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RIGHT INVERSES OF NONSYMMETRIC LÉVY PROCESSES1

BY MATTHIAS WINKEL

Université Pierre et Marie Curie

We analyze the existence and properties of right inverses K for
nonsymmetric Lévy processes X, extending recent work of Evans [7] in the
symmetric setting. First, both X and −X have right inverses if and only if
X is recurrent and has a nontrivial Gaussian component. Our main result is
then a description of the excursion measure nZ of the strong Markov process
Z =X−L (reflected process) where Lt = inf{x > 0 :Kx > t}. Specifically,
nZ is essentially the restriction of nX to the “excursions starting negative.”
Second, when only asking for right inverses of X, a certain “strength of
asymmetry” is needed. Millar’s [9] notion of creeping turns out necessary
but not sufficient for the existence of right inverses. We analyze this both
in the bounded and unbounded variation case with a particular emphasis on
results in terms of the Lévy–Khintchine characteristics.

1. Introduction. Consider a real-valued Lévy process, that is, a continuous
time process with stationary independent increments and càdlàg paths. Right
inverses of Lévy processes have first been studied in the symmetric setting by
Evans [7]. He defines an increasing process K to be a right inverse of a Lévy
process X if it satisfies X(Kx)= x for all x ≥ 0. The minimal such K turns out to
be a subordinator (i.e., an increasing Lévy process).

Specifically, Evans characterized the symmetric Lévy processes that have right
inverses. He introduced Lt = inf{x ≥ 0 : Kx > t} and the reflected process Z =
X − L and showed that Z is strong Markov with local time L at zero, he gave
some fluctuation type identities for Z and L and proved formulae for the entrance
laws to the excursion measure nZ of Z. Evans also showed that K is distributed
like a linear time change of the inverse local time of X at zero.

In this work we basically answer three questions left open by Evans.
First, what happens when symmetry fails? The only result of Evans that is

clearly based on symmetry is the coincidence of the laws of K and the inverse
local time of X in zero. Also, the class of processes possessing inverses is not
restricted to those having a positive Gaussian component (in the symmetric setting,
this is Evans’s characterization result), but those form again an important class. We
provide a further characterization in the bounded variation case and we also point

Received November 2000; revised May 2001.
1Supported by a Ph.D. scholarship of the DAAD (German Academic Exchange Service) within

the scope of the common programme HSP III of the German Federal and Länder Governments.
AMS 2000 subject classifications. Primary 60G51; secondary 60J25, 60J45.
Key words and phrases. Lévy processes, subordinators, excursions, potential theory, right in-

verses, creeping.

382



RIGHT INVERSES OF LÉVY PROCESSES 383

out a large class of unbounded variation processes with zero Gaussian component
that have right inverses.

Second, Evans remarked that in the Brownian case, nZ is the excursion measure
of Brownian motion on the negative half-line reflected at zero. How can we give an
illustrative description of the excursion measure of Z in a less specific situation?
Our answer is as follows. Evans’s remark can be reformulated to: nZ is a multiple
of nX restricted to negative excursions. We show, that whenever the Gaussian
coefficient is positive, nZ is a multiple of nX restricted to “excursions starting
negative.”

Third, in the symmetric setting the existence of right inverses is equivalent to the
possibility of X to creep across levels (i.e., enter [x,∞) continuously). Does this
generalize to the nonsymmetric setting? No. We show that creeping is necessary
for the existence of right inverses, but our characterization in the bounded variation
case as well as a class of unbounded variation processes show that creeping is not
sufficient.

The rest of the paper is organized as follows: a preliminary section both serves
notational purposes and discusses the impact of the results and techniques of
Evans [7], and some connections to Simon’s [13] notion of subordination in
the wide sense. Section 3 generalizes Evans’s existence characterization to the
nonsymmetric setting, gives further existence results in the unbounded variation
case and discusses the relation to creeping. Section 4 provides results on the initial
behavior of excursions of X leading to a description of the excursion measure
nZ when the Gaussian coefficient is positive. In Section 5 we deal with the
bounded variation case using different methods from what has been presented
before. A technical proof, that does not give much insight into the actual topic,
was postponed to an Appendix concluding the article.

2. Preliminaries. The concepts and the previous work needed in the sequel
consist of generalities on Lévy processes, particularly concerning path properties,
and the specific work of Evans [7] that provided the main motivation to this article.

2.1. Classification and properties of Lévy processes. We fix our notation by
briefly introducing into the theory of Lévy processes. We refer to Bertoin [2] and
Sato [12] as standard references on the topic.

Lévy–Khintchine formula. Let X be a real-valued Lévy process, that is, a
continuous time process with stationary independent increments and càdlàg
paths. We express its distribution by the Lévy–Khintchine representation of its
characteristic exponent

ψ(λ)=− log
(
E
(
exp(iλXt )

))
/t

= iaλ+ 1
2σ

2λ2 +
∫

R

(1− eiλx + iλx1{|x|≤1})�(dx)



384 M. WINKEL

where a ∈ R, the Gaussian coefficient σ 2 ≥ 0 and the Lévy measure � satisfying
�({0}) = 0 and the integrability condition

∫
R
(1 ∧ x2)�(dx) <∞ are called the

characteristics of X. The Lévy measure � is the intensity measure of the Poisson
point process �X of jumps of X. X is called spectrally negative (respectively
positive) if �((0,∞))= 0 [respectively if �((−∞,0))= 0].

If σ 2 = 0 and
∫
R
(1∧ |x|)�(dx) <∞, we express ψ by

ψ(λ)=−ibλ+
∫

R

(1− eiλx)�(dx)

where b ∈ R is called the drift coefficient. X has then bounded variation and
can be expressed as Xt = bt + X+t − X−t where X+ and X− are independent
subordinators (i.e., increasing Lévy processes) only increasing by positive
jumps, with Lévy measures �+ = �(· ∩ (0,∞)) and �− = �(− · ∩(−∞,0)),
respectively. We say that X is a compound Poisson process, when b= σ 2 = 0 and
the jump structure is discrete, that is, � is finite.

The process X̂ := −X is called the dual process. It has characteristic exponent
ψ̂(λ) = ψ(−λ), that is, its characteristics are â = −a, σ̂ 2 = σ 2 and �̂(dx) =
�(−dx).
Resolvents and properties involving hitting times. Denoting the q-resolvent
measure by

Uq(B)=
∫ ∞

0
e−qtP (Xt ∈ B)dt, B ∈B(R),

we say, that X is recurrent if U(B)= U0(B)=∞ for every open set B � 0 in R,
transient otherwise.

Let TB = inf{t > 0 : Xt ∈ B} be the hitting time of B ∈ B(R). We define the
one-point q-capacity

cq := q

∫ ∞
−∞

E
(
exp(−qT{x}))dx.(1)

Loosely speaking, cq > 0 means that X visits every given point with positive
probability (this has to be restricted to the half line in the case of a subordinator,
of course). For us, the importance of this property lies in the existence of bounded
resolvent densities uq .

