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PALM MEASURE DUALITY AND CONDITIONING IN
REGENERATIVE SETS

By Olav Kallenberg

Auburn University

For a simple point process � on a suitable topological space, the associ-
ated Palm distribution at a point s may be approximated by the conditional
distribution, given that � hits a small neighborhood of s. To study the corre-
sponding approximation problem for more general random sets, we develop
a general duality theory, which allows the Palm distributions with respect
to an associated random measure to be expressed in terms of conditional
densities with suitable martingale and continuity properties. The stated
approximation property then becomes equivalent to a certain asymptotic
relation involving conditional hitting probabilities. As an application, we
consider the Palm distributions of regenerative sets with respect to their
local time random measures.

1. Introduction. Palm measures were originally devised to deal with
problems involving conditioning in point processes [cf. Matthes, Kerstan and
Mecke (1978), Daley and Vere-Jones (1988) and Kallenberg (1986)]. In that
context, let � be a locally finite random set on a suitable topological space S
and introduce the elementary conditional distributions QI = P�� ∈ ·�� ∩ I �=
�� where I is a bounded Borel set in S. General results such as Theorem 12.8
of Kallenberg (1986) ensure that, as I shrinks toward a single point s ∈ S, the
measures QI converge in a suitable average sense to the Palm distribution
Qs at s.

Our present aim is to study the corresponding approximation problem for
random sets � that are not necessarily locally finite. Since trivially QI → Q
s�
when P
s ∈ �� > 0, we may restrict our attention to random sets � such that
s �∈ � a.s. for all s ∈ S. The stated conditions are satisfied (outside the origin)
for broad classes of regenerative sets—the archetype being the zero set of
Brownian motion—and we shall use such sets as test objects for our general
theory. [For an elementary introduction to regenerative sets, see Chapter 19
in Kallenberg (1997).]

The modern definition of Palm distributions is based on random measure
theory. Assuming � to be locally finite, we may introduce the associated ran-
dom counting measure ξB = card�� ∩B
, where B ∈ ��S
, the class of Borel
sets in S. If the corresponding intensity measure Eξ is σ-finite, the Palm
distributions of � with respect to ξ are defined by the formula

QsA = E�ξ�ds
� � ∈ A�
Eξ�ds
 � s ∈ S� A ∈ � �
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946 O. KALLENBERG

where E�ξ�A� = ∫
A ξdP as usual. Here � denotes the σ-field in the space of

closed subsets F ⊂ S [cf. Chapter 14 in Kallenberg (1997)]. Since � is measur-
ably determined by ξ, we may prefer to consider the Palm distributions of the
random measure ξ itself, which are defined in a similar way. Under suitable
conditions on S, for example when S is locally compact, second-countable, and
Hausdorff (henceforth abbreviated as lcscH), the associated spaces of sets and
measures are Borel, which ensures the existence of regular versions of the set
functions Qs.

Though the definition of Palm measures continues to makes sense for any
random measure ξ with σ-finite intensity Eξ, there is no reason in general
why the mentioned approximation property should remain valid. Indeed, one
may easily construct two random measures ξ and η with the same support �
but with different Palm distributions. If the approximation property holds for
ξ, it will then necessarily fail for η. Often in applications, the random closed
set � is given, and it becomes a challenging problem to find an associated
random measure ξ with appropriate approximation properties. Though there
is often a natural candidate for ξ, no general approch to the approximation
problem seems to be available, and it may be necessary to examine each case
separately.

To provide a convenient framework for such studies, we shall develop a
duality theory that applies under weak regularity conditions on ξ. In the sim-
plest setting, let � be a sub-σ-field in the basic probability space � such
that the conditional intensity measure E�ξ�� � is a.s. absolutely continuous
with respect to the unconditional version Eξ. We may then choose the associ-
ated density X to be an � -measurable process on S, in which case the Palm
measures Ps on � may be represented as Ps = Xs · P or, equivalently, as
PsA ≡ E�Xs�A�.

Typically the condition E�ξ�� � � Eξ is not fulfilled for the entire σ-field
�̂ of interest, so we may have to apply the previous construction to a suit-
able family of generating sub-σ-fields � ⊂ �̂ . For each � we obtain an as-
sociated set of Palm distributions P�

s = X�
s P on � , and to guarantee the

existence of an extension to �̂ , we need to impose a consistency constraint
on the family 
P�

s �. The required condition turns out to be equivalent to the
martingale property of the density process X�

s , regarded as a function of �
for fixed s. Thus, we see how martingales indexed by directed sets [previ-
ously studied extensively, for example by Krickeberg (1956), Kurtz (1980) and
Ivanoff, Merzbach and Schiopu-Kratina (1993)] arise naturally in the present
context.

With the indicated construction, the Palm measures Ps are still defined
only up to the values on an Eξ-null set, which leaves us with some freedom to
select convenient versions. An especially attractive case is when the densities
X�

s can be chosen to be L1-continuous in s for fixed � , since the associated
Palm measures Ps will then be continuous in total variation on � . Under
those conditions, the previously described approximation property becomes
equivalent to a certain asymptotic relation involving the conditional hitting
probabilities P�ξI > 0�� �. Thus, the inherent duality enables us to study
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the basic continuity and approximation properties of Palm distributions in
terms of associated properties of the more accessible conditional intensities
and hitting probabilities. As a further benefit of the general theory, we shall
see how the martingale property required for consistency holds automatically
in the continuous case.

The basic principles of duality are developed in Section 3 below, following
an auxiliary Section 2 that lists some technical preliminaries. In Sections 4
and 5 we shall see how the general theory applies to an extensive class of
regenerative sets. For the latter it is natural to choose ξ as the associated
local time random measure, the measure on R+ induced by the generating
subordinator X. To ensure the required absolute continuity, we adopt from
Kallenberg (1981) the exceedingly weak condition (C), the requirement that
the characteristic functions µ̂t of Xt be integrable for all t > 0. This implies
µt ≡ P ◦X−1

t � λ for every t > 0 with a continuous density pt, and we get
Eξ = p · λ with p = ∫∞

0 pt dt. (Here λ denotes Lebesgue measure on R+ and
p · λ is the measure with λ-density p.)

Now let �a denote the σ-field generated by 1�0� a� · ξ, the restriction of ξ
to �0� a�. In Proposition 4.5 we show that a.s. E�ξ��a� � λ on �a�∞
 and we
provide an explicit representation of an associated density process Ma with
required martingale and continuity properties. By duality we get a correspond-
ing expression for the associated Palm distributions, and in Theorems 5.5 and
5.6 the latter are shown to possess desirable continuity and approximation
properties at every continuity point of p.

Primitive versions of the quoted results for regenerative sets were stated
more or less explicitly already in Section 4 of Kallenberg (1981). Unfortunately,
the earlier proofs are flawed by some rather subtle gaps that are not easily
filled. Though our present purpose is quite different: to exhibit the power
of the basic duality theory in an important special case, we shall also, as a
by-product of our general discussion, supply complete proofs of the basic theo-
rems in the regenerative case. Other applications of interest will be considered
elsewhere.

2. Some technical preliminaries. In order to avoid subsequent inter-
ruption by technical details, we have collected in this section some elementary
results on measures and densities that will be needed later. The reader might
skip to Section 3 and return for reference when required.

The following result shows how an order relation between two absolutely
continuous measures may carry over to the associated densities.

