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WEAK UNIQUENESS FOR THE HEAT EQUATION WITH NOISE?

By LEONID MYTNIK

University of British Columbia

The uniqueness in law for the equation dX,/dt = 1AX, + X]W is es-
tablished for 1/2 < y < 1. The proof uses a duality technique and requires
the construction of an approximating sequence of dual processes.

1. Introduction. In this article we will discuss the problem of uniqueness
for the stochastic partial differential equation (SPDE)
X, 1 .

_ = Y
1.1) L= SAX, + X]W,

with 1/2 < y < 1, where W is two-parameter white noise on (R, x R). The
existence of a solution to (1.1) was proved in [7] by tightness arguments. By
itself, (1.1) is a purely formal stochastic partial differential equation. More
rigorously, we can consider the integral equation

12 X0 =SXo)+ [ [ piie- 0XI) W(ds, dy)

where {S,} is the semigroup with generator %A, and p, is the probability
density function corresponding to S,.

Before presenting our result, we need to introduce the following notation.
Let My denote the finite measures on R with weak topology and let B (resp.,
C) denote the bounded (resp., continuous bounded) Borel measurable functions
on R. In general, if F is a set of functions on R, write F' or F'* for nonnegative
functions in F. For u € My and f € B let

w(F) = (u, ) = [ F du.

We will abbreviate “boundedly pointwise” by bp.
As in [7], we will consider solutions X,(x) to (1.2) starting from initial
conditions rapidly decreasing in x. Therefore, define

Chp = {gea g>0,|g|, =supeflg(x) <ooVp > O}.
X

Note that further we will consider L* = L*(R) (which obviously contains Clap
as a subset of My using the correspondence ¢(x) — ¢(x)dx. Let 2(CF,,) be
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the set of probability measures on C;rap and define

,@p(cgp) = {V € .@(Cﬁ;p): sue{/c+ |<{>(x)|1’v(dq§)} < oo}, p>0.
xeR rap
For any process X defined on some probability space (Q, 7, P), let 7,X =
o(X,,s<t).
Now we are ready to present our main result. As our concern is with the
proof of the weak uniqueness of the solution for (1.2), we intend to prove the
following theorem.

THEOREM 1.1. Assume that v = P(X,)" € 2,(C/,) for some p > 2. Then
any two solutions for the martingale problem

for all ¢ € 2(3A)[2(54) is the domain of A],
t
Zi(9) = (X1 ¢) = (Xo. 6) — [ (X, 3A8)ds

M" { is an Z,X continuous square integrable martingale such that
Zy(¢) =0 and

(200, = [ X7, 9?)ds

have the same finite-dimensional distributions, which means that M” has at
most one solution.

REMARK 1.2. Since 2(3A) is bp-dense in B, the standard construction al-
lows us to extend Z, to an orthogonal martingale measure {Z,(¢): t >0, ¢ €
B}. That is, for each ¢ € B, Z,(¢) is a continuous square integrable martin-
gale such that

t
(1.3) (Z($)), = /0 (X2, $2)ds.
Let 2(Z) denote the set of functions

{q’): Q xR, x R+ R which is predictable (see [9], page 292) and

E[ [ [ots. y)ZXS<y>2Ydyds} - oo}.

Proceeding as in [9], notice that for each ¢ € 2(Z) we can define the stochastic
integral

(19 28 = [ [ 659 d2(, ),

The term Z,(¢) is a continuous square integrable martingale with quadratic
variation

[ot/Rd’(s’ ¥’ X (y)* dy ds.
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The idea behind the proof is based on a duality approach. This approach
suggests proving the existence of a dual process Y with values in some space
E and functions f, g € #(Cf,, x E) such that

t
15 f(X,y) - /Og(Xs ,¥)ds is an %X martingale for each y € E
and

t
.6 f(y,Y, - /Og(ljf, Y,)ds isan %Y martingale for each ¢ € Clap

for any solution X to M” which is independent of Y. Then Theorem 4.4.11 in
[2] (which assumes also some moment conditions) shows that

(1.7) E[f(X,,Yo)] = E[f(Xo,Y)] V=0,

If {£(-, ),y € E} is separating on #,(C{,,) and such a process Y can be
constructed for any Y, € E, the uniqueness of solutions to M* follows (see [2],
Proposition 4.4.7, for this result in a more general setting).