We say, that 0 is regular for B if TB = 0 P -a.s., that is, if X enters B

immediately. If cq > 0, then regularity of 0, by which we mean regularity of 0
for {0}, is equivalent to the existence of continuous resolvent densities uq . Denote
R
∗ =R\{0}. 0 is called instantaneous for X if TR∗ = 0 P -a.s., that is, if X leaves

the origin immediately; cf. Chapter II of [2] and Bretagnolle [5].
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Spaces of sample paths and excursions. It is sometimes convenient to work in the
canonical model (!,A, (Px)x∈R,X) where !=D([0,∞),R) is the set of càdlàg
functions ω: [0,∞)→ R endowed with the Skorohod topology and the Borel
σ -algebra A=D([0,∞),R), X is a Lévy process with characteristic exponent ψ
starting from x under Px , x ∈R.

Denote the set of zeros of X by Z= {t ≥ 0 :Xt = 0}. For all t ≥ 0 we can look
at the previous and next zeros gt = sup(Z ∩ [0, t)) and dt = inf(Z ∩ [t,∞)) and
the subpath

egt (s)=Xgt+s , 0≤ s < dt − gt , egt (s)= ∂, s ≥ dt − gt

where ∂ /∈ R is a so-called cemetery. We call egt the excursion of X straddling t .
We also associate trivial excursions et (s) = ∂ , s ≥ 0, if 0 ≤ t �= gu for all u ≥ 0.
The process (et )t≥0 is called excursion process in real time. It has its values in the
excursion space (E,E) of real-valued càdlàg functions killed when hitting zero,
that is, all ε ∈E have the properties that ε(s) �= 0 for all s > 0 and that ε(s0)= ∂

implies ε(s)= ∂ for all s > s0 ≥ 0.
The interesting case is when Z is not discrete. Then there is a local time process

((t )t≥0 that increases precisely on the closure Z̄ of Z and whose inverse (−1(s)=
inf{t : ((t) > s} is a subordinator with closed range Z̄. By standard Itô excursion
theory the excursion process in inverse local time, (e(−1(s−))s≥0, is a Poisson point
process whose intensity measure nX is called the excursion measure. Its marginals
at fixed times are the so-called entrance laws nXt := nX({ε ∈ E : ε(t) ∈ · ∩ R})
which characterize nX uniquely; cf. Rogers and Williams [11], Section VI.48.

2.2. Right inverses of Lévy processes after Evans. An increasing process K
is called a right inverse of a Lévy process X if it has càdlàg paths and satisfies
XKx = x for all x ≥ 0.

In the case where X has no positive jumps (and satisfies lim supt→∞Xt =∞)
we can choose K to be the process of first passage times Kx = A−1

x = T[x,∞) =
T{x} which is easily seen to be a subordinator by applying the strong Markov
property in Kx ; cf. [2], Section VII.1.

Dropping the lim sup-condition in the spectrally negative setting, we still get the
weaker result of a partial right inverse K by which we mean a subordinator killed
at an independent exponential ξ satisfying XKx(ω)(ω) = x for all 0 ≤ x < ξ(ω)

and P -a.e. ω ∈ !. If we identify the Dirac measures in zero and infinity with
exponential distributions of an infinite and zero rate parameter respectively, an
infinite killing rate means that there is a.s. no partial right inverse, whereas a zero
killing rate means that the partial right inverse is actually a full right inverse.

Let us now provide a brief overview of the results and techniques used in
Evans [7].

If right inverses exist, the minimal right inverse is a subordinator. This is the
natural choice that is analyzed further. A way to approximate this minimal inverse
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is by spatial discretization, that is, by defining stopping times

T0 = 0, T n
k+1 = inf

{
t ≥ T n

k :Xt = k + 1

2n

}
, k ≥ 0

and processes

Kn
x = T n

k ,
k

2n
≤ x <

k+ 1

2n
, k ≥ 0,

for n≥ 0. Then, a pathwise argument shows that, if the limit

Kx = inf
y>x

sup
n≥0

Kn
y(2)

is finite for all x ≥ 0, then it defines the minimal right inverse. (Note that the
infimum only serves for the càdlàg property that might fail otherwise in a countable
number of exceptional x ≥ 0.) Furthermore, if this limit is infinite, no right inverses
exist.

THEOREM 1 [7]. A symmetric Lévy process X possesses a right inverse if
and only if it is recurrent and has a nontrivial Gaussian coefficient σ 2 > 0. More
precisely,

E
(
exp(−qKx)

)= exp
(
− x

σ 2uq(0)

)
,

where uq is the positive and continuous resolvent density, characterizes the
minimal right inverse K which is a subordinator with Laplace exponent ρ(q) :=
1/(σ 2uq(0)).

Let us sketch Evans’s proof as this argument will also be useful in the sequel.
The potential theory in Chapter II of [2] allows a restriction to Lévy processes

with continuous resolvent densities uq , q > 0, when we have the transform
identities

E
(
exp(−qT{x}))= uq(x)

uq(0)
(3)

for the hitting times of singletons, and right derivatives of uq in zero

uq(0)− uq(x)

x
= 1

2π

∫ ∞
−∞

1− cosξ

x2(q +ψ(ξ/x))
dξ −→

x→0+
1

σ 2
∈ (0,∞].(4)

Then the Markov property in T{k2−n}, k ≥ 0, and the above yield for all x ≥ 0

E

(
exp

(
−q sup

n≥0
Kn
x

))
= lim

n→∞
(
E
(
exp(−qT{2−n})

))[2nx]
(4′)

= exp
(
−x 1

σ 2uq(0)

)
.
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Now this quantity is positive if and only if the Gaussian coefficient is positive. It
tends to one if and only if uq(0) tends to infinity as q tends to zero. However, this
happens if and only if X is recurrent completing the proof.

This theorem says in particular that when σ 2 > 0, then K has the same law as
the linearly time-changed inverse local time of X in zero, whose Laplace exponent
κ takes then the form κ(q)= 1/uq(0); cf. Proposition V.4 in [2].

In the beginning of this subsection, we pointed out an identification with
classical fluctuation theory in the spectrally negative setting. In a more general
setting with positive jumps, the two concepts are different, but show striking
structural similarities. The corresponding fluctuation theory result is deeper and
not so directly related. First, denoting by St = sup0≤s≤t Xt the supremum process,
M =X − S is a strong Markov process. We can associate an inverse local time in
zero which is called the ladder time subordinator A−1 of X. For an independent
exponential random variable τ the local time Aτ in τ and Mτ are independent and
one can calculate their distributions. From excursion theory the independence is
not very surprising since Mτ only depends on the excursion of M away from zero
(excursion of X away from S) started in Aτ .

Suppose now that X is a not necessarily symmetric Lévy process and that
there is a minimal right inverse K of X. We introduce Lt = inf{x ≥ 0 : Kx > t}
and Zt = Xt − Lt . Whereas fluctuation theory studies the bivariate subordinator
(A−1,X ◦ A−1) and the excursions of M = X − S, we study here the bivariate
subordinator (K,X ◦K) and the excursions of Z. Note that X ◦K = id reduces
the study of (K,X ◦K) to K ; here id means the identity function on [0,∞), that
is, (id)(x)= x. The analogous results to classical fluctuation theory are here

THEOREM 2 [7]. Suppose, a Lévy process X with characteristic exponent ψ
has a minimal right inverse K with Laplace exponent ρ. Let τ be an independent
q-exponential random variable.