Lemma 2.1. Consider some σ-finite measures λ and µ ≤ ν on a metric space
S such that µ = p · λ and ν = q · λ where p is lower semicontinuous. Then
p ≤ �q�∞ on suppλ.

Proof. Since µ ≤ ν, we have �q − p
 · λ ≥ 0, and so p ≤ q a.e. λ. Fixing
any s ∈ suppλ, we may choose some sn → s with p�sn
 ≤ q�sn
 for each n.
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Using the semicontinuity of p, we get

p�s
 ≤ lim inf
n→∞ p�sn
 ≤ lim inf

n→∞ q�sn
 ≤ �q�∞� ✷

The next result gives conditions for L1-convergence of the integrals of a
sequence of random processes.

Lemma 2.2. Let X�X1�X2� · · · ≥0 be measurable processes on some σ-
finite measure space �S�µ
 such that Xn

s →P Xs for µ-a.e. s ∈ S and
E

∫
Xn dµ→ E

∫
Xdµ. Then

∫
Xn dµ→ ∫

Xdµ in L1�P
.

Proof. Since µ is σ-finite, we may choose some measurable function f > 0
on S such that µf <∞. By dominated convergence,∫

E��Xn
s −Xs� ∧ 1
fs µ�ds
 → 0�

and so Xn →X in P⊗ �f · µ
-measure. Applying Lemma 1.32 in Kallenberg
(1997) to any a.e. convergent subsequence, we get Xn → X in L1�P ⊗ µ
.
Hence,

E

∣∣∣∣
∫
Xn dµ−

∫
Xdµ

∣∣∣∣ ≤ E
∫
�Xn −X�dµ→ 0� ✷

We proceed to show that, under suitable conditions, the martingale property
of an absolutely continuous, measure-valued process carries over to the process
of densities.

Lemma 2.3. Fix a σ-finite measure µ on some metric space �S�� 
 and
an x ∈ suppµ. Let �ξt
 be a measure-valued martingale on S with induced
filtration � such that ξt =Mt ·µ a.s. for each t, where Mt is �t⊗� -measurable
and L1-continuous at x. Then Mt

x is a martingale in t.

Proof. Fix any times s ≤ t, and let A ∈ �s and B ∈ � . By Fubini’s
theorem and the martingale property of ξ, we have∫

B
E�Ms

y�A�µ�dy
 = E

[∫
B
Ms

y µ�dy
� A
]

= E�ξsB�A� = E�ξtB�A�

= E

[∫
B
Mt

y µ�dy
� A
]

=
∫
B
E�Mt

y�A�µ�dy
�

Here B is arbitrary, and so E�Ms
y�A� = E�Mt

y�A� for y ∈ S a.e. µ. Since x ∈
suppµ, we may choose some xn → x with E�Ms

xn
�A� = E�Mt

xn
�A� for all n. By

the L1-continuity on each side, the relation extends to E�Ms
x�A� = E�Mt

x�A�,
and since A is arbitrary we get Ms

x = E�Mt
x��s� a.s. ✷
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The following result gives the uniqueness of the density. Recall that L0

denotes the space of finite random variables with the topology of convergence
in probability.

Lemma 2.4. Fix a σ-finite measure µ on some metric space S and let X
and Y be measurable and L0-continuous processes on S with X ·µ = Y ·µ a.s.
Then Xs = Ys a.s. for all s ∈ suppµ.

Proof. Since �X−Y
 · µ = 0 a.s., we have

µ
s ∈ S� Xs �= Ys� = 0 a.s.�

and since X and Y are measurable, Fubini’s theorem yields Xs = Ys a.s.
for µ-a.e. s ∈ S. Fixing any s ∈ suppµ, we may choose some sn → s with
Xsn

= Ysn
a.s. for all n. Then Xsn

→P Xs and Ysn
→P Ys, and so Xs = Ys

a.s. ✷

The next result expresses the total variation of a signed measure Q = α ·P
in terms of the density α. Here �µ�� denotes the total variation of µ on the
σ-field � . Note that �µ�� = supf �µf�, where the supremum extends over all
� -measurable functions f with �f� ≤ 1.

Lemma 2.5. If Q = α ·P with α ∈ L1, then for any sub-σ-field � in �,

�Q�� = E�E�α�� ���

Proof. For any � -measurable random variable ξ with �ξ� ≤ 1, we have∣∣∣∣
∫
ξ dQ

∣∣∣∣ = �E�ξα
� = �E�ξE�α�� �
� ≤ E�E�α�� ���

with equality when ξ = sgnE�α�� �. ✷

We conclude with a simple estimate of the total variation distance between
two product measures.

Lemma 2.6. Let µ1� � � � � µn and ν1� � � � � νn be probability measures on some
measurable spaces S1� � � � � Sn. Then∥∥∥∥⊗

k

µk −
⊗
k

νk

∥∥∥∥ ≤∑
k

�µk − νk��

Proof. For any probability measures µ� ν on S and µ′� ν′ on T, we have

�µ⊗ µ′ − ν ⊗ ν′� ≤ ��µ− ν
 ⊗ µ′� + �ν ⊗ �µ′ − ν′
�
= �µ− ν� + �µ′ − ν′��

Now continue by induction. ✷
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3. General duality theory. We are now ready to develop the general
duality theory outlined in Section 1. The basic duality relation between Palm
measures and conditional intensity measures is displayed in Proposition 3.1.
In Proposition 3.2 we show how the fundamental continuity and approxima-
tion properties of Palm measures are equivalent to certain continuity and
convergence properties of the corresponding density processes. Proposition 3.3
shows how the consistency of a family of Palm measures translates into a mar-
tingale property for the associated family of density processes; in addition, it
provides the previously advertised relationship between continuity and mar-
tingale properties. The extension of a consistent family of Palm measures is
examined in Proposition 3.4. Finally, a general criterion for tightness and ap-
proximation in the vague topology is provided in Proposition 3.5.

To introduce the basic notation, let ξ be a random measure with σ-finite
intensity measure Eξ, defined on some measurable space �S�� 
. For any
random element η in some measurable space �T�� 
, we define the Palm
probabilities Qs�C
 = QsC as the Radon–Nikodym derivatives

QsC =
E�ξ�ds
� η ∈ C�

Eξ�ds
 � s ∈ S� C ∈ � �

If the space T is Borel, we may choose the function �s�C
 �→ QsC to form a
probability kernel �Qs
 from S to T, in which case we refer to the individual
measures Qs as Palm distributions of η with respect to ξ. In particular, we
may fix a suitable sub-σ-field � in the basic probability space ���� �P
 and
let η be the identity mapping from ���� 
 to ���� 
. In that case, we may
write Ps instead of Qs and refer to �Ps
 as the set of Palm distributions on �
with respect to ξ.

For any ξ and � as above, we shall also consider the set of conditional
expectations E�ξB�� �, B ∈ � . If even S is Borel, we may choose the function
B �→ E�ξB�� � to be a random measure onS, the so-called conditional intensity
E�ξ�� � of ξ given � .

The following basic duality relationship between Palm measures and con-
ditional intensities is suggested by the componentwise disintegrations of the
so-called Campbell measure E�ξB� η ∈ C� on S×T.

Proposition 3.1. Fix two Borel spaces �S�� 
 and �T�� 
, let ξ be a ran-
dom measure on S with σ-finite intensity Eξ, and let η be a random element
in T. Then the Palm distributions Qs of η with respect to ξ and the conditional
intensity E�ξ�η� both exist, and the following two conditions are equivalent:

(i) E�ξ�η� � Eξ on � a.s. P;
(ii) Qs � P ◦ η−1 on � a.e. Eξ.