Let us try to use the above method. By choosing f(¢, ) = e (¥ and
applying 1t6's formula, we easily obtain that

exp(~(6, X)) [ exp(~{, X.)(~(340, X, + §(07, X)) ds

is an 7, X martingale for each ¢ € 2(3A),. This together with (1.5) and (1.6)
suggests constructing the process Y such that

(18)  exp(—(Y, y)) — /0 exp(—(Y . ) (-(2AY . p) + 2{Y2, 4?7) ds

is an .7,¥ martingale for each ¢ € Cgp. If such a process Y exists and all the

assumptions of Theorem 4.4.11 in [2] are satisfied, then we have
(1.9 E[exp(—(Yo, X,))] = E[exp(—(Y;, Xo))]

and the uniqueness for M" follows easily. Let us try to give another description
[different from (1.8)] of the dual process Y we are looking for. Let Y be a
solution of the stochastic partial differential equation

(110) V(0= 8,60+ [ [ peulx— YLy d) 120,

where L is a stable noise on R x R, with nonnegative jumps and Laplace
transform given by

E[exp(— /0 t fR (s, x)L(dx,ds)):|

_ E[exp(/otfRdw(s, x)? dx ds>] Ve € L(R x [0, 1)), .
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If such a process Y exists, then Itd’s formula yields the result
for all y € 2(3A),

M Zt(¢) = exp(_<Yt» l!f)) - /Ot exp(—(Ys, lp))(_(Ys’ %Alll> + %(Yg’ l!fzy)) ds

is an .7, local martingale.

Observe that M is just a weak form of (1.8), that is, in M we do not require Y to
be in c@(%A)Jr and Z tobe a martingale. It can be conjectured that the existence
of the process Y satisfying local martingale problem M or SPDE (1.10) is
sufficient to verify (1.9). Then, the “only” problem is the existence of Y solving
SPDE (1.10). Note that if the exponent of the noise is less than 1, then (1.10)
belongs to the class of SPDEs that was studied by Mueller [6]. However, in our
case, the exponent of L equals 2y > 1 and the existence of a solution to (1.10)
is unresolved.

The approach of an approximating sequence of dual processes which was
introduced in [8] allows us to avoid the proof of the existence of a solution
to (1.10) and helps us in this case. The main problem is to choose the right
approximating sequence of processes since when we treat convergence to pro-
cesses driven by a stable noise, high moments may diverge. In Section 3 we
will construct the sequence of processes {Y (™} which satisfies the local mar-
tingale problem

for all ¢ € 2(3A),,
27(8) = exp(~(V", ) - [ exp(—(¥", )
™ x (—(YS, LAg)+ 1n /Rd /li(exp(—)\db(x)) — 1+ A(x))

x A1 gr Y (x)?2 dx) ds

is an ZY(") local martingale,

where n = (2y(2y —1))/(I'(2 — 2y)). Observe that y*¥ = n [7(e™* — 1+
Ay)A~2"1 d ). Hence we expect that the above local martingale problem should
converge to the local martingale problem M as n — oo. For each n, the process
{Y ™Y} which satisfies M will be defined in Section 3 as a solution of some
SPDE driven by a point process without jumps smaller than 1/n. We do not
give a precise definition of this SPDE here as this would require a significant
amount of notation.

The rest of the paper is organized as follows. The basic tools needed for the
implementation of the duality technique in our particular case are introduced
in Section 2. Some simple properties of any solution to M" are also presented
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in Section 2. Section 3 contains the construction of the approximating sequence
of dual processes and, by means of this sequence, we prove Theorem 1.1.

2. Properties of solutions to M” and duality tools. We start with a
moment condition result.

LEMMA 2.1.  Assume that p > 2 and v € 2,(C,;). Let X be any solution of
the martingale problem for M”. Then for each T' > 0 we have

(2.1) supsup E [ X (¢, x)P] < oc.
t<T xeR

The proof of Lemma 2.1 is omitted, since it is standard (e.g., the reader may
adapt the arguments from the proof of Proposition 4.2 in [7]).