(i) The process Z is a strong Markov process w.r.t. the natural filtration of X.
(ii) The state 0 is regular for Z, and L is a corresponding local time.

(iii) The random variables Lτ and Zτ are independent.
(iv) Lτ has a ρ(q)-exponential distribution.
(v) Zτ has characteristic function

E
(
exp(iλZτ )

)= q(ρ(q)− iλ)

(q +ψ(λ))ρ(q)
.

(vi) The family of entrance laws (nZt )t>0 (and hence the excursion meas-
ure nZ) is characterized by∫ ∞

0

∫
R

exp(−qt + iλx)nZt (dx) dt =
ρ(q)− iλ

q +ψ(λ)
− aq(5)

where a ≥ 0 is the drift coefficient of K . Furthermore, we have a = 0 if and only
if {t :Zt = 0} has zero Lebesgue measure.
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(vii) If 0 is regular for X, then X has an inverse local time in zero with Laplace
exponent κ . (nXt )t>0 is given by∫ ∞

0

∫
R

exp(−qt + iλx)nXt (dx) dt =
κ(q)

q +ψ(λ)
.(6)

Evans exploited furthermore the equations (5) and (6) to give a relationship
between nZt and nXt , in the symmetric setting (when ρ = κ/σ 2 and a = 0).

PROOF OF THEOREM 2. Evans’s arguments are fine in this more general
situation. Let us just say a word on the drift coefficients a of ρ and b of κ . When
X is symmetric, that is, X has a positive Gaussian coefficient by Theorem 1, they
are multiples of each other and well-known to be trivial due to the latter (see also
below).

(vi) As the entrance laws nZt , t > 0, satisfy nZt ({0}) = 0 by definition, but
possibly P (Zτ = 0) > 0, the classical excursion theory argument used by Evans
gives here more precisely∫ ∞

0

∫
R

e−qteixξnt (dx) dt =
∫ ∞

0

∫
R∗
e−qteixξ nt (dx) dt

= ρ(q)

∫
R∗
eixξ

1

q
P (Zτ ∈ dx)

and the result follows from (v) and, if a > 0

P (Zτ = 0)=
∫ ∞

0
qe−qtP (Zt = 0) dt =

∫ ∞
0

qe−qtav(t) dt = aq

ρ(q)

where we denoted the potential density of K by v and applied Proposition 1.7
in [3]; cf. also Rogers and Williams [11], Section VI.48.

(vii) We imposed the regularity of 0 for X to have a nice local time process.
Note that by the existence of K , the range of X contains R

+. By homogeneity, this
implies that {t :Xt = 0} has zero Lebesgue measure, so the drift b in κ is zero. �

2.3. Subordination in the wide sense and right inverses. Simon [13] consid-
ered the following concept. Given a Lévy process X, another Lévy process Y is
called subordinate to X in the wide sense if there is a subordinator σ such that
Y =X ◦ σ and σ may be dependent on X, but only locally in the following sense:
there is a filtration F = (Ft )t≥0 w.r.t. which X is a Lévy process and σs a stop-
ping time for all s ≥ 0; there is a filtration (Gs)s≥0 w.r.t. which (Y,σ ) is a Lévy
process, (Xt∧σs )t≥0 is Gs-measurable and (Xσs+t −Xσs )t≥0 is independent of Gs .
In the transient case, Simon characterizes the processes Y that are subordinate to a
given process X in terms of the potential measures U and V of X and Y , respec-
tively, and in terms of their excessive functions. Recall that a measurable function
f : R→ [0,∞) is called excessive w.r.t. X if E(f (x +Xt)) increases to f (x) as
t decreases to 0, for all x ∈R.
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THEOREM 3 [13]. For two transient Lévy processes X and Y are equivalent:
(a) Y is subordinate to X in the wide sense.
(b) Every excessive function w.r.t. X is excessive w.r.t. Y .
(c) There is a (nonnegative) Radon measure µ on R such that U = V ∗µ.

Clearly, Y = id is a transient Lévy process. It is easily seen that the conditions
concerning the filtration F which we choose to be the natural filtration of X are
satisfied by the minimal right inverseK and the conditions concerning the filtration
G as well if we let Gs be generated by (σu)u≤s and (Xt∧σs )t≥0. Some elementary
calculations yield

COROLLARY 1. Let X be a transient Lévy process. The following statements
are equivalent:
(a) X has a right inverse.
(b) Every excessive function w.r.t. X is right-continuous decreasing.
(c) There is a (nonnegative) Radon measure µ on R such that U = λλ|(0,∞) ∗ µ

where λλ is the Lebesgue measure.

Let us now see what we can get from Theorem 3 in the recurrent case. Let
τ be an independent exponential time with parameter q > 0 and let X† be the
process X killed at time τ . Then the theorem applies to X†. As we cannot expect
a full inverse, let us kill Y = id as well at some rate p(q) and so analyze the
existence of a partial inverse for killed Lévy processes X†. Clearly, as q tends to
zero, a partial right inverse of X† tends to a partial right inverse of X killed at rate
p(0)= ρ(0)≥ 0 and as right invertibility is a path property, there is a partial right
inverse of X if and only if it exists for X†.

COROLLARY 2. Let X be any Lévy process. Equivalent are:
(a) X has a partial right inverse killed at rate p(0).
(b) For every excessive function f w.r.t. X†, e−p(q)xf (x) is right-continuous

decreasing for sufficiently big p(q).
(c) For some (all) q > 0 there is a p(q) > 0 and a (nonnegative) finite measure

µq on R such that Uq = 1
p(q)

Exp(p(q)) ∗ µq where Exp(p) denotes the
exponential distribution with parameter (inverse mean) p > 0.

(d) For some (all) q > 0 the function λ �→ p(q)−iλ
q+ψ(λ) is the Fourier transform of a

(nonnegative) finite measure for p(q) sufficiently big.

Simon also identifies the measures µq . In the notation of Theorem 2 it is given
by

µq(dx)= aδ0(dx)+
∫
E

∫ ζ(e)

0
e−qtδe(t)(dx) dt nZ(de).
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Comparing this to Theorem 2(vi), we identify the drift coefficient a of K and
an optimal p(q) = ρ(q). This yields the following representation of the Laplace
exponent ρ:

ρ(q)=min
{
p > 0 : λ �→ p− iλ

q +ψ(λ)
is Fourier transform of a measure µ≥ 0

}
.

Assume that X has a partial right inverse. Then, X visits single points, so
that cq > 0, and by Theorem II.16 of [2], uq is bounded. Furthermore, by
Proposition I.12 x �→ uq(−x) is q-excessive w.r.t. X, that is, excessive w.r.t. X†,
so by Corollary 2(b), for the optimal value p(q)= ρ(q) we obtain

sup
x>0

uq(0)− uq(x)

x
≤ uq(0)ρ(q) <∞.(7)

If uq is continuous, the argument of the supremum on the left-hand side is
nonnegative, and Evans’s argument (4′) yields that the right-hand side is attained
in the limit x = 2−n ↓ 0, n→∞.