Under (i) and (ii), the Palm measures Ps exist on � = σ
η�, and we have:

(iii) Ps � P on � a.e. Eξ.

Furthermore, product-measurable densities exist in all three cases, and any
such density in (i) or (iii) is a density for both.
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Proof. Since S and T are Borel, the existence of the Palm distributions
Qs and the conditional intensity E�ξ�η� may be proved as in Theorem 5.3
of Kallenberg (1997). Since � , � , and � are all countably generated, it is
also clear from Theorem V.58 in Dellacherie and Meyer (1980) that product-
measurable densities exist in all three cases.

Now assume (ii) with an � ⊗� -measurable density f. Define a kernel �Ps

from �S�� 
 to ���� 
 by

PsA = E�f�s� η
�A�� s ∈ S� A ∈ � �

and note that (iii) holds with density f�s� η
. Fix any A ∈ � and B ∈ � , and
choose a C ∈ � with A = η−1C. Using Fubini’s theorem and the definitions
of Ps and Qs, we get

∫
B
�PsA
Eξ�ds
 =

∫
B
E�f�s� η
� η ∈ C�Eξ�ds


=
∫
B
Eξ�ds


∫
C
f�s� t
P ◦ η−1�dt


=
∫
B
�QsC
Eξ�ds


= E�ξB� η ∈ C� = E�ξB�A��

Thus, the Ps are Palm measures on � with respect to ξ.
Next assume (iii) with an � ⊗ � -measurable density X. Letting A ∈ �

and B ∈ � , we get by Fubini’s theorem and the definitions of Ps and E�ξ�η�

E�E�ξB�η��A� = E�ξB�A� =
∫
B
�PsA
Eξ�ds


=
∫
B
E�Xs�A�Eξ�ds


= E

[∫
B
XsEξ�ds
�A

]
�

Since A is arbitrary and both integrands are � -measurable, we get

E�ξB�η� =
∫
B
XsEξ�ds
 a.s., B ∈ � �

and S being Borel, we may choose the exceptional null set to be independent
of B. Thus, (i) holds with the same density X.

Conversely, assume (i) with an � ⊗ � -measurable density X. Define a
kernel �Ps
 from �S�� 
 to ���� 
 by

PsA = E�Xs�A�� s ∈ S� A ∈ � �
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and note that (iii) holds with density X. Using Fubini’s theorem and the
definitions of X, Ps and E�ξ�η�, we get for any A ∈ � and B ∈ � ,

∫
B
�PsA
Eξ�ds
 =

∫
B
E�Xs�A�Eξ�ds


= E

[∫
B
XsEξ�ds
�A

]

= E�E�ξB�η��A� = E�ξB�A��
Thus, the Ps are Palm measures on � with respect to ξ. To deduce (ii), we
may write

QsB = Ps
η ∈ B� = E�Xs� η ∈ B�� s ∈ S� B ∈ � �

and note that the right-hand side vanishes when P
η ∈ B� = 0. ✷

Now assume that S is lcscH. In the context of Proposition 3.1, we shall
establish a basic relationship between continuity properties of the Palm mea-
sures and the conditional density process. Write �µ�� for the total variation
of the signed measure µ on the σ-field � and denote the corresponding con-
vergence �µn −µ�� → 0 by µn →tv µ. For any sets I ∈ � with EξI ∈ �0�∞
,
we define

PI = P� · �ξI > 0�� ρI =
P�ξI > 0�� �
P
ξI > 0� �

P′I =
E�ξI� · �
EξI

� ρ′I =
E�ξI�� �
EξI

�

By I ↓ s we mean that s ∈ I and that I is ultimately contained in any fixed
neighborhood of s.

Proposition 3.2. Let Ps = Xs · P on � a.e. Eξ, where X is � ⊗ � -
measurable with EX ≡ 1. Then for any points r� s ∈ S and sets I ∈ � with
EξI ∈ �0�∞
, we have:

(i) Pr →tv Ps on � iff Xr →P Xs;
(ii) PI →tv Ps on � iff ρI →P Xs;

(iii) if X is L0-continuous at s, then P′I →tv Ps on � and ρ′I →P Xs as
I ↓ s.

Proof. (i) By Lemma 2.5 we have

�Pr −Ps�� = E�Xr −Xs�� r� s ∈ S�
Furthermore, E�Xr −Xs� → 0 iff Xr →P Xs since EXr = EXs = 1.

(ii) Noting that

P�A� ξI > 0� = E�P�ξI > 0�� ��A�� A ∈ � �
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we get PI = ρI ·P on � . Hence, Lemma 2.5 yields

�PI −Ps�� = E�ρI −Xs�� s ∈ S� I ∈ � with EξI ∈ �0�∞
�
Since EρI = EXs = 1, the assertion follows as before.

(iii) Writing

E�ξI�A� = E�E�ξI�� ��A�� A ∈ � �

we get P′I = ρ′I ·P on � , and so as before

�P′I −Ps�� = E�ρ′I −Xs�� s ∈ S� I ∈ � with EξI ∈ �0�∞
�
Since Eρ′I = EXs = 1, we conclude that P′I →tv Ps on � iff ρ′I →P Xs. Now
Proposition 3.1 yields E�ξ�� � =X ·Eξ, and hence

ρ′IEξI = E�ξI�� � =
∫
I
XrEξ�dr
�

Therefore,

E�ρ′I −Xs� ≤ �EξI
−1
∫
I
E�Xr −Xs�Eξ�dr
 ≤ sup

r∈I
E�Xr −Xs��

If X is L0-continuous at s, then the right-hand side tends to 0 as I ↓ s, and
we get E�ρ′I −Xs� → 0. ✷

The last result shows that, if X is L0-continuous at some point s ∈ suppEξ,
then the associated Palm measure Ps is well defined by continuity and may
be approximated as I ↓ s by the probabilities P′I. We may even approximate
by the elementary conditional distributions PI, provided that ρI − ρ′I →P 0.
It is suggestive to write the latter condition as

P�ξI > 0�� �
E�ξI�� � ∼P

P
ξI > 0�
EξI

�

where ∼P denotes asymptotic equivalence in the sense of convergence in prob-
ability. This shows that the problems of approximating Palm measures and
conditional hitting probabilities are essentially equivalent.

To examine the dependence on the σ-field � , fix a measurable space ���� 

and a class � of sub-σ-fields � ⊂ � , and consider for each � ∈ � a probability
measure µ� on � . Say that the measures µ� are consistent if

µ� A = µ�A� A ∈ � ∩� � � � � ∈ � �

Writing �̂ for the class of sub-σ-fields � ⊂ � ∈ � , it is clear that the collection

µ� � extends uniquely to a consistent family indexed by �̂ . Without loss of
generality, we may then assume that � is ideal in the sense that � ⊂ � ∈ �
implies � ∈ � . In that case, we define a martingale on � as a process M� ∈
L1�� 
, � ∈ � , with

M� = E�M� �� �� � ⊂ � in � �

In the context of Palm measures, we may relate the consistency to suitable
martingale and continuity properties.
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Proposition 3.3. Fix a random measure ξ on S with σ-finite intensity Eξ
and an ideal class � of sub-σ-fields � ⊂ � . For each � ∈ � , consider an
� ⊗ � -measurable process �M�

s 
 such that the measures P�
s = M�

s · P are
Palm distributions on � with respect to ξ. Then for fixed s ∈ S, the family

P�

s � is consistent iff M�
s is a martingale in � . This holds in particular if

s ∈ suppEξ and M� is L1-continuous at s.