Our goal is to prove that any two solutions to M” have the same finite-
dimensional distributions. It is well known that as we deal with the solutions
of the martingale problem, the problem can be transformed into the simpler
one: to verify uniqueness of the one-dimensional distributions (see [2], Theo-
rem 4.2). However, our attempt to use Theorem 4.2 in [2] directly met with
some technical difficulties that we will try to describe below. Suppose that X
is any solution to M?” and

FX) - [ 8(X,)ds

is an %X martingale. Then g will be an unbounded function on Ctyp for any
usual function f. [For example, we can take f,(X) =exp{— (X, ¢)} for some
¢ € 9(%A)+, and then the corresponding g, found by It6's formula, is un-
bounded.] Hence we cannot use Theorem 4.2 in ([2], Chapter 4) since it re-
quires that all functions be bounded. However, a careful examination of the
proof of this theorem leads us to the conclusion that this condition is not
essential. Therefore, we can present the following lemma (which is just the
reformulation of Theorem 4.2 in [2], Chapter 4, for our case):

LEMMA 2.2. Let p > 2. Suppose that for each v € ,@p(C:;p) any two solu-

tions X!, X? of the martingale problem for M* have the same one-dimensional
distributions. That is, for each ¢ > 0,

(2.2) P{X;el}=P{X;eT}, Tezn(Cl,).

Then any two solutions of the martingale problem for M” have the same finite-
dimensional distributions (i.e., uniqueness holds).

PrROOF. The proof is completely analogous to the proof of Ethier and
Kurtz's Theorem 4.2 in ([2], Chapter 4). The only delicate point is that, at
some point, we need the fact that if P(X,)™! 2,(Clyp), then for each time
t>0,P(X,)tisalsoin 2,(Cl,p)- Lemma 2.1 assures that this is the case. O
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As a consequence of the previous lemma, we need to verify that for each
v e 2,(Cp) any two solutions to M” have the same one-dimensional distri-
butions. One approach for doing this involves the notion of an approximating
sequence of dual processes which was introduced in [8]. Section 3 is devoted to
the proof of the following proposition, which establishes the existence of such
a sequence of processes in our case.

PROPOSITION 2.3.  For each v € #,(C},,) and each ¢ € L*(R),, there exists

rap
a sequence of processes {Y (™} taking values in M such that Y(()") = ¢ and

(2:3) Efexp[—(¢, X/)]] = lim E[exp[—(¥}", Xo)]]
for every ¢ > 0 and each solution X to M* which is independent of Y ().

REMARK 2.4. The motivation for the construction of Y was briefly dis-
cussed in the Introduction.

REMARK 2.5. Note that Proposition 2.3 gives the unique characterization
of one-dimensional distributions of solutions to M" via the Laplace transform.
Therefore, Theorem 1.1 follows immediately from Proposition 2.3 (cf. [8], The-
orem 1.7).

Define
o2 e A e
(R+XR)= IPE (R_,_XR) ﬁﬁlp(t,x)e (R_,_XR),

k=0,1, i:0,1,2}.

The next lemma transforms the martingale problem M" into the martingale
problem in the “exponential form.”

LEMMA 2.6. Assume that p > 2 and v € Z,(C{,). Let X be any solution
of the martingale problem for M”. Let y eC" (R, x R), and

(2.4) /OT/Rlp(s, x)2dxds <oco  ¥T>0.
Then

exp(—(X,, ¥,))
(2.5)

- [ w (- (X g3+ 51X 02 - (X, ) ) ds

is an .7, %X martingale.
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ProoF. By the usual application of 1td’s formula we get that

exp(—(X,, ¥,))
= exp(—(Xo, o))

@8 ¢ [ exp(-{x,w)(-(x0 2aw) + 3122 - (%, 2} ) s

+ [ exp(-(X,, ) 42,0,

where Z () = fot Je ¥(s, ¥) Z(ds, dy) is an 7% square integrable martingale
[see Remark 1.2: the fact that ¢ € 2(Z) follows from Lemma 2.1 combined
with condition (2.4)].