These are analytic potential theoretic descriptions of right inverses that are
not very explicit. The aim of the sequel is a characterization in terms of the
characteristics of X.

3. Existence of right inverses.

3.1. Statement of the theorems. Theorem 1 on right inverses for symmetric
Lévy processes can be generalized to the nonsymmetric setting in a way
considering right inverses K of a Lévy process X and K̂ of its dual X̂

simultaneously.
Also, the recurrence condition that turns out a necessary condition for the

existence of right inverses, unless X is spectrally negative, can be eliminated by
the more general notion of partial right inverses. Specifically, any result on right
inverses can be reformulated by dropping all recurrence statements and replacing
the “right inverses” by “partial right inverses” which is meant to include the
possibility of a full right inverse. (The proofs are easily adapted.) This is the natural
analogue of killed ladder processes in classical fluctuation theory.

To justify this statement let us show that a transient Lévy process X possesses
a full right inverse if and only if it is spectrally negative and lim supt→∞Xt =∞.
On the one hand, for spectrally negative processes we choose K to be the inverse
supremum process. In the converse direction we can see that positive jumps must
not occur. Indeed, if positive jumps occur, then, for some ε > 0, there is positive
probability that the first jump J of size≥ 4ε exceeds the pre-supremum SJ by≥ 2ε
and that X does not return to (SJ − ε, SJ + ε) which means that there is positive
probability (indeed, probability one by independent trials) that the positive part of
the range of X has gaps, so there cannot exist a full right inverse.
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Now, the extension of Theorem 1 to the nonsymmetric framework is

THEOREM 4. A Lévy processX and its dual X̂ =−X both have right inverses
if and only if X is recurrent with a nontrivial Gaussian coefficient σ 2 > 0.

Furthermore, in this case, the Laplace exponents ρ and ρ̂ of the minimal right
inverses of X and X̂ respectively fulfill the identity

ρ(q)+ ρ̂(q)= 2

σ 2uq(0)
.(8)

In the symmetric setting ρ and ρ̂ both equal (up to a multiplicative constant)
the Laplace exponent κ(q) = 1/uq(0) of an inverse local time of X at zero; cf.
Proposition V.4(ii) in [2] (see also the discussion before, which motivates the
choice of the multiplicative factor). This is no longer true in the nonsymmetric
setting, but nevertheless their sum fulfills (8).

The proof of the direct part in Subsection 3.2 uses Evans’s argument. The
indirect part is a corollary of the next theorem that gives the link with creeping
where we say “X can creep upward” if P (X(T[x,∞)) = x) > 0 for some (all)
x > 0. As has already been mentioned by Evans [7] and is even more apparent in
our Theorem 4, the parallels between the existence of right inverses and creeping
are striking. Specifically, a Lévy process X has a nontrivial Gaussian component
if and only if both X and its dual X̂ =−X can creep upward (cf. Theorem VI.19
of [2]). Clearly, upward creeping favors the existence of a right inverse. Also, the
converse seems reasonable. However,

THEOREM 5. Upward creeping is necessary but not sufficient for the existence
of (partial) right inverses.

The proof of the necessity is given in Subsection 3.3. The insufficiency follows,
for example, from Proposition 2 below. We shall now focus on the unbounded
variation case, the bounded variation case is postponed to Section 5 which is more
elementary.

Theorems 4 and 8 (see Section 5) give complete answers concerning the
existence of right inverses when the Gaussian coefficient is positive and when the
variation is bounded, respectively. The remaining class of unbounded variation
Lévy processes without Gaussian component is more delicate. The boundary
between invertible and not invertible processes is not as clear as in those two cases
where the behavior was basically dominated by the Gaussian coefficient and the
drift coefficient, respectively. Here the jumps (and the convergence generating drift
compensator in the Lévy–Khintchine representation) determine the invertibility.

Assume an unbounded variation Lévy process X without Gaussian component.
We first characterize the existence of right inverses in an analytic way and then
derive some more explicit conditions. Recall that we denote the resolvent densities
of X by uq .
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PROPOSITION 1. An unbounded variation Lévy process has right inverses if
and only if uq is bounded and

sup
x>0

uq(0)− uq(x)

x
<∞(9)

for some (all) q > 0 (q ≥ 0 in the transient case). Furthermore, in this case,

ρ(q)= lim
n→∞

uq(0)− uq(2−n)
2−nuq(0)

is the Laplace exponent of the minimal right inverse.

The only way this supremum can fail to be finite is at x ↓ 0. Recall in particular
that u0(x)= P (Tx <∞)u0(0) in the transient case.

Suppose now that the characteristic exponent of the negative jump part
“increases much faster” than the characteristic exponent of the positive jump part.
ThenX has right inverses. Conversely, if the parts do not differ enough, no inverses
exist. We give quantitative statements by providing sufficient conditions for
inverses (Theorem 6) and showing that they are also necessary (possibly apart from
the boundary value) for certain composites of stable processes (Proposition 2).

THEOREM 6. Let X =X+ −X− be a Lévy process split into two independent
processes such that X− is spectrally positive. Let ψ , ψ+ and ψ− denote their
characteristic exponents so that ψ(ξ)=ψ+(ξ)+ψ−(−ξ). Assume for all ξ ≥ ξ0∣∣ψ−(ξ)∣∣≥ ξα and

∣∣ψ+(ξ)∣∣≤ ξ2α−2/ log2(ξ)(10)

for some α ∈ (1,2]. Then X possesses a nontrivial partial right inverse K .

In fact, the conditions on the characteristic exponent can be relaxed in the
following way. Denoting

f (ξ)= |ψ+(ξ)| and g(ξ)= |ψ−(ξ)|,
we assume that for some ε > 0 and all ξ ≥ ξ0 we have f (ξ)≤ (1− ε)g(ξ) and that∫ ∞ 1

g(ξ)
dξ <∞,

∫ ∞
ξ
f (ξ)

g2(ξ)
dξ <∞.

Then a Lévy process X with characteristic exponent ψ(ξ) = ψ+(ξ) + ψ−(−ξ)
possesses right inverses.

REMARK 1. Sufficient for the conditions on the characteristic exponent are
the following conditions on the Lévy tails at zero:

�̄−(x)≥ x−α and �̄+(x)≤ x−β, β < 2α− 2,



RIGHT INVERSES OF LÉVY PROCESSES 393

for all x ≤ x0 as is easily checked:

|ψ−(ξ)| ≥ |�(ψ−(ξ))| =
∫ ∞

0

(
1− cos(xξ)

)
�̄−(x) dx

≥
∫ x0

0

(
1− cos(xξ)

)
x−αdx = cξα −

∫ ∞
x0

(
1− cos(xξ)

)
x−α dx

≥ c1ξ
α,

|ψ+(ξ)| ≤ |�(ψ+(ξ))| + |�(ψ+(ξ)|
=
∣∣∣∣
∫ ∞

0
sin(xξ)�̄+(x) dx

∣∣∣∣+
∫ ∞

0

(
1− cos(xξ)

)
�̄+(x) dx

≤
∫ π/ξ

0
xξx−β dx +

∫ π/ξ

0
yξ�̄+(y + π/ξ) dy

+
∫ π/ξ

0
xξ�̄+(x) dx +

∫ 1

π/ξ
2ν̄(x) dx

≤ c2ξ
β,

where we assumed w.l.o.g. that �+ is concentrated on (0,1).