Proof. For any A ∈ � ⊂ � , we have

P�
s A = E�M�

s �A� = E�E�M�
s �� ��A��

Thus, P�
s = P�

s on � iff

E�E�M�
s �� ��A� = E�M�

s �A�� A ∈ � �

which is equivalent to the martingale property of Ms. Furthermore, it is seen
as in Proposition 3.1 that E�ξ�� � =M�

s ·Eξ a.s. Since the kernels E�ξ�� � form
a measure-valued martingale, the last assertion follows by Lemma 2.3. ✷

We may now specialize to the case of Palm distributions Qs of a random
measure ξ with respect to itself. For s ∈ I ⊂ S with I open, let QI

s denote
the Palm distribution of the restriction of ξ to the complement Ic. The duality
theory may often be exploited to yield specific versions of the measures QI

s ,
and we need to extend the latter to a set of Palm distributions Qs on the whole
space S. The extension clearly requires the family 
QI

s� to be consistent, which
may be verified by means of the criteria in Proposition 3.3.

For precise statements, let πIµ denote the restriction of the measure µ to
the complement Ic. The measures QI

s are said to be consistent if

QJ
s = QI

s ◦ π−1
J � s ∈ I ⊂ J ⊂ S�(3.1)

In that case, we are looking for versions Qs of the full Palm distributions
satisfying

QI
s = Qs ◦ π−1

I � s ∈ I ⊂ S�(3.2)

Proposition 3.4. Let ξ be an a.s. diffuse random measure on S with locally
finite intensity Eξ, and consider a consistent family of Palm distributions QI

s

on Ic, where s ∈ I ⊂ S with I open. Then there exist unique extensions of the
measures QI

s to Palm distributions Qs on S with Qs
µ� µ
s� = 0� = 1.

Proof. Fix any s ∈ S and choose a sequence of neighborhoods In ↓ s.
By the consistency in (3.1) and the Daniell–Kolmogorov theorem, there exists
some probability measure Qs satisfying (3.2) for all In. The general relation
in (3.2) then follows by means of (3.1). The value Qs
µ� µ
s� = 0� remains
arbitrary and may be chosen as 1, which determines Qs completely as the
distribution of a random measure on S.

Now fix any compact set K and a dissecting system of subsets Inj ⊂ K,
as defined in Chapter 10 of Kallenberg (1997). Next choose some open sets
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Gnj ⊃ Inj with Gn�s
 ↓ s for each s ∈ K, where Gn�s
 denotes the unique set
Gnj ⊃ Inj " s. If B ∈ � and s ∈ K, we have µ�B \Gn�s

 ↑ µB for Qs-a.e. µ.
Hence, for any B1� � � � �Bm ∈ � and r1� � � � � rm ≥ 0,

Qs

⋂
k


µ� µ�Bk \Gn�s

 ≤ rk� → Qs

⋂
k


µ� µBk ≤ rk��

Here the left-hand side is clearly measurable in s ∈K, and so the same thing
is true for the expression on the right. The general measurability now follows
by a monotone class argument.

Now fix any versions Q′
s of the Palm distributions of ξ. For any open set

I ⊂ S, the Palm distributions on Ic are unique up to an Eξ-null set, and
so Q′

s satisfies (3.2) for almost every s ∈ I. Here we may choose a common
exceptional null set N for all sets I belonging to some countable base 	 . Given
any s �∈ N, choose I1� I2� � � � ∈ 	 with In ↓ s and conclude by a monotone
class argument that Qs = Q′

s on 
s�c. Moreover, Qs
µ� µ
s� = 0� = 1 by
definition, and for Q′

s the corresponding value is 1 a.e. Eξ since ξ is diffuse.
Thus, Qs = Q′

s for almost every s, and so even the measures Qs are Palm
distributions. ✷

Further conditions may be needed to ensure that the measures Qs be tight,
in the sense that each Qs is the distribution of a locally finite random measure.
We shall establish tightness along with a related continuity property, stated
in terms of the weighted Palm distributions

QIB =
E�ξI� ξ ∈ B�

EξI
= �Eξ
−1

∫
I
�QsB
Eξ�ds
�

where I ⊂ S is measurable with EξI ∈ �0�∞
. Say that the Palm measures
Qs are mean continuous at some s ∈ suppEξ if I ↓ s implies QI →w Qs with
respect to the vague topology on 
 �S
, the space of locally finite measures on
S. To ensure mean continuity QIn

→w Qs along a specific sequence In ↓ s, we
may impose the requirement

lim
m→∞ lim sup

n→∞
EξIn�ξIm ∧ 1


EξIn
= 0�(3.3)

Proposition 3.5. Let ξ be a diffuse random measure on S with Palm mea-
sures Qs, whose restrictions are given by QI

s =MI
s · �P ◦ ξ−1
 for all s ∈ I ⊂ S

with I open, where the processes MI are L1-continuous. Fix an s ∈ suppEξ
with bounded neighborhoods In ↓ s satisfying (3.3). Then Qs is tight and
QIn

→w Qs with respect to the vague topology on 
 �S
.

Proof. By Lemma 2.5 we have �QI
In
−QI

s� → 0 for any neighborhood I of
s. In particular, QIn

→w Qs with respect to the vague topology on 
 �S \ 
s�
.
Furthermore, (3.3) yields

lim
m→∞ lim sup

n→∞

∫
�µIm ∧ 1
QIn

�dµ
 = 0�
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We may now conclude, as in Theorem 4.9 in Kallenberg (1986), that
Qs
µ� µIn <∞� = 1 and QIn

→w Qs. ✷

Under the stronger hypothesis

lim
J↓s

lim sup
I↓s

EξI �ξJ ∧ 1

EξI

= 0�

the same argument yields the unrestricted mean continuity at s. The conver-
gence Qt →w Qs as t→ s requires even stronger conditions.

4. Conditional densities of regenerative sets. We now specialize to
the case when � is an unbounded regenerative set with associated local time
random measure ξ. Recall that, in this case, there exists an a.s. unique subor-
dinator X such that a.s. ξB = ∫∞

0 1B�Xt
dt for all B ∈ ��R+
. In particular, X
has the continuous inverse Lx = ξ�0� x�. Furthermore, the closure of � agrees
a.s. with the support of ξ as well as with the closed range of X. An elemen-
tary introduction to regenerative sets and processes appears in Chapter 19
of Kallenberg (1997). For more detailed information, we refer to Maisonneuve
(1974) and to Dellacherie, Maisonneuve and Meyer (1987, 1992), Chapters XV
and XX.

To avoid trivialities, we assume that X has unbounded Lévy measure ν and
vanishing drift component. (Otherwise, � is a renewal process or P
x ∈ �� > 0
for all x ≥ 0, respectively.) We need the fact that

P
x /∈ �� = P
σ−x < x < σ+x � = 1� x > 0�(4.1)

where

σ−x = sup�� ∩ �0� x�
�
σ+x = inf �� ∩ �x�∞

� x ≥ 0�

The result in (4.1) is surprisingly hard in general. An equivalent statement
was originally conjectured by K. L. Chung and subsequently proved, inde-
pendently, by L. Carleson and H. Kesten [cf. Assouad (1971) and Bretagnolle
(1971)]. Under condition (C), however, the result is elementary and may be
easily deduced from Lemma 5.3 below.

