� � t .Ž . Ž . Ž .t �0, t�2� 2

PROOF. It is enough to notice that
	 � �� � � 
� � � 1	2� 1 � , � � 0, 2� . �Ž . Ž . Ž . Ž .t t �0, 2� � ��t4

Ž .Consequently, 3.1 now becomes
1

ik tX � � � e �Ýt 0 kik� 4k�Z� 0

² � :� � � � 2�� � 
 � � YÝ0 k t k 0 t
� 4k�Z� 0

3.3Ž .

Ž .and 3.2 turns into
1

² � :R t � E Y Y � � 2�� � � tŽ . Ž .� 40 t 0 t 02�
3.4Ž .

t 2 t �
� �� 
 � , t � 0, 2� .

4� 2 6



O. B. ENCHEV992

3.5 REMARK. 1. The Hilbert space associated with the process Y � X 
t t
� , t � S1, is KK, not HH.0

Ž .2. Since the covariance function in 3.2 is real for 
 � � , and so is the one
Ž . � 1in 3.4 , it is easy to conclude from the above that if X , t � S , is at

Ž .real-valued Gaussian white noise process then, up to a factor, the covari-
ance of X , t � S1, is eithert

t �
� �� 4R t � E X X � 
 � , t � 0, 2� ,Ž . 0 t 2 2

� Ž . � Ž .this is 3.2 with 
 � � if X is antiperiodic X � 
X , or is given byt�2� t

t 2 t �
� �
 � � constant, t � 0, 2� ,

4� 2 6
Ž .with some arbitrary real positive constant, if X is periodic X � X . Notet�2� t

Žthat in this later case the covariance is not unique unique up to a factor, that
.is .

4. The Markovian nature of X. Here again we treat the case 
 � 0
and 
 � 0 separately and consider the case 
 � 0 first.

� �As scaling makes no difference in our study, we assume that X , t � 0, 2� ,t
Ž . � � Ž . Ž .has covariance R t , t � 0, 2� , given by 3.2 . For t � 0 we set R t

� R 
t and notice thatŽ .
� 2

� �4.1 R t 
 s � � t 
 s , s, t � 0, 2� ,Ž . Ž . Ž .0� t � s

and therefore that stochastic integrals of the form

f t dX , f � L2 S1 � C ,Ž . Ž .H t
� �0, 2�

are well defined as is the quadratic variation dX dX � dt. Given 0 � s � t �t t
2� , we have

R s R t 
 sŽ . Ž .
� 4 � 4E X 
 X � X and E X 
 X � X0 s s t s sR 0 R 0Ž . Ž .

and so

R s R t 
 sŽ . Ž .
� 4E X 
 X , X � � s, t X 
 X � X ,Ž .t 0 s 0 s sž /R 0 R 0Ž . Ž .

Ž .where � s, t is to be determined by the condition

�E X 
 E X X , X X � 0.� 4� 4Ž .t t 0 s 0

Somewhat tedious but otherwise trivial calculation yields

R t R 0 
 R t 
 s R s t 
 sŽ . Ž . Ž . Ž .
i
� s, t � � e ,Ž . 2 2 2� 
 s� �R 0 
 R sŽ . Ž .
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from which one finds that

ei
 X 
 X0 s� 44.2 E X 
 X 
 X , X � t 
 s .Ž . Ž .t s 0 s 2� 
 s

Now it is easy to see that X is a reciprocal process in the sense of the
following proposition.

PROPOSITION 4.1. Given 0 � s � t � 2� , one has

� � � 4E X 
 X , u � 0, s � E X 
 X , X .� 4t u t 0 s

PROOF. The claim is that

� � �E X 
 E X X , X X � 0 � u � 0, s ,� 4� 4Ž .t t 0 s u

or, what amounts to the same thing, that

R t 
 u R 0 
 � s, t R u R 0 
 R s R s 
 uŽ . Ž . Ž . Ž . Ž . Ž . Ž .
4.3Ž .

� �
R t 
 s R s 
 u � 0 � u � 0, s ,Ž . Ž .
Ž .which is certainly true, because the left-hand side is linear in u and � s, t

was chosen so that the identity holds for u � 0 and u � s. �

REMARK 4.2. For a wide sense-stationary, L2-continuous, periodic Gauss-
Ž . Ž . � �ian process with period 2� and covariance R, s.t., R t � R 0 , � t � 0, 2� ,

Ž .4.3 is just a rephrasing of the two-point Markov property. It is obvious, then,
that the two-point Markov property always holds if R is linear. It is easy to

	Ž . Ž .see that R t � constant � R t , t � 0, implies two-point Markov too, for, in
� � Ž .that case, as a function of u � 0, s , the left side of 4.3 could only be of the

form Ae
C u � Be�C u and could vanish for u � 0 and for u � s � 0 only if
A � B � 0.