The term exp(—(Xs, z,bs>) is bounded and Z (i) is a square integrable mar-
tingale; therefore, we get that the last term in (2.6) is also a martingale. This
completes the proof of the lemma. O

3. Dual approximation and proof of Theorem 1.1. As we have already
mentioned above, to prove Theorem 1.1 it suffices to prove Proposition 2.3 so
that we need to construct some approximating sequence of processes. The
motivation for our construction was briefly discussed in the Introduction.

Let us introduce further notation. For each m € My and n > 1, VE")(m)
denotes the unique weak nonnegative solution of the nonlinear equation

t
(3.1) v, =8,m— /0 S;_4(36,v2)ds,

where

2y
b = —~—" 2y-1
"I T2 —2y)"

In the following we fix n > 1. Proposition A.2 in [3] shows that for each m €
Mg,

Vi(m) e L2R)  Vt >0,
V(m) e L?((0, T] x R) vT > 0,

w — limy o Vgn)(m) =m.

Integrating (3.1) over the space variable, we obtain
o], =ty [
(3.2) H V¢ (m)Hl — m(1) anfo vil(m)| ds.

where |-||; and ||, denote the norms in L(R) and L2(R), respectively. More-
over, adapting the arguments used in the proof of Theorem 3.1 in [1], we
can get

(3.3) lim ii Vﬁ")(m)Hl —0 VmeM.
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Equations (3.2) and (3.3) imply that

[o¢] n 2
(3.4) /Onvg (m)[;dt==m(1) V¥me Mp.

In the following text, we adopt the convention Vg")(m) =m.
Let (0, 7, P) be a probability space which is sufficiently rich to contain all
the processes and random variables defined below.

LEMMA 3.1.  Assume that p > 2 and v € #,(C,;). Let X be any solution
of the martingale problem for M* defined on (Q2, .7, P). Then

Ex[exp(~{V{"(m), X1_,))]
= Ex[exp(—(V§"(m), X7))]

(3.5) LBy [/Oi exp(—(V"(m), X7_,))

n n 2
< BBV ) X )~ (V)2 X s
foreachme Mpand 0<¢t<T.
ProOOF. For each m € My, there exists {m,} € My such that
mp(dx) = ¢p(x)dx (m, is absolutely continuous with respect
to Lebesgue measure),
¢, € 2(30)N Crap Vk > 1,

mp=m inMpgp,as k — oo.

Theorem A in [5] implies that, in fact, Vﬁ")(mk) is the strong solution of

dv, 1 1

2ot CAv,— b t>0
(3.6) gt 2-0tT ot e

Vg = ¢y

In this case the function (s, x) = V(;_)s(mk)(x) satisfies the conditions of
Lemma 2.6, which immediately yields

Ex[exp(—(Vi(my), X1_)))]
= EX[exp(—(Vg")(mk), Xr))]

(3.7) L Ey |:/Ot eXp(_(Vg’Z)(mk), XT,S»

< H((Bu (V) X y) — (Vi) X2.) ds]
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foreach 0 < ¢t < T. Let & — oo. From Proposition A.2 in [3] we know that
VW(my) — VW (m) in L3((0, T] x R). The variable X takes values in Cf,.
Hence we get

lim (V{"(m;), X%_,) = (V{"(m), X%_,)
(3 8) k—o0
as, VO<t<T,Vli<gqg<?2.

Now, the result is immediate from (3.8), (3.7) and the uniform integrability
condition from Lemma 2.1. O

Let us construct the approximating sequence of dual processes {Y ("} as
follows.

Let {Tn)i,i = 1,2,...} be independent identically distributed exponen-
tial random variables with parameter «, = n?¥(2y — 1)/(I'(2 — 2y)) and let
{Z,;,i=1,2,...} be independent R, -valued random variables with the dis-
tributions given by

fbojl/n A2 dA

P(Z ->b)="""TJHN Vi >1
( n,i = ) ff/on )\_27_1 dr 1=
Note that
2y
3.9 ElZ |=—"——.

We suppose that {Tn,i,i =1,2,...}and {Z, ;,i = 1,2,...} are mutually
independent.

Fix arbitrary ¢ € L'(R),. Let AE") be a Levy pure jump process with jumps
{Z, ;, i=1,2,...} and corresponding times of jJumps given by

(3.10) T,i=> T, Vjix>L1l
k=1

Assume AYY = (¢, 1) and define 74" = ¢{A", s < t}.