We prove Theorem 6 in Subsection 3.4. As a converse we give

PROPOSITION 2. Let X = X+ − X− be a process, where X− is spectrally
positive stable of index α ∈ (1,2) and X+ is symmetric stable of index β ∈
(2α− 2, α). Then there are no partial right inverses.

The proof of Proposition 2 is rather technical exploiting the explicit knowledge
of the characteristic exponent. It is given as an Appendix.

Theorem 3.4 in Millar [9] shows that the processes considered in Theorem 6
and Proposition 2 can creep upward; cf. also Theorem 3.2 in Blumenthal and
Getoor [4] to identify the different kinds of indices used. These results indicate
that the existence of right inverses is a much stronger condition than creeping.

3.2. The case of a positive Gaussian coefficient. The key to the direct part of
the proof of Theorem 4 is the analogue to Evans’s formula (4).

LEMMA 1. Let X have a positive Gaussian coefficient σ 2 ∈ (0,∞) and call
its q-resolvent densities uq . Then we have

2uq(0)− (uq(x)+ uq(−x))
x

= 1

π

∫ ∞
−∞

1− cos(ξx)

x
�
(

1

q +ψ(ξ)

)
dξ −→

x→0+
2

σ 2 .
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PROOF. X has continuous bounded resolvent densities since σ 2 > 0. Then we
can use Theorem II.19 of Bertoin [2] to obtain

2uq(0)− (uq(x)+ uq(−x))
x

= 1

π

∫ ∞
−∞

1− cos(ξx)

x
�
(

1

q +ψ(ξ)

)
dξ

= 1

π

∫ ∞
−∞

1− cos(ξ)

x2
�
(

1

q +ψ(ξ/x)

)
dξ.

Now we can bound using �(ψ)≥ 0∣∣∣∣�
(

1

q +ψ(λ)

)∣∣∣∣≤ 1

q + σ 2λ2 .

By dominated convergence (recall that ψ(λ)∼ 1
2σ

2λ2 as λ tends to infinity), this
yields

1

π

∫ ∞
−∞

1− cos(ξ)

x2
�
(

1

q +ψ(ξ/x)

)
dξ −→

x→0+
2

πσ 2

∫ ∞
−∞

1− cos(ξ)

ξ2
dξ.

The value of this integral is known to be π , so the limit is 2/σ 2 <∞. �

The proof of the direct part of Theorem 4 is essentially an adaptation of the
proof of Theorem 1:

PROOF OF THE DIRECT PART OF THEOREM 4. (i) Let X be a recurrent Lévy
process with nontrivial Gaussian coefficient σ 2 > 0. We have to show that it has
a right inverse. X possesses continuous and bounded resolvent densities uq . Look
at the Laplace transform of the time when first all j2−nx, j = 1, . . . ,2n, have
been visited successively, which amounts to adding 2n independent hitting times
of height 2−nx. Call the time by which this has been accomplished Kn

x . Evans
has shown that this quantity increases a.s. to the finite Kx (or infinity, if Kx

does not exist). We show that Kx is finite: by the Markov property in T{j2−nx},
j = 1, . . . ,2n, and Corollary II.18 in [2]:

E(exp(−qKx))= lim
n→∞E

(
exp(−qKn

x )
)

(11)
= sup

n≥0

(
E
(
exp(−qT{2−nx})

))2n = sup
n≥0

(
uq(2−nx)
uq(0)

)2n

,

which by an easy calculation reduces the problem to showing the finiteness of the
left derivative ρ(q)uq(0) of uq in zero. This is now, once more, a consequence of
Corollary II.18 in [2] yielding the domination

uq(0)− uq(x)

x
≤ 2uq(0)− (uq(x)+ uq(−x))

x
(12)

and Lemma 1.
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The same argument applies to the dual process.
(ii) To show the identity concerning the two Laplace exponents of K and K̂ that

result from the calculation (11) simply note that the limit as x tends to zero on the
right hand side of (12) gives ρ(q)uq(0)+ ρ̂(q)uq(0) which by Lemma 1 yields the
asserted identity. �

3.3. Creeping. Theorem 5 states that creeping is necessary but not sufficient
for the existence of inverse. We show the former using the Wiener–Hopf
factorization in a way which Fourati and Vigon pointed out to us; cf. also [14].

PROOF OF THE NECESSITY PART OF THEOREM 5. The result is established
in Section 5 for Lévy processes with bounded variation. Assume therefore that X
is an unbounded variation Lévy process which has a partial right inverse K with
Laplace exponent ρ. We show that X can creep upward.

Since creeping and the existence of partial right inverses are local properties, we
may assume w.l.o.g. that X drifts to −∞ by possibly adding large negative jumps.

The Wiener–Hopf factorization states

U = V̂ ∗ ∗ V
where U is the potential measure of X, V and V̂ are the potential measures of the
ladder height subordinators H and Ĥ , and V̂ ∗(dx) = V̂ (−dx). More precisely,
recall that H = X ◦ A−1 is the height process associated with the ladder time
process A−1 where A is the local time of X “at the supremum,” that is, the
local time in zero of M = S − X, which is X reflected at its supremum process
St = sup0≤s≤t Xs . We refer to [2], Chapter 6. We can associate with V̂ ∗ the

potential operator V̂∗ given by

V̂∗f (x)=
∫
(−∞,0)

f (x + y)V̂ ∗(dy)=
∫
(0,∞)

f (x − y)V̂ (dy), f ∈ C0.

Let us apply it to the function

f (z)= V
(
(−z,∞)

)
, z≤ 0,

which is continuous (since V is diffuse according to Proposition I.15 in [2],
remember X has unbounded variation and is hence regular for (0,∞), so
that the ascending ladder height process is not compound Poisson; cf. after
Proposition VI.11). We extend f in any suitable way to obtain a C0-function on R.
For x ≤ 0 we obtain

V̂∗f (x)=
∫
(0,∞)

f (x − y)V̂ (dy)= V̂ ∗ ∗ V ((−x,∞)
)=U

(
(−x,∞)

)
.