The main result of this section is Proposition 4.5, which provides a condi-
tional density with nice properties. Some auxiliary results are needed for the
proof, and we begin with a basic formula that exhibits the joint distribution
of σ+x and σ−x and provides some pertinent information about the dependence
on the past. Say that a process Y on R+ is X-predictable if it is predictable
with respect to the right-continuous and complete filtration induced by X [cf.
Kallenberg (1997), Chapter 22].

Lemma 4.1. Consider an X-predictable process Y ≥ 0 and a measurable
function f% R

2
+ → R+. Then for any x > 0,

Ef�σ−x � σ+x 
Y�Lx
 = E
∫ x

0
Y�Lu
 ξ�du


∫ ∞
x−u

f�u�u+ v
 ν�dv
�(4.2)
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Proof. Let η denote the point process of jump times and sizes of X and
note that η is a Poisson process on �0�∞
2 with compensator η̂ = λ⊗ ν. First
we assume that f is supported by �0� x
 × �x�∞
. Noting that L�Xs
 ≡ s
and Xs = Xs− a.s., we get by dual predictable projection followed by the
substitution Xs = u,

Ef�σ−x � σ+x 
YLx
= E

∫ ∫
Ysf�Xs−�Xs− + v
η�dsdv


= E
∫ ∫

Ysf�Xs−�Xs− + v
ds ν�dv


= E
∫ ∫

YLu
f�u�u+ v
 ν�dv
 ξ�du
�

By (4.1) we may extend the relation to general f, in the form of (4.2). ✷

We need a simple application involving the measure-valued process,

ξtB = ξ��0�Xt� ∩B
 =
∫ t

0
1B�Xs
ds� B ∈ ��R+
� t ≥ 0�

Lemma 4.2.∫ x

0
ν�x− u�∞
Eξt�du
 = P
Xt > x�� x� t > 0�

Proof. Using Lemma 4.1 with f ≡ 1 and Ys = 1�0� t��s
, we get

P
Xt > x� = P
Xt ≥ x� = P
Lx ≤ t�

= E
∫ x

0
1
Lu ≤ t� ν�x− u�∞
 ξ�du


=
∫ x

0
ν�x− u�∞
Eξt�du
� ✷

Now define �a = σ�1�0� a�ξ
. For convenience we record the fact that σ+a and
�a are conditionally independent given σ−a , here suggestively expressed by
means of the symbol �.

Lemma 4.3. σ+a �
σ−a

�a� a > 0.

Proof. The result is an immediate consequence of the formula

P�σ+a > b��a� =
ν�b− σ−a �∞

ν�a− σ−a �∞


a.s., a < b�(4.3)

well known from excursion theory. [See, e.g., XV.88 or XX.70 in Dellacherie,
Maisonneuve and Meyer (1987, 1992).] Note that (4.3) can also be derived by
routine arguments from Lemma 4.1. ✷
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Next let µt denote the distribution of Xt and write µ̂t for the corresponding
characteristic function. We shall henceforth assume condition (C), the integra-
bility of µ̂t for all t > 0. Then µt = pt ·λ for each t > 0, where the densities pt

are continuous on R and vanish on R−. Put p�x
 = ∫∞
0 pt�x
dt and note that

Eξ = p · λ. The following identity plays a crucial role for our construction of
conditional densities and Palm measures.

Lemma 4.4. Ep�x− σ+a 
 = p�x
� a < x.

A knowledgeable referee points out that if g�x�y
 is a “good” potential
density of a Markov process X, then for any open set G we have

Exg�XτG
� y
 = g�x�y
� y ∈ G�(4.4)

where τG = inf
t� Xt ∈ G�. The asserted relation follows from (4.4) if we take
g�x�y
 = p�y − x
, G = �a�∞
 and x = 0. The choice of a good potential
density is a classical problem [cf. Blumenthal and Getoor (1968)]. However,
it is not clear (even to the expert referee) whether the general results apply
here.

Proof. The relation for a ≤ 0 being trivial, we may assume that a > 0.
Noting that X�La
 = σ+a and using the strong Markov property at La together
with the disintegration theorem [cf. Kallenberg (1997), Theorem 5.4], we get
for any B ∈ ���a�∞

 and t ≥ 0,

µtB = P
Xt ∈ B� = P
Xt ∈ B� La ≤ t�
= P
�θLa

X
t−La
∈ B− σ+a � La ≤ t�

= E�µt−La�B− σ+a 
� La ≤ t��

Taking densities of both sides, we obtain for almost every x > a,

pt�x
 = E�pt−La�x− σ+a 
� La ≤ t��(4.5)

To extend this to an identity, we may use Lemmas 4.1 and 4.2, Fubini’s theo-
rem, and the uniform boundedness of ps�u
 for s ≥ t− ε to get

E�pt−La�x− σ+a 
� La ∈ �t− ε� t��

=
∫ t

t−ε
ds

∫ a

0
ps�u
du

∫ x−u

a−u
pt−s�x− u− v
 ν�dv


<
:

∫ ε

0
ds

∫ a

−∞
du

∫ ∞
a−u

ps�x− u− v
 ν�dv


=
∫ ε

0
ds

∫ ∞
0

ν�dv

∫ a

a−v
ps�x− u− v
du
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=
∫ ε

0
ds

∫ ∞
0

ν�dv

∫ v

0
ps�x− a− r
dr

=
∫ ε

0
ds

∫ x−a

0
ps�x− a− r
 ν�r�∞
dr

=
∫ ε

0
ds

∫ x−a

0
ν�x− a− r� ∞
ps�r
dr

=
∫ x−a

0
ν�x− a− r� ∞
Eξε�dr
 = P
Xε > x− a��

where <
:

denotes boundedness up to a constant factor. As ε → 0, the right-
hand side tends to 0, uniformly for x > a bounded away from a, and so

E�pt−La�x− σ+a 
� La ≤ t− ε� → E�pt−La�x− σ+a 
� La ≤ t��(4.6)

uniformly on compacts in �a�∞
. Since the family 
ps� s ≥ ε� is uniformly
equicontinuous, the left-hand side of (4.6) is continuous in x, and the conti-
nuity extends to the limit because of the uniformity of the convergence. Thus,
both sides of (4.5) are continuous, and the relation holds identically. Integrat-
ing with respect to t and using Fubini’s theorem, we get

p�x
 =
∫ ∞

0
pt�x
dt =

∫ ∞
0

E�pt−La�x− σ+a 
� La ≤ t�dt

= E
∫ ∞
La

pt−La�x− σ+a 
dt = Ep�x− σ+a 
� ✷

We now introduce the processes

Ma
x = E�p�x− σ+a 
��a�� 0 ≤ a ≤ x�(4.7)

To ensure product measurability for each a, we may assume that all condi-
tional expectations are computed from a common regular conditional distribu-
tion P�σ+a ∈ ·��a�. The following result clarifies the role of the processes Ma

as conditional densities and provides some basic martingale and continuity
properties.

Proposition 4.5. If the processesMa in (4.7) are product-measurable, then:

(i) E�ξ��a� =Ma · λ a.s. on �a�∞
 for all a ≥ 0.
(ii) Each Ma is L1-continuous at all continuity points x > a of p.

(iii) Ma
x is a martingale in a < x for each x > 0 with px <∞.