Ž .In fact, Proposition 4.1, combined with 4.2 , comes down to the following
statement.

PROPOSITION 4.3. A continuous, stationary, complex-Gaussian stochastic
� � � 4 � 4�process X , t � 0, 2� , with E X � E X X � 0 and with covariance func-t t t t

Ž . � 4 Ž .tion R t � E X X given by the right side of 2.2 solves the equation0 t

� i
e X 
 X0 t
dX � dt � dW , 0 � t � 2� ,t t2� 
 t� 24.4Ž . � 4X � complex Gaussian r .v. with E X � E X � 0� 40 0 0

�
and E X X � ,� 4� 0 0 1 
 cos 


driven by complex Brownian motion W of intensity dW dW � dt, which ist t
independent of the initial value X .0
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This, of course, is pinned Brownian motion with appropriately randomized
initial value. This leads to the following conclusion.

Ž . ŽCOROLLARY 4.4. The solution of 4.4 could be written in the W-nonantic-
.ipative form

dW 2� � ei
 
 1 tŽ .t s � �4.5a X � 2� 
 t � X , t � 0, 2� ,Ž . Ž .Ht 02� 
 s 2�0

Ž .or, equivalently, in the W-anticipative form
1

� �4.5b X � W � W , t � 0, 2� .Ž . t 2� ti
e 
 1

Ž . � 4It is not hard to compute R t � E X X directly from this last represen-0 t
Ž .tation and, of course, arrive at the expression in 3.2 .

Now we work out the case 
 � 0. Instead of studying the process X ,t
t � R, we study Y � X 
 � and assume that its covariance is given by thet t 0

Ž . Ž . 2right side of 3.4 . The above calculation with R t � t 	4� 
 t	2 � �	6,
� � Ž .t � 0, 2� , implies that 4.3 holds with

�	6 R t 
 R t 
 s R sŽ . Ž . Ž . Ž .
4.6 � s, t � , 0 � s � t � 2� .Ž . Ž . 2 2� 	36 
 R sŽ .

Ž .The left side of 4.3 is a quadratic function of u which, due to the choice of � ,
� �vanishes for u � 0 and u � s and therefore could be � 0 � u � 0, s , only if

its second derivative w.r.t. u,
1 1 1 1


 � s, t 
 R s 
 R t 
 s ,Ž . Ž . Ž .
12 12 2� 2�

� �vanishes in 0, s . This however is easily seen to fail with the implication that
1 � � � 4Y , t � S , is not a reciprocal process and that E Y 
 Y , u � 0, s could bet t u

found only in the form

aY � bY � f u Y du,Ž .H0 s u
� �0, s

Ž . Ž . Ž� � .with some a � a s, t , b � b s, t � C and f � f � CC 0, 2� � C . Sinces, t

6
E f u Y du Y � f u R s 
 u du YŽ . Ž . Ž .H Hu s s½ 5 ž /�� � � �0, s 0, s

we have
6

E f y Y du Y , Y � � Y 
 R s YŽ . Ž .H u 0 s 0 s½ 5 ž /�� �0, s

6
� f u R s 
 u du Y ,Ž . Ž .H sž /� � �0, s

where
�	6 H s f u R u du 
 R s H s f u R s 
 u duŽ . Ž . Ž . Ž . Ž . Ž .0 0

� � � s, t �Ž . 2 2� 	36 
 R sŽ .Ž .
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is found from the condition

E f u Y du 
 E f u Y du Y , Y Y � 0.Ž . Ž .H Hu u 0 s 0½ 5½ 5� � � �0, s 0, s

Consequently,

6 6
� �Y 
 E Y Y , u � 0, s � Y 
 � Y 
 R s Y 
 R t 
 s Y� 4 Ž . Ž .t t u t 0 s sž /� �

6

 f u Y du � � Y 
 R s YŽ . Ž .H u 0 sž /�� �0, s

6
� f u R s 
 u du Y ,Ž . Ž .H sž /� � �0, s

Ž . Ž .where � � � s, t is given by 4.6 , and this identity determines completely
� � Ž . Ž .the function 0, s � u � f u � f u . Indeed,s, t

� � � �E Y 
 E Y Y , u � 0, s Y � 0 � � � 0, s� 4� 4t t u �

yields
� �

0 � R t 
 � 
 � R � 
 R s R s 
 �Ž . Ž . Ž . Ž .ž /6 6

 R t 
 s R s 
 �Ž . Ž .