Now the generator B̂∗ of −Ĥ , given by

B̂∗g(z)=−b̂g′(z)+
∫
(−∞,0)

(
g(z+ y)− g(z)

)
ν̂∗(dy)

=−b̂g′(z)−
∫
(0,∞)

(
g(z)− g(z− y)

)
ν̂(dy),
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is the inverse operator for −V̂∗; cf. after Proposition I.9 in [2] and Berg and
Forst [1], Proposition 11.9. Here b̂ and ν̂ are the drift coefficient and Lévy measure
of Ĥ . We apply this operator to the function

g(x)= V̂∗f (x), x ∈R,

to obtain for all z≤ 0,

V
(
(−z,∞)

)= f (z)=−B̂∗g(z)= b̂g′(z)+
∫
(0,∞)

(
g(z)− g(z− y)

)
ν̂(dy)

= b̂u(−z)+
∫
(0,∞)

U
(
(−z, y − z])ν̂(dy).

Now we obtain

V ([0, x])
x

= f (0)− f (−x)
x

= b̂
u(0)− u(x)

x
+
∫
(0,∞)

U((0, x])−U((y, x + y])
x

ν̂(dy).

We can bound the integrand above by the following estimation

U((0, x])−U((y, x + y])
x

= 1

x

∫ x

0

(
u(z)− u(z+ y)

)
dz

≤ 1

x

∫ x

0
u(0)

(
(ρ(0)y)∧ 1

)
dz= u(0)

(
(ρ(0)y)∧ 1

)
where the last estimate comes from

u(z)− u(z+ y)

u(0)
= P (T{z} <∞)− P (T{z+y} <∞)

≤ P (T{z} <∞)− P (T{z+y} <∞, T{z} <∞)

= P (T{z} <∞)P (T{z+y} =∞|T{z} <∞)

≤ P (T{z} <∞)P (T{y} =∞)≤ P (T{y} =∞)≤ (ρ(0)y)∧ 1

by Proposition 1 and the remark thereafter.
Thus we obtain

1/b= sup
x>0

V ([0, x])
x

≤ b̂ρ(0)u(0)+
∫
(0,∞)

u(0)((ρ(0)y)∧ 1)ν̂(dy) <∞,

that is, H has a positive drift b > 0. By Theorem VI.19 in [2] this is equivalent to
the upward creeping of X. �
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3.4. The case of a zero Gaussian coefficient. Let us first give the proof of
Proposition 1. It is basically a combination of the results and methods of Simon
and Evans as presented in Section 2.

PROOF OF PROPOSITION 1. First assume that an unbounded variation Lévy
process has right inverses. Then the discussion of (7) concludes the proof—note
that by Bretagnolle [5] and Theorem II.19 in [2] X has continuous resolvent
densities.

Conversely, assume (9) and denote the supremum by S. Perform Evans’s
approximation argument (4′), then

E

(
exp

(
−q sup

n≥0
Kn
x

))
= inf

n≥0

(
uq(2−n)
uq(0)

)[2nx]
≥ e−xS/uq(0)

shows that there are right inverses up to height x with positive probability. �

The key to Theorem 6 is the following representation of the resolvent density:

LEMMA 2. Let X be a Lévy process whose characteristic exponent ψ is such
that ∫ ∞

0

∣∣∣∣ 1

1+ψ(ξ)

∣∣∣∣dξ <∞.(13)

Then we have for all x ∈R

uq(x)= 1

2π

∫ ∞
−∞

eiξx

q +ψ(−ξ) dξ.

PROOF. Note first that in this setting X has unbounded variation and we have
bounded continuous resolvent densities by Bretagnolle [5] and Theorem II.19(i)
of [2].

The proof is now complete by the Fourier inversion of the well-known identity∫ ∞
−∞

eiξxuq(x) dx = 1

q +ψ(ξ)
.

This is possible by the integrability of the right hand side, giving the asserted
formula Lebesgue-almost everywhere, everywhere by continuity. �

Note that (13) actually only needs to be imposed for �(1/(q + ψ(ξ)))

and the corresponding condition for the real parts can be expressed by cq > 0
which squares with the finiteness of uq(0); cf. Theorem II.19 in [2]. According



398 M. WINKEL

to Theorem II.16 in [2], cq = 0 always implies the unboundedness of uq around
zero; but for us cq = 0 is not interesting since it implies that every given point is
P -a.s. not attained by X impeding the construction of right inverses, anyway.

PROOF OF THEOREM 6. Note that α = 2 has already been treated in
Theorem 4. Let therefore α < 2 and w.l.o.g. let X have a zero Gaussian coefficient.
However, note that the argument still works when the Gaussian coefficient is
positive but there are some notational changes in order to keep track of this
Gaussian coefficient.

Let us start by observing that X− has unbounded variation, therefore the
spectrally negative process −X− is regular for (0,∞) and possesses a nontrivial
partial right inverse which coincides with the inverse supremum process. Without
loss of generality, we may assume that X does not possess any jumps outside
(−1,1) since we may add them as an independent compound Poisson process later
without disturbing the initial behavior that determines the existence of a nontrivial
partial right inverse. Denoting the resolvent densities of−X− by vq , we take from
the preceding lemma

0≤ vq(0)− vq(x)

x
= 1

2π

∫ ∞
−∞

1− eiξx

x

1

q +ψ−(ξ)
dξ(14)

where we obtain the integrability condition for free, as∣∣∣∣ 1

1+ψ−(ξ)

∣∣∣∣≤ 1∧ ξ−α.

Recall that the existence of a right inverse squares with the finiteness of the
supremum of (14) over x > 0, Proposition 1.

As X also has continuous resolvent densities uq , we can consider the analogous
formula for X, where we note that∫ ξ1

−ξ1

∣∣∣∣1− eiξx

x

1

q +ψ(−ξ)
∣∣∣∣dξ ≤

∫ ξ1

−ξ1

ξ
1

q
dξ.

This shows that only ψ(ξ), ξ ≥ ξ1, have influence on the integrability and the
finiteness of the limit, for an arbitrarily large ξ1 ≥ ξ0 where ξ0 is such that (10)
holds.

Now look at the difference of the expressions for X and −X−:

uq(0)− uq(x)− (vq(0)− vq(x))

x

= 1

2π

∫ ∞
−∞

1− eiξx

x

ψ+(−ξ)
(q +ψ(−ξ))(q +ψ−(ξ))

dξ.
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Focusing on |ξ | ≥ ξ1 now, we obtain for ξ1 ≥ ξ0 sufficiently large

1

2π

∫
(−∞,−ξ1]∪[ξ1,∞)

∣∣∣∣1− eiξx

x

ψ+(−ξ)
(q +ψ(−ξ))(q +ψ−(ξ))

∣∣∣∣dξ
≤ 1

π

∫ ∞
ξ1

∣∣∣∣xξx
ξ2α−2/ log2(ξ)

(ξα − ξ2α−2/ log2(ξ))ξα

∣∣∣∣dξ
≤ 1

π

∫ ∞
ξ1

ξ
ξ2α−2/ log2(ξ)

(ξα/2)ξα
dξ

= 2

π

∫ ∞
ξ1

1

ξ log2(ξ)
dξ,

a bound independent of x.
Together with the finiteness of the supremum of (14) over x > 0 we conclude

sup
x>0

uq(0)− uq(x)

x
<∞,

hence X possesses right inverses. �

4. Excursions of X and Z when the Gaussian coefficient is positive.

4.1. Disjointness of supports of nZ and nẐ(−·). Evans started an analysis of
the excursions of the strong Markov process Z = X − L where Lt = inf{s ≥ 0 :
Ks > t}. Z corresponds to the process X reflected at its supremum process in
classical fluctuation theory; cf. Theorem 2.