Proof. (i) Let � +
a be the σ-field generated by �a and σ+a . Using the re-

generative property at σ+a and the disintegration theorem, we get for any
B ∈ ���a�∞

,

E�ξB�� +
a � = E��θσ+a ξ
�B− σ+a 
�� +

a � = �Eξ
�B− σ+a 
�
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Hence, Fubini’s theorem yields, for A ∈ �a,

E

[∫
B
Ma

x dx� A
]
=

∫
B
E�Ma

x�A�dx

=
∫
B
E�p�x− σ+a 
�A�dx

= E

[∫
B
p�x− σ+a 
dx� A

]

= E��Eξ
�B− σ+a 
�A� = E�ξB�A��
Choosing a kernel version of E�ξ��a�, we get a.s.

∫
B
Ma

x dx = E�ξB��a� = E�ξ��a��B
�

Since both sides are measure-valued, we may choose the exceptional null set
to be independent of B, and the assertion follows.

(ii) By Fubini’s theorem,

Ma
x =

∫ ∞
0

E�pt�x− σ+a 
��a�dt� x > a�

and by dominated convergence the integrand is continuous in x for each t > 0.
Furthermore, by Lemma 4.4,

EMa
x = Ep�x− σ+a 
 = p�x
� x > a�(4.8)

The assertion now follows by Lemma 2.2.
(iii) If x > 0 with p�x
 < ∞, then (4.8) yields EMa

x < ∞ for all a < x.
Writing τ = σ+a and ξ̃ = θτξ, we note that τ�ξ̃ =d ξ by the regenerative
property at τ. Now fix any a < b < x and let σ̃+ be the process σ+ associated
with ξ̃, so that σ+b = τ + σ̃+b−τ. Using Lemma 4.4, Fubini’s theorem, and the
regenerative property at τ, we get

E�p�x− σ+b 
�� +
a � = E�p�x− σ+b 
�σ+a �
= E�p�x− τ − σ̃+b−τ
�τ�
= p�x− σ+a 
�

and so

E�Mb
x��a� = E�p�x− σ+b 
��a�

= E�p�x− σ+a 
��a� =Ma
x� ✷

Since Eξ = p · λ, we get formally E�ξ��a� = �Ma/p
 ·Eξ. The division is
justified by the following result.

Lemma 4.6. pt�x
 > 0 for all t� x > 0.
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Proof. First we note that suppµt = R+ for each t > 0. An abstract ver-
sion of this statement appears in Theorem 6.8 of Kallenberg (1986). To give a
direct elementary proof, note that if µ and µ′ are measures on R+ with sup-
ports A and B, then supp�µ ∗ µ′
 = A + B. Applying this result to suitable
decompositions µt = µn ∗µ′n with µ′n → δ0, we may reduce the assertion to the
case where µt is compound Poisson with a characteristic measure ν satisfying
0 ∈ supp ν. Each µt is then the distribution of a finite sum ξ1+· · ·+ξκ, where
ξ1� ξ2� � � � are i.i.d. ν and κ is an independent Poisson random variable. By the
convolution property, suppµt is then the closed additive semigroup generated
by supp ν and hence equals R+.

Now fix any t� x > 0 and put s = t/2. Since ps is continuous with dense
support in R+, we have ps ≥ ε > 0 on some interval �a� b� ⊂ �0� x
, and so

pt�x
 =
∫ x

0
ps�x− u
ps�u
du ≥ ε

∫ b

a
ps�x− u
du

= εµs�x− b� x− a
 > 0�

where the support property is used again in the last step. ✷

In view of Proposition 4.5 and the results of Section 3, it is useful to know
where the density p is continuous. In Theorem 5.2 of Kallenberg (1981) we
identified a subset of R+ where Eξ has a continuous density. We proceed to
show that the result remains true for the specific density p�x
 = ∫

pt�x
dt.
For a precise statement, we introduce, as before, the index

α = sup
{
r ≥ 0� lim

u→0
ur−2ν2�u
 = ∞

}
�

where ν2�u
 =
∫ u

0 x2ν�dx
. Put d = �1/α� − 1, and note that d ≥ 0 since
α ∈ �0�1�. Let S consist of all points x ≥ 0 such that ν has no bounded density
in any neighborhood of x, and note in particular that 0 ∈ S. Write Sd for the
d-fold sum

Sd = S+ · · · +S = 
s1 + · · · + sd� s1� � � � � sd ∈ S��

Proposition 4.7. If α > 0, then p is continuous on �0�∞� \Sd.

Proof. For any s� t > 0 we have µs+t = µs ∗ µt, and so

ps+t�x
 = �ps ∗ µt
�x
 ≡
∫ x

0
ps�x− y
µt�dy
� x ≥ 0 a.e. λ�(4.9)

Now ps is bounded and continuous for each s, and by dominated convergence
the continuity carries over to ps ∗µt. Thus, both sides of (4.9) are continuous,
and the relation holds identically.

Now write p = ∫ 1
0 p

s ds. By (4.9) and Fubini’s theorem,

∫ n+1

n
ps ds =

∫ 1

0
pn+s ds =

∫ 1

0
�ps ∗ µn
ds = p ∗ µn�
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and so

p =
∞∑
n=0

∫ n+1

n
ps ds =

∞∑
n=0

�p ∗ µn
 = p ∗
∞∑
n=0

µn = p+ p ∗
∞∑
n=1

µn�

From Kallenberg (1981) we know that
∑

n≥1 µ
n � λ with a bounded, continu-

ous density f. Hence,

p ∗ ∑
n≥1

µn = p ∗ �f · λ
 = f ∗ �p · λ
�

where the right-hand side is continuous by dominated convergence.
By scaling, it follows that

∫∞
ε ps ds is continuous for every ε > 0. To estab-

lish the continuity of p on some interval I, it is then enough to show that∫ ε
0 p

s ds → 0 as ε → 0, uniformly on I. If I ⊂ �0�∞� \ Sd, this holds by the
arguments in Kallenberg (1981) combined with Lemma 2.1 above. ✷

5. Palm distributions of regenerative sets. Here we continue our dis-
cussion of regenerative sets � and their local time random measures ξ, as
specified in Section 4. For convenience we assume condition (C) throughout
the section, although some statements may be true more generally.

Our present aim is to use the conditional densities in Proposition 4.5 to
construct specific versions of the Palm distributions Qs, which will be shown
in Theorems 5.5 and 5.6 to possess desirable continuity and approximation
properties. Again some auxiliary results are needed, and we begin with a
representation of the Palm distributions of ξ in terms of ordinary conditional
distributions for the generating process X. For convenience, we may write
p�s
 = ps and pt�s
 = pt

s.

Lemma 5.1. There exists a kernel κ from R
2
+ to 
 �R+
 satisfying

P�ξ ∈ A�Xt� = κ�Xt� t�A
 a.s., t ≥ 0�

and we have

QsA = �ps
−1
∫
κ�s� t�A
pt

s dt� s > 0 a.e. λ�(5.1)

Proof. To construct κ, fix a nested array �Ink
 of partitions of R+ with
supk �Ink� → 0 as n→∞, and define

Mn�s� t�A
 =
∑
k

P
ξ ∈ A� Xt ∈ Ink�
P
Xt ∈ Ink�

1Ink�s
� s� t ≥ 0� n ∈ N�

By the measurability of X and Fubini’s theorem, the functions Mn�s� t�A
 are
measurable in the pair �s� t
 for each A. Introducing the product-measurable
functions

m�s� t�A
 = lim sup
n→∞

Mn�s� t�A
� s� t ≥ 0�
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we get by martingale theory

P�ξ ∈ A�Xt� =m�Xt� t�A
 a.s., t ≥ 0�

We may finally proceed as in the proofs of Theorem 5.3 and Proposition 6.26
in Kallenberg (1997) to construct a regular version κ of m.