� �

 f u R � 
 u du � � R � 
 R s R s 
 �Ž . Ž . Ž . Ž . Ž .H ž /6 6� �0, s

4.7Ž .

� f u R s 
 u du R s 
 � .Ž . Ž . Ž .Hž /� �0, s

Now, treated as functions of � for fixed s and t, all terms in the above
s Ž . Ž .expression are quadratic with the exception of H f u R � 
 u du and since0

1
	4.8 R u � 
� u �Ž . Ž . Ž .0 2�

it follows that

d2 1
f u R � 
 u du � 
f � � f u du.Ž . Ž . Ž . Ž .H H2 2�d� � � � �0, s 0, s

Ž . � �Thus, differentiating 4.7 w.r.t. � twice, one sees that actually 0, s � u �
Ž . Ž .f u � f u is a constant. On the other hand, thanks to the choice of � ands, t
Ž . Ž .� , 4.7 is automatically satisfied for � � 0 and � � s, so that 4.7 holds for �

� �� � 0, s if and only if the second derivative w.r.t. � of the expression in the
right side is identically null. This allows calculating the constant f :s, t

1	12 
 1	2� � �	6 
 R s 
 1	2� R t 
 sŽ . Ž . Ž . Ž . Ž .
f � ,s , t

��	6 s	2� 
 1 
 � 1	2� �	6 
 R s 
 1	2� R u duŽ . Ž . Ž . Ž . Ž . Ž .H
� �0, s



O. B. ENCHEV996

where

H R u duŽ .�0 , s ��� �
�	6 � R sŽ .

and

s s 
 � s 
 2�Ž . Ž .
R u du � R s 
 u du � .Ž . Ž .H H 12�� � � �0, s 0, s

Cumbersome as this last expression may appear, it simplifies to something
surprisingly simple:

6 t 
 s t 
 2�Ž . Ž .
f �s , t 32� 
 sŽ .

and one finds that

� �E Y 
 Y Y , u � 0, s� 4t s u

6 6 �
� � 
 � Y 
 R s Y � R t 
 s 
 YŽ . Ž . Ž .0 s sž /ž /� � 6

6 6 t 
 s t 
 2� s s 
 � s 
 2�Ž . Ž . Ž . Ž .

 Ys3� 12�2� 
 sŽ .

4.9Ž .

s6 t 
 s t 
 2�Ž . Ž .
� Y du.H u3

02� 
 sŽ .

It is not hard to check that

2 t 
 sŽ . 2
� s, t 
 � s, t � 
 � O t 
 sŽ . Ž . Ž .Ž .2� 
 s

� Ž .�and, knowing that Y has quadratic variation dY dY � dt see 4.8 , con-t t t
Ž .clude from 4.9 that

PROPOSITION 4.5. A continuous, stationary, complex-Gaussian stochastic
� � � 4 � 4�process Y , t � 0, 2� , with E Y � E Y Y � 0 and with covariance func-t t t t

Ž . � 4 Ž .tion R t � E Y Y given by the right side of 3.4 solves0 t

2Y � 4Y 6 dt� t0 t
dY � dW 
 dt 
 Y d� , 0 � t � 2� ,Ht t �22� 
 t 02� 
 tŽ .� 24.10Ž . � 4Y � complex Gaussian r .v. with E Y � E Y � 0� 40 0 0

�
and E Y Y � ,� 4� 0 0 6

driven by complex Brownian motion W of intensity dW dW � dt, which ist t
independent of the initial value Y .0
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REMARK 4.6. It is possible to write Y as an explicit linear functional of W
� �T � t �Tby observing that U , Y , V � Y , Y , H Y ds is Markov and solvest t t 0 t 0 s

0 0 0U Ut t 0
2 
4 
6
Y Y dWd � dt � ,t t t22� 
 t 2� 
 t 2� 
 tŽ .V V 0t t

0 1 0

� �T � �Twith initial data U , Y , V � Y , Y , 0 . This leads to a somewhat cum-0 0 0 0 0
Ž .bersome W-nonanticipative representation of Y. It is not hard to check that

Ž .the following W-anticipative representation also holds

t � � 1 2� � �Y � W 
 W � � dW , t � 0, 2� .Ht t 2� �2� 2� 0

5. Periodic Ornstein–Uhlenbeck processes viewed as velocity pro-
cesses driven by circular white noise. By the circular white-noise pro-
cess we simply mean the process Y �, t � R, the formal derivative of thet
process Y constructed in the second part of Section 3 in the case 
 � 0. Now
consider the periodic velocity process Z , t � R, which solvest