The random variables {T', ;,, i =1,2,...} and {Z, ;, i = 1,2,...} deter-
mine the times and heights of the jumps of the process A™, and, as we will
see later, they will also control the times and “masses” of the jumps of the
desired process Y. However, for Y we will also need to determine the
spatial positions of the jumps. The positions of the jumps will be controlled
by random variables {U,, ;, i =1, 2, ...} defined later. For their definition the
following notation is important.

Let {G(f,-), f € L2(R)} be the collection of probability measures on R
such that

_ [a FP(x)dx

ara 713

VA C #(R).
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Now we are ready to define the M p-valued process Y iteratively as fol-
lows. Let

Y(dx) = $(x)dx.

Define the time change y(¢) and the o-algebra ;"

s |l 1
y(t):inf{s: [ 3V du> t}, 0<t<T,.,
o+ 2
> ) (n)
T = '9?7":1 va(Yg").

The time change y(¢) depends on n, but to simplify the notation we do not
make this dependence explicit. We use the convention inf & = co. Hence, we

can see that y(7T, ;) = oo if and only if f;° %||V(,[‘)(¢)||§du = Y{M()b, <

Tn,l'
Let
Y& = vy,  0<t<y(T,q)
(3.11) . " _
Yir,) =Yyr, -+ Zn1du,, iy(Th1) <o,
where

P, c|%")=PU, e Y% \)=GY'% ..

If ¥(T,.1) = oo, the construction of Y is finished since Y is defined on the
interval [0, co). Otherwise, we proceed in the same way until the first time
when y(T, ;) becomes infinite. To be more precise, for each £ > 1, let

G =F v o(Y$) Vv a(U,, j j < k),

Tn, k+1
$=V(Tn, 1)

w8) = inf{s: WL )+ VO )|Edu > t},

+

Tn,k <t=< Tn, k+1>

(n) (n) (n)
Y, = Vt—'y(Tn.k)(Y'y(Tn’k))’ V(T ) <t < V(T hs1)

(n) (n) .
YY(Tn,k+1) = YY(Tn,kH)* + Z”’ k+18Un,k+1 Ify(T”’ k+1) < 09,

where

~ (n) )
P(Uy 1 € 1950 = PUn s € Yyr, ) ) =G(Vyr, )

Note that, conditioning on %", the random variables U, ,,; and Z, ,,, are
independent. It is clear from the definition of y(¢) and Y™ that

vy =intfs: [P0 du = o,
0
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Let T% = inf{¢: y(¢) = oo}. From the construction and (3.3) it follows that
YE/’(‘)T*)(l) = Y(OZ)(l) = 0. On the other hand, we can use our construction
and (3.2) to see that

(n) (n) .
(3.12) (Y1) =A =bt,  t<T;.

From (3.9) we obtain that E[Z, ;] «, = b, and it follows easily that b, is the

compensator of A\, Also Y\"”)(1) > 0 for all ¢ > 0. This, together with (3.12),
yields that, in fact,

(3.13) T% = inf {t: A§”>—bnt=o},
(3.14) P(T; <o0)=1.

Define the point process ([4], 1.9)

p™: Dy € (0,00) > R, xR,
with countable domain D, given by
Dy ={Tp1,Tn 2 s Tps ...} N[0, T]
and
P (Tut)=(ZuwUns)s Ve=1,

where (Z,, , U, ;) are defined above.
The corresponding counting measure is defined as

N™(t,B) = N™ ((0,¢] x By =#{s € D m;s < t, p")(s) € B}
V>0, VB e #(R, xR).

Let " =N,-0 0{N"W(s, B); s < t+¢, Be % (R, x R)} and recall that

_ 2y(2y-1)
CT(2-2y)°

LEMMA 3.2. The compensator of N is

N®™(t, B; x B,) =

. /MT; Jo, J5, Y90 ()?2(A > n"H)A~2r 1 dx dA I
i .

n |?
L)

Proor. For all B e # (R, x R) we have

(3.15) E [N(”)(t, B)] <E [N<n>(t, R, x R)] = Kt < 00,
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which means that N™(¢, B, x B,) is an adapted integrable increasing process.
By the Doob—Meyer theorem, the compensator N™(¢, B, x B,) of this process
exists, and it may be found as (see [2], Chapter 2 , proof of Theorem 5.1)

N®(¢, B, x B,)
(3.16) t
— P-lim
o)

1
n [ SE[N"(s+8, By x By) = N"(s, By x By) | 7] ds.
0

Now, use the definition of the point process p™ to handle the above limit and
get the desired result. O

From the previous lemma and the construction of Y“ﬁ), it can be verified
that Y™, in fact, satisfies the local martingale problem M from the Introduc-
tion. However, we omit the derivation of this fact since we can prove Proposi-
tion 2.3 without using it directly.