Using Fubini’s theorem and the definitions of p, pt, Qs, ξ and κ, we get for
any measurable subsets A ⊂
 �R+
 and B ⊂ R+,∫

B
�QsA
ps ds =

∫
B
�QsA
Eξ�ds
 = E�ξB� ξ ∈ A�

= E

[∫
1B�Xt
dt� ξ ∈ A

]

=
∫
P
Xt ∈ B� ξ ∈ A�dt

=
∫
E�P�ξ ∈ A�Xt�� Xt ∈ B�dt

=
∫
E�κ�Xt� t�A
� Xt ∈ B�dt

=
∫
dt

∫
B
κ�s� t�A
pt

s ds

=
∫
B
ds

∫
κ�s� t�A
pt

s dt�

Relation (5.1) now follows since B is arbitrary and since p > 0 on �0�∞
 by
Lemma 4.6. ✷

The last result may be used to derive a basic factorization of the Palm
distributions Qs, which justifies the notation Q0 = P ◦ ξ−1. For measures µ
on R+, the restriction and shift operators ks and θs are given by

�ksµ
B = µ�B ∩ �0� s�
� �θsµ
B = µ�B+ s
� s ≥ 0�

Lemma 5.2. The Palm distributions Qs of ξ satisfy

Qs ◦ �ks� θs
−1 = �Qs ◦ k−1
s 
 ⊗Q0� s ≥ 0 a.e. Eξ�

Proof. Fix any t > 0 and conclude from the Markov property of X that,
for measurable A�B ⊂
 �R+
,

P�kXt
ξ ∈ A� θXt

ξ ∈ B�Xt� = P�kXt
ξ ∈ A�Xt�Q0B a.s.

Using the disintegration theorem, we may express this in terms of the kernel
κ in Lemma 5.1 as∫

1A×B�kXt
µ� θXt

µ
κ�Xt� t� dµ
 =
∫

1A�kXt
µ
κ�Xt� t� dµ
Q0B a.s.�

or, equivalently, as

κ�s� t� k−1
s A ∩ θ−1

s B
 = κ�s� t� k−1
s A
Q0B� s > 0 a.e. pt · λ�
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Hence, by Fubini’s theorem and Lemmas 4.6 and 5.1,

Qs�k−1
s A ∩ θ−1

s B
 = Qs�k−1
s A
Q0B� s > 0 a.e. λ�

By a monotone class argument, we may choose a common exceptional null set
for all A and B, and the assertion follows. ✷

The next result gives the shift continuity of the distribution Q0 of ξ.

Lemma 5.3. The function s �→ Q0 ◦ θ−1
s is continuous in total variation on

�0�∞
.

Proof. By the Markov property of X we have, for any s� t� h > 0,∥∥Q0 ◦ θ−1
s −Q0 ◦ θ−1

s+h
∥∥ ≤ P
Xt > s� + ∥∥P ◦X−1

t −P ◦ �Xt − h
−1
∥∥

≤ 3P
Xt > s� +
∫ s

0

∣∣pt�x
 − pt�x+ h
∣∣dx�
By the continuity of pt and the right-continuity of X, the right-hand side
tends to 0 as h→ 0 and then t→ 0, uniformly for s in any compact subset of
�0�∞
. ✷

Next we record a simple invariance property of the distribution of ξ. We say
that a random measure η is symmetric on an interval �0� a�, if its restriction
to �0� a� has the same distribution as the reflected measure η̃B = η�a−B
.

Lemma 5.4. Conditionally on σ−x for a fixed x > 0, the random measure ξ
is a.s. symmetric on �0� σ−x �.

Proof. Fix any x > 0, put τ = Lx and let τn = 2−n�2nτ − 1� ∨ 0, n ∈ Z+.
Define Xn

t = Xτn
−Xτn−t− for t ≤ τn and Xn

t = Xt otherwise. Note that the
random measure ξn generated by Xn is the reflection of ξ on �0�Xτn

�. Since
τn ↑ τ, we have Xτn

↑ Xτ− = σ−x , and so ξn →v ξ̃ where ξ̃ is the reflection of
ξ on �0� σ−x �.

For each s > 0, the process X is a.s. exchangeable on �0� s�, conditionally on
θsX. Putting Yt =Xs−Xs−t for t ≤ s and Yt =Xt otherwise, it follows that Y
has conditionally the same distribution as X. Noting that 
τn = s� ∈ σ
θsX�
for all n and s, we get Xn =d X, so ξn =d ξ, and in the limit ξ̃ =d ξ. Since
σ−x is preserved by the mapping ξ �→ ξ̃, we obtain �ξ̃� σ−x 
 =d �ξ� σ−x 
, and the
assertion follows. ✷

A more elaborate argument shows that ξ is conditionally exchangeable on
�0� σ−x �, in the sense of Kallenberg (1982).

We may now use the duality theory of Section 3 to construct specific ver-
sions of the Palm distributions Qs of ξ. Propositions 3.1 and 4.5 together with
Lemma 5.2 suggest that we choose

Qs ◦ �ka� θs
−1 = p−1
s E�p�s− σ+a 
� kaξ ∈ ·� ⊗Q0� 0 < a < s�(5.2)
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The following result shows that the Palm distributions are uniquely specified
by (5.2); it also provides some basic continuity properties. Unless otherwise
specified, the weak convergence of probability measures on 
 �R+
 is defined
with respect to the vague topology.

Theorem 5.5. The Palm distributions Qs of ξ are consistently and tightly
defined by (5.2) for all s > 0 with ps < ∞. The resulting family �Qs
 is con-
tinuous at every continuity point x of p, both weakly on 
 �R+
 and in total
variation outside any neighborhood of x.

Proof. By Proposition 4.5(i) and Lemma 4.6, we have

E�ξ��a� =Ma · λ = �Ma/p
 ·Eξ a.s. on �a�∞
�
Thus, by Proposition 3.1 the left Palm distributions satisfy (5.2) a.e. for every
a > 0. The normalization and consistency for different values of a follow from
Propositions 3.3 and 4.5(iii), whereas Proposition 3.4 ensures the existence of
a unique extension to the interval �0� s
. By Lemma 5.2 we may then define
the full Palm distributions on R+ by (5.2).

To prove the asserted tightness, we may fix any s > 0 with ps <∞ and let
a� ε > 0 with 2ε ∨ a < s < a+ ε. By (5.2) and Lemmas 4.3 and 5.4,

∫

µ�s− ε� a
 ∧ 1�Qs�dµ
 = p−1

s Ep�s− σ+a 

ξ�s− ε� a
 ∧ 1�

≤ p−1
s Ep�s− σ+a 

ξ�σ−a − ε� σ−a 
 ∧ 1�

= p−1
s Ep�s− σ+a 
E�ξ�σ−a − ε� σ−a 
 ∧ 1�σ−a �

= p−1
s Ep�s− σ+a 
E�ξ�0� ε
 ∧ 1�σ−a �

= p−1
s Ep�s− σ+a 
�ξ�0� ε
 ∧ 1


=
∫

µ�0� ε
 ∧ 1�Qs�dµ
�

As a→ s, it follows by (5.2) and monotone convergence that
∫

µ�s− ε� s
 ∧ 1�Qs�dµ
 ≤

∫

µ�0� ε
 ∧ 1�Qs�dµ


= p−1
s Ep�s− σ+s/2
�ξ�0� ε
 ∧ 1
�

(5.3)

By Lemma 4.4 and dominated convergence, the right-hand side tends to 0 as
ε→ 0, and the required tightness follows.