5.1 dZ � mZ dt � dY , t � R, m � 0,Ž . t t t

with boundary condition Z � Z . This means that0 2�

t
m t m s � �Z � e e dY � Z , t � 0, 2� ,Ht s 0
0

with
H 2� eŽ s
2� .m dY0 s

Z � .0 
2� m1 
 e
Ž .Obviously, Z , t � R, is stationary with discrete spectral measuret

1 1
� d� � � � d�, � � R,Ž . Ž .Ý k2 22� � � m� 4k�Z� 0

obtained by multiplying

1
�� � d� � the spectral measure of Y ,Ž .Ý k t2�� 4k�Z� 0

by the transfer function

1 1 12� �� � H � � H � H 
� � � ,Ž . Ž . Ž . 2 2i� � m 
i� � m � � m

Ž . Ž . � 4 � �corresponding to 5.1 . We calculate the covariance r t � E Z Z , t � 0, 2� ,0 t
Ž .next. On account of 4.8 we have

1
E dY dY � � t 
 s dt 
 ds dt .Ž .� 4s t 0 2�
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Thus

r 0 � E Z ZŽ . � 40 0

21 12� 2�2Ž s
2� .m Ž s
2� .m� e ds 
 e dsH H2 ž /
2 � m 2�0 01 
 eŽ .
1 � e
2 � m 1

� 
 .2
2� m 2� m2m 1 
 eŽ .
Ž .On the other hand, 5.1 implies that

eŽ t
2� m. 1
�r t � mr t � 
 ,Ž . Ž . 
2 � m 2� m1 
 e

from which we find that

1 e
t m � eŽ t
2� .m

5.2 r t � � .Ž . Ž . 2 
2� m2� m 2m 1 
 eŽ .
Incidentally, the expression in the right side is precisely the covariance of a

Ž � �.periodic Ornstein�Uhlenbeck process with period 2� see 2 . This means
2� 4 � 4 � 4that if � is some complex Gaussian r.v. with E � � E � � 0, E � � � 1,0 0 0 0 0

which is independent of Y , t � R, then the processt

1
� � Z � � , t � R,t t 0'm 2�

is the one associated with a harmonic oscillator with frequency m at a
nonzero temperature T � k	2� ; k is the Boltzmann constant. This process
obviously solves

�0
d� � m� dt � dY � dt , t � R,t t t '2�

with periodic condition � � � .t t�2�

� �REMARK 5.1. The comment in Remark 4.2 implies that � , t � 0, 2� ,t
Ž .having covariance given by 5.2 , does have the two-point Markov property

Ž .which is well known . Notice also that

1 1 e
t m � eŽ t
2� .m
2�

� dt ,H2 
2� m2�2� m 2m 1 
 eŽ .0
2� Ž .which shows that H r t dt � 0. It is trivial to check that the covariance0

� �function of Y , t � 0, 2� integrates to 0, too.t

Ž .Finally, we consider 5.1 with dY replaced by dX , the circular whitet t
noise process with nontrivial holonomy described in the first part of Section 3

Ž . Ž�the process from 4.5 . Now there is precisely one 
-periodic solution i.e.,
i
 .solution for which Z � e Z :2� 0

t
m t m s � �Z � e e dX � Z , t � 0, 2� ,Ht s 0
0
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with
H 2� eŽ s
2� .m dX0 s

Z � .0 i
 
2� me 
 e

Ž . � 4On the other hand 4.1 implies that E dX dX � dt and we find thatt t

H 2� e2Ž s
2� .m ds0
r 0 � E Z Z �� 4Ž . 0 0 i
 
2� m 
i
 
2� me 
 e e 
 eŽ . Ž .

1 sinh 2� mŽ .
� .

2m cosh 2� m 
 cos 
Ž . Ž .
At the same time,

Ž t
2� .me
E Z dX � dt ,� 40 t i
 
2� me 
 e

which implies

eŽ t
2� .m
�r t � mr t �Ž . Ž . i
 
2� me 
 e

and we thus find that

1 sinh mt e
i 
 
 e
2 � m � e
m t sinh 2� mŽ . Ž . Ž .
r t � .Ž .

2m cosh 2� m 
 cos 
Ž . Ž .
Just as before, since r	 � const � r, we conclude that this covariance function

Žcorresponds to a reciprocal process�the 
-periodic i.e., with nontrivial
.holonomy version of a harmonic oscillator at nonzero temperature.
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