Define
2

ds,
2

W= [ v
(@) =y(k)rt  Vk=1,

g(u,y)= /Oi(e*)‘y —1+Ay)A 2 dA VYu,y >0,

and check that
(3.17) r(ifk(t)) =71(t)nk Vk > 1.

LEMMA 3.3. Assume that p > 2 and v € 2,(C{,,). Let X be any solution of
the martingale problem for M”, independent of Y. Then

E [exp(—<Y§’,§2t), Xr_5,0)]
= Elexp(—(Y{", X1))]

3.18 Ve(t) n
(3.18) _ %E[n/o exp(—(Ygf), Xr_))

x /R (Y (x)g(1/n, X p_y(x)) dx ds} Vo<t<T.

PrOOF. By Lemma 3.1 we obtain that
(n)
EX[EXp(_(Yy(T,,, i X1y, )]

(n)
= EX[eXp(_<Yy(Tn_k)’ XT—«/(Tn,k)m

1 V(Tn, k+1> (n)
ok [/y(Tmm (Y=, Xr-0)

(B (V. X )= (V0 X7 ds |
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for each 0 < y(T, ;1) < T. (X is continuous; hence X, = X, forall u > 0.)
This together with the definition of Y implies that

Ex[exp(—(Y{", X1_,))]
=Ex [exp(—<Y(()"), X))

e[ oY, X (b FOR. X

(3.19) s
(PR X7 ds|

(t) .
* /0 /R/R+ EX[exp(—<Y£/(g)7, XT*Y(S)»](exp(_/\XTfy(s)(x)) —-1)]
x N"™(dAdx ds)

for 0 <t < T. Note that
¥ = n/ (e —1+ay) A2 tdA
0+
o0
=ng(l/n,y)+ nfl/ (e —1) A2 tdA+b,y Vy=DO.
n

Therefore
Ex[exp(—(Y{", X7_,))]
= EX[exp(—(Yé"), X7))]

_ %Ex[n /0 t exp(—(Y$, X;_,)) fR (Y (x)g (1/n, Xp_(x)) dax ds]
20y [ [ [, Exlexe(-(¥ih . X oD leXp(-AXr i (x) - 1]
x N(dA dx ds)
i "By [exp(_<yg">, Xr)
< [V [ Z(exp(—)\XT_s(x)) _1a2lda dx] ds.

It is easy to check (see, e.g., Exercise 12 in [2], Chapter 6) that
}n/tEX exp(—(Yg'i), Xp.y)
2o -

x /R (Y)?(x) /1 Z(exp(—AXT_s(x)) — 1) 1dA dx} ds
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(t) 1
(n) (n) 2
=" 0 Ex [EXp(_<YV(S)—’ XT**/(S)))/]R ”Y(n) ”2(Y~/(s)—) (%)
y(s)— 112

X /l/n (exp(_/\XT—y(s)(x)) - 1)/\72771 dA dx:| ds

7(¢)
(n)
:/o /R/R Ex[exp(—{Y 0> X1yo))
x (exp(=AX 7_y5)(x)) — 1)]N(”)(d)\ dx ds).