The recurrence assumption is not essential for Theorem 4 and similar results.
Here, transience may entail an infinite excursion which does not impede the
arguments for Theorem 2 nor in the sequel. Evans describes the entrance laws
of the excursion measure nZ of Z rather than the excursion measure itself. Our
next result provides a description of the excursion measure nZ itself in terms of
the excursion measure nX of X.

Evans mentions that the excursion measures of X and Z have the same semi-
group but two different entrance laws. In the case of a Brownian motion he explains
this by noting the trivial result that all excursions of Z are negative; so, the entrance
laws of nZ are those of nX confined to the negative half line. Our Theorem 7(ii)
generalizes this explanation to the whole class of Lévy processes with a nontrivial
Gaussian coefficient: all excursions of Z start negative. As the excursions can pass
positive after a random initial amount of time, the domains of the entrance laws
cannot reflect this.

Let E± be the spaces of càdlàg paths ε ∈ E such that ±ε(s) > 0 for all
sufficiently small s > 0. Set nX± = 1E±n

X .
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THEOREM 7. Let X be a Lévy process with nontrivial Gaussian component
σ 2 > 0.

(i) nX-a.e. excursion does not oscillate initially, that is, nX = nX+ + nX−.

(ii) nZ and nẐ(−·) are mutually singular. More precisely,

nZ = 2

σ 2n
X+ and nẐ(−·)= 2

σ 2n
X−(−·).

There is nothing special about the coefficient 2/σ 2 of nX in Theorem 7 since it
depends on the choice of a local time of X at zero. Our choice κ(q)= 1/uq(0) was
made earlier in accordance with [2]. Actually, also nZ depends on such a choice,
but this one was eased since we have K as a natural inverse local time.

The proof of Theorem 7 is subject of the following subsections.

4.2. Discreteness of the structure of jumps across zero for excursions. We
analyze the initial and final behavior of excursions of Lévy processes when the
Gaussian component does not vanish.

LEMMA 3. If X is a Lévy process with nontrivial Gaussian component,
then excursions do not oscillate initially nor eventually. More precisely,
nX-almost every excursion ε ∈ E leaves and enters zero continuously, but there
are 0 < s(ε) < t(ε) < ζ(ε) where ζ(ε) is the lifetime of ε, such that one of the
following hold:
• ε(r) < 0 for all 0 < r < s(ε) and ε(r) < 0 for all t (ε) < r < ζ(ε);
• ε(r) < 0 for all 0 < r < s(ε) and ε(r) > 0 for all t (ε) < r < ζ(ε);
• ε(r) > 0 for all 0 < r < s(ε) and ε(r) < 0 for all t (ε) < r < ζ(ε);
• ε(r) > 0 for all 0 < r < s(ε) and ε(r) > 0 for all t (ε) < r < ζ(ε).

PROOF. Fix a minimum life time z > 0 and δ > 0. Since X and X̂ =−X can
both creep upward, by Theorem VI.19 in [2], we have

lim
y↓0

Py(XT(−∞,0] = 0)= 1 and lim
y↑0

Py(XT[0,∞)
= 0)= 1

and so

pδ = inf
0<y≤δ

{
Py(XT(−∞,0] = 0),P−y(XT[0,∞)

= 0)
}−→
δ→0 1.

Therefore, we can choose δn ↓ 0 such that

∞∑
n=1

(1− pδn) <∞.
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We introduce the probability measure Qz = nX(·|ζ > z), the law on the excursion
space (E,E) of an excursion whose life-time exceeds z. Define τδ = inf{r > z :
−δ ≤ ε(r) ≤ δ}. Clearly, the law of ε(τδn) under Q is concentrated on [−δn, δn]
and does not have an atom in zero, so that

∞∑
n=1

Qz
({
ε ∈E : sgn(ε(r))= sgn(ε(τδn)) for all τδn < r < τ0

})

=
∞∑
n=1

∫
[−δn,δn]

Py
(
sgn(Xr)= sgn(y) for all 0 < r < T{0}

)

×Qz
(
ε(τδn) ∈ dy

)
<∞

using the fact that, under Qz, the canonical process (ε(r))r≥z has the semi-group
of X killed when hitting zero (at τ0 = ζ and T{0}, respectively). Now the Borel–
Cantelli lemma yields

Qz(there is n≥ 1 such that sgn(ε(r))= sgn(ε(τδn)) for all τδn < r < τ0
)= 1.

Allowing life times above z= 1/k, k ≥ 1 integer, we can conclude the property to
be nX-almost sure.

The property at the beginning of the excursion follows by time reversal; cf., for
example, Getoor and Sharpe [8], Theorem (4.8), who show that the dual process
X̂ has as excursion measure the measure which is constructed from nX by time-
reversing excursions. �

This provides the proof of part (i) of Theorem 7. Furthermore, we have:

COROLLARY 3. For any Lévy processX with nontrivial Gaussian component,
nX-a.e. excursion jumps across the origin at most finitely often in finite time.

PROOF. Denote the successive jump times across the origin by

T0 = 0, Tn = inf{t > Tn−1 : sgn(εt ) �= sgn(εt−)}, n≥ 1.

Then T1 > 0 nX-a.s. by Lemma 3. From T1 on, ε behaves like a Lévy process
started at height ε(T1) killed when hitting zero. Assume Tn has a finite limit T .
Then the jumps get arbitrarily small since large jumps do not accumulate.
Therefore, ε(Tn) tends to zero, so by quasi-left continuity in T , T is the killing
time. This contradicts the fact, that excursions do not oscillate in a neighborhood
of their killing time, Lemma 3. �
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4.3. Right inverses for excursions. The last subsection provided the distinc-
tion between excursions that start positive and those that start negative. Let us now
focus on those starting positive. Analogous statements apply for those starting neg-
ative.

The construction of right inverses after Evans relies on successive first hitting
times. For Lévy processes these were analyzed within an infinite horizon.
Excursions are defined on finite time intervals, in general. On the one hand, another
time reversal argument shall allow us to look at the ends of excursions rather than
the beginnings. On the other hand, all calculations have to be exhibited under the
semi-group of the Lévy process killed when reaching zero which is still a strong
Markov process but the analogous transform representation (3) for the hitting times
T{y} takes a more complicated form:

LEMMA 4. Let X be a Lévy process with continuous resolvent densities uq ,
X† its version killed at the first hitting time of a, that is, X†

t =Xt for t < T{a} and

X
†
t = ∂ for t ≥ T{a}. Then the Laplace transform of a hitting time for X† is given

by

E†
x

(
exp(−qT{y}))= uq(y − x)uq(0)− uq(a− x)uq(y − a)

uq(0)uq(0)− uq(a − y)uq(y − a)
.