Now fix any continuity point x > 0 of p. For the left Palm distributions, the
continuity in total variation at x follows from Propositions 3.2(i) and 4.5(ii);
for the right Palm distributions it holds by Lemma 5.3. By Lemma 2.6 we may
combine the two properties into the asserted continuity outside any neighbor-
hood of x. In particular, Qs →w Qx as s→ x, in the sense of the vague topology
on 
 �R+ \ 
x�
.
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To extend the convergence to the vague topology on 
 �R+
, we conclude
from (5.3) that, as s→ x,

∫

µ�s− ε� s
 ∧ 1�Qs�dµ
 ≤

∫

µ�0� ε
 ∧ 1�Qs�dµ


→
∫

µ�0� ε
 ∧ 1�Qx�dµ
�

which tends to 0 as ε→ 0. Since also∫

µ�s� s+ ε
 ∧ 1�Qs�dµ
 = E�ξ�0� ε
 ∧ 1� → 0�

we obtain

lim
ε→0

lim sup
s→x

∫

µ�x− ε� x+ ε
 ∧ 1�Qs�dµ
 = 0�

The strengthened convergence now follows as in Theorem 4.9 of Kallenberg
(1986). ✷

We proceed to show how the specific versions of Palm distributions Qs given
by (5.2) admit approximation by elementary conditional distributions. For any
bounded interval I ⊂ R+, we put QI = P�ξ ∈ ·�ξI > 0�; by I→ 
x� we mean
that both endpoints of I tend to x. Write

mh =
∫ h

0
ν�u�∞
du =

∫ ∞
0
�x ∧ h
 ν�dx
 <∞� h > 0�

where the second equality holds by Fubini’s theorem.

Theorem 5.6. For any continuity point x of p and intervals I→ 
x� with
�I� = h, we have:

(i) m−1
h P
ξI > 0� → px;

(ii) QI → Qx, both weakly on 
 �R+
 and in total variation outside any
neighborhood of x.

Proof. (i) Assuming I = �y− h�y
, we get by Lemma 4.1

P
ξI > 0� =
∫ y

y−h
puν�y− u�∞
du

∼ px

∫ y

y−h
ν�y− u�∞
du =mhpx�

(ii) Let a < y − h and put � +
a = �a ∨ σ
σ+a �. By Lemma 4.1 and the

regenerative property at σ+a , we get

P�ξI > 0�� +
a � =

∫ y

y−h
p�u− σ+a 
 ν�y− u�∞
du�
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Hence, by Fubini’s theorem and the definition of Ma,

P�ξI > 0��a� =
∫ y

y−h
E�p�u− σ+a 
��a� ν�y− u�∞
du

=
∫ y

y−h
Ma

uν�y− u�∞
du�

Using Proposition 4.5(ii), we obtain

E
∣∣m−1

h P�ξI > 0��a� −Ma
x

∣∣ ≤m−1
h

∫ y

y−h
E�Ma

u −Ma
x� ν�y− u�∞
du

≤ sup
u∈I

E�Ma
u −Ma

x� → 0�

Combining this with (i) and recalling that px > 0 by Lemma 4.6, we get

P�ξI > 0��a�
P
ξI > 0� = P�ξI > 0��a�

mh

mh

P
ξI > 0� →P

Ma
x

px

�

By Proposition 3.2(ii), it follows that QI → Qx in total variation on �a.
To deduce the corresponding two-sided convergence, fix any a < x < b with

I ⊂ �a� b
. Letting c be the left endpoint of I, we get by regeneration at σ+c
and the disintegration theorem,

QI ◦ �ka� θb
−1 = P��ka� θb
ξ ∈ ·�σ+c ∈ I�
= E

[
P��ka� θb
ξ ∈ ·�σ+c �

∣∣σ+c ∈ I]
= E

[
P�kaξ ∈ ·�σ+c � ⊗ �Q0 ◦ θ−1

b−σ+c 

∣∣σ+c ∈ I]�

In particular,

�QI ◦ k−1
a 
 ⊗Q0 = E

[
P�kaξ ∈ ·�σ+c � ⊗Q0

∣∣σ+c ∈ I]�
and by combination

∥∥QI ◦ �ka� θb
−1 − �QI ◦ k−1
a 
 ⊗ �Q0 ◦ θ−1

b−x

∥∥

= ∥∥E[
P�kaξ ∈ ·�σ+c � ⊗

{
Q0 ◦ θ−1

b−σ+c −Q0 ◦ θ−1
b−x

}∣∣σ+c ∈ I]∥∥
≤ E

[∥∥Q0 ◦ θ−1
b−σ+c −Q0 ◦ θ−1

b−x
∥∥ ∣∣σ+c ∈ I]�

Hence,
∥∥QI ◦ �ka� θb
−1 −Qx ◦ �ka� θb
−1

∥∥
≤ sup

y∈I

∥∥Q0 ◦ θ−1
b−y −Q0 ◦ θ−1

b−x
∥∥+ ∥∥QI ◦ k−1

a −Qx ◦ k−1
a

∥∥�
which tends to 0 as I→ 
x�, by the preceding paragraph and Lemma 5.3. In
particular, QI →w Qx for the vague topology on 
 �R+ \ 
x�
.
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To extend the convergence to the vague topology on 
 �R+
, we may use
Lemmas 4.3 and 5.4 as before to get, as I→ 
x�,∫


µ�c− ε� c
 ∧ 1�QI�dµ
 = E�ξ�c− ε� c
 ∧ 1�σ+c ∈ I�

≤ E�ξ�σ−c − ε� σ−c 
 ∧ 1�σ+c ∈ I�
= E

[
E�ξ�σ−c − ε� σ−c 
 ∧ 1�σ−c �

∣∣σ+c ∈ I]
= E

[
E�ξ�0� ε
 ∧ 1�σ−c �

∣∣σ+c ∈ I]
= E�ξ�0� ε
 ∧ 1�σ+c ∈ I�

=
∫

µ�0� ε
 ∧ 1�QI�dµ


→
∫

µ�0� ε
 ∧ 1�Qx�dµ
�

which tends to 0 as ε→ 0. Furthermore, by the regeneration at σ+c ,∫

µ�c� c+ ε
 ∧ 1�QI�dµ
 = E�ξ�c� c+ ε
 ∧ 1�σ+c ∈ I�

≤ E
[
ξ�σ+c � σ+c + ε
 ∧ 1

∣∣σ+c ∈ I]
= E�ξ�0� ε
 ∧ 1� → 0�

Thus, by combination,

lim
ε→0

lim sup
I→
x�

∫

µ�x− ε� x+ ε
 ∧ 1�QI�dµ
 = 0�

and so the strengthened convergence follows again as in Theorem 4.9 of
Kallenberg (1986). ✷
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Matthes, K., Kerstan, J. and Mecke, J. (1978). Infinitely Divisible Point Processes. Wiley, Chi-

chester.

Department of Mathematics
228 Parker Hall, Auburn University
Auburn, Alabama 36849-5310
E-mail: olavk@mail.auburn.edu