Let

_ [ )
M, = /0 A-g/R Ex[exp(=(Y,) - Xr-ysyvo))

x (exp(=AX (7_ygyv0(x)) — )N (dA dx ds)

! (n)
- fo /R /R Ex[exp(—{Y - X (1—ys)v0))
X (exp(—)\X(T,y(s))vo(x)) — l)]N(n)(d/\ dx dS)
Then M, is an %,"-martingale (see [4], Chapter 2.3). Since 7(t) is not a bounded

stopping time, we use truncation arguments. The definition of y,(¢) together
with (3.17) and (3.20) implies that

Ex[exp(—<Y§’,Zit), X1 5,0)]
= Ex[exp(—(¥¢", X1))]

Y (%) n
(3.21) - Ex[n fo exp(—(Y\, X1_,))

< [ (VY (a/m, Xp ) drds]
+ M i)k

Whereas 7(¢) A k is a bounded stopping time, the optional sampling theorem
implies that M., is an 74, , martingale. Taking the expectation of both
sides of (3.21), we get the desired result. O

LEMMA 3.4. Let X be as in Lemma 3.3. Then

(3.22) Jim | Efexp(~(Y3 ). X715, )] ~ Ex[exp(-{¥5"”, Xq])]| =0

VO<t=<T,

where %k, = Inn.
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ProoF. Let C; denote a constant whose value depends on 7" and X,. In
the following text, C; may change from line to line. Having in mind the simple
inequality

O<e

we get
| Vi (t)
| @ (n\2
iE[T, [ exp (¥, x,,) [ (V2 )
1/n |
X / (exp(—AX p_y(x)) = 14+ AXp_o(x))A" 2 dArdx ds]l
0+ I

| Vi (t) n in |
< ”iE[/o fR(Yéﬁ)z(x)%XT,s(x)Zfo+ AL ZVdAdxds}i

Vi(t)
< CTEY[ /0 " /R (V)2 (x)n?2 da ds}

< CTkn2772,

where the second inequality follows from (2.1), and the third one follows from
the definition of ¥,(¢). We will assume subsequently that 2 = £, = Inn. Then
we have

|E[exp[~(Y ), X1s, )] - Ex[exp(—(¥(", X )]
< Cr(Inn)n®2,

and letting n — oo, we are done, since 2y —2 < 0. O

(3.23)

LEMMA 3.5. Let X be as in Lemma 3.3. Then
tim | E[exp(—(¥) ), Xo))] - Ex[exp(~(#, )] =0 vi=0,
where ¢ = Y.
ProoOF. By (3.22) it is sufficient to show that
,!LTJE[QXP(—(YE;ZQ)’ X 5,0)] - E[exp(_<Y§72(t)’ Xo))]| =o0.
Since y, () < t, it is obvious that
E[eXp(_<Y§7r;:3(t)’ X, 5, 0)] — Elexp _(Y(&Zi(t)’ Xo))]

= E[exp(—(Y(&'Z(t), X5, )~ exp(—(Ygzz(t), Xo)); ¥, (2) < t].
Therefore,

lim IE(EXP(_<Y%:(0> thm(t)))]_E[EXP(_(Y(yzz(t)’ Xo))]| = lim P(3,, () < ).

n—oo
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However, P(y, (¢) <t) < P(T;, > k,), where, as we remember,
T: =inf{t: A" —b,t =0}

and P(T% < oo) = 1. It is well known that, as n goes to infinity, Aﬁ”’ —b,t
converges weakly to L, a stable process without negative jumps. It is easy to
verify that T, = T, where

T* = inf {t: L, = 0},
P(T* < o) = 1.

This implies that {T,n > 1} is a tight set of R, -valued random variables.
Therefore,

lim P(T; > k,)=0.
This completes the proof of the lemma. O

PROOF OF PROPOSITION 2.3. Let us define ¥{" = Y(i';) (- Then Lemma 3.5

implies that {¥'", n > 1} is the sequence of the processes such that for any
solution X to M”, independent of Yﬁ'”, we have

lim | E[exp(~(7”, X)] - E[exp(~(6, X )] =0

n—oo

Since v € Z,(Cy,) and ¢ € LY(R), were arbitrary, we are done. O
REMARK 3.6. The proof of Theorem 1.1 is now complete (see Remark 2.5).

Conclusion. We believe the method of proving uniqueness in this case
was interesting since it allowed us to avoid the difficulties associated with
the nonexistence of high moments for the stable processes. In this paper, we
did not deal with the weak convergence result for the dual processes, since
our concern was only to prove uniqueness for the specific stochastic partial
differential equation. We intend to consider the question of stochastic partial
differential equations driven by stable noise in a forthcoming paper.
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