PROOF. From the point of view of the potential theory for Markov processes,
this result is classical; cf., for example, Lemma 1 in Rogers [10]. The existence of
continuous potential densities also allows a direct approach to the central identities

u†
q(x, y)= uq(y − x)−Ex(e

−qT{a})uq(y − a) and E†
x(e

−qT{a})= u†
q(x, a)

u
†
q(a, a)

,

the first being based on the Markov property in T{a}, the second via an
approximation of the densities like for Theorem II.19(ii) in [2]. �

Let X now be a Lévy process with continuous resolvent densities uq(x) and let
X have a right inverse K . Then:

PROPOSITION 3. The probabilities P (T{a} =Ka) are positive and tend to one
as a tends to zero.

PROOF. We calculate using the standard approximation of Ka of the proof of
Theorem 4 and the transform identity of Lemma 4

E0
(
exp(−qT{a}), T{a} =Ka

)
= lim

n→∞E0
(
exp(−qT{a}), T{k2−na} < T{(k+1)2−na} , k = 1, . . . ,2n− 1

)
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= lim
n→∞

2n−1∏
k=1

E
†
(k−1)2−na

(
exp(−qT{k2−na})

)

= lim
n→∞

2n−1∏
k=1

uq(2−na)uq(0)− uq((k + 1)2−na)uq(−k2−na)
uq(0)uq(0)− uq(k2−na)uq(−k2−na)

= lim
n→∞

2n−1∏
k=1

1− uq((k+1)2−na)uq (−k2−na)
uq (2−na)uq (0)

1− uq(k2−na)uq(−k2−na)
uq (0)uq(0)

(
1− uq(0)− uq(2−na)

uq(0)

)
.

We proceed by showing two things. First, we show that this quantity is always
positive. Second, we show that it tends to 1 as a tends to zero. The analysis of
an infinite product is most conveniently carried out by a translation to sums using
logarithms. In fact, the above limit of the products is positive if and only if the
following sums have a finite limit as n tends to infinity. Note that the above factors
are all in (0,1], so the summands below are nonnegative and we obtain using
chiefly uq(x)≤ uq(0) for all x ∈R,

2n−1∑
k=1

(
uq((k+ 1)2−na)uq(−k2−na)

uq(2−na)uq(0) − uq(k2−na)uq(−k2−na)
uq(0)uq(0)

+ uq(0)− uq(2−na)
uq(0)

)

= (2n− 1)
uq(0)− uq(2−na)

uq(0)

+
2n−1∑
k=1

uq(−k2−na)
uq(0)

(
uq((k + 1)2−na)

uq(2−na)
− uq(k2−na)

uq(0)

)

≤ uq(0)− uq(2−na)
2−nuq(0)

+ uq(a)

uq(2−na)
− uq(2−na)

uq(0)

+ uq(0)− uq(2−na)
uq(0)uq(2−na)

2n−1∑
k=2

uq(k2−na)

≤ ρ(q)+ uq(a)

uq(2−na)
− uq(2−na)

uq(0)
+ 2−naρ(q)uq(0)

uq(0)uq(2−na)
(2n− 2)uq(0)

−→
n→∞

uq(a)− uq(0)

uq(0)
+ 2aρ(q)

which is finite for all a > 0 so that the above products have a positive limit. For
the last inequality we also used (7).
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Furthermore, the majoration of the sum tends to zero as a tends to zero.
Therefore, the limits of the products tend to 1 as a tends to zero. �

PROPOSITION 4. Let X be a Lévy process with nontrivial Gaussian compo-
nent. Then nX+-a.e. excursion has a nontrivial piece of an inverse.

PROOF. From the preceding proposition we take that there is a sequence
yn ↓ 0 such that ∑

n≥0

sup
0<z≤yn

P0(Kz > T{z}) <∞.

In the following argument we shall not look at the initial behavior of excursions
that start positive but at the final behavior of excursions that end negative. This
amounts to the same by the invariance of the excursion measure under time-
reversal; cf. Getoor and Sharpe [8], Theorem 4.8.

Now focus on those excursions that go below the height −δ < 0 and end
negative (cf. Lemma 3). We work on the probability space induced by the generic
excursion distributed according to the excursion law nX restricted to excursions
passing below −δ and normalized to be a probability measure P . On this space
define variables τn(ε) = inf{t ≥ T(−∞,−δ)(ε) : εt ∈ (−yn,0)}, Zn(ε) = −ετn ∈
(0, yn] a.s., (killed) processes X

(n)
t (ε) = ετn+t − ετn , t ≥ 0, and events An =

{K(n)
Zn

> T
(n)
{Zn}}. For every n, X(n) has the same distribution under P as X killed

when attaining the random but independent height Zn under P0. Clearly,

P (An)= P
(
K

(n)
Zn

> T
(n)
{Zn}

)= ∫
(0,yn]

P
(
K(n)
z > T

(n)
{z}
)
P (Zn ∈ dz)

≤ sup
0<z≤yn

P0(Kz > T{z}).

We conclude from the Borel–Cantelli lemma that P (lim supn→∞An) = 0. This
means that a.s. only a finite number of the processes X(n) does not possess an
inverse up to height Zn. In fact, all that we shall make use of, is that, for P -a.e.
excursion ε we find an n ≥ 0 such that the path X(n)(ε) has an inverse up to
Zn(ε) > 0. Going back to the definition of these quantities, this means that ε,
from τn(ε) to the killing T{0}(ε) rises from −Zn(ε) to zero so that there exists an
(increasing) “right inverse”

k : [−Zn,0]→ [τn, T{0}] such that ε(k(x))= x for all x ∈ [−Zn,0].
The last step is the translation via time reversal and changing signs, still keeping ε
fixed. We obtain the negative reversed excursion and its inverse

ε̃(t)=−ε(T{0} − t) and k̃(x)= T{0} − k(−x).
To be precise, we mention, that this inverse is the maximal and not the minimal
inverse but, of course, the existence of a minimal inverse follows trivially now.



RIGHT INVERSES OF LÉVY PROCESSES 405

Since X and the negative of its time-reversal have the same law, this shows the
result for all excursions of X that start positive and exceed δ.

Via any sequence δn ↓ 0 we can include all excursions starting positive
completing the proof. �

This is the main tool for the remainder of the proof of Theorem 7.

PROOF OF THEOREM 7(ii). Using ρ(q)+ ρ̂(q)= 2κ(q)/σ 2, cf. Theorem 4,
and the transform representations of the entrance laws given in Theorem 2,
we obtain the corresponding relation of the entrance laws by inversion of the
transforms. Just note that∫ ∞

0

∫
R

exp(−qt + iλx)nẐt (dx) dt =
ρ̂(q)− iλ

q + ψ̂(λ)

yields when replacing x by −x and λ by −λ:
∫ ∞

0

∫
R

exp(−qt + iλx)nẐt (−dx) dt =
ρ̂(q)+ iλ

q +ψ(λ)
.

Since entrance laws characterize the excursion law uniquely, we conclude

nZ + nẐ(−·)= 2

σ 2
nX.(15)

Applying the preceding proposition, the result is now immediate since excursions
of Z cannot be initially invertible. So only initially negative excursions are
possible. The dual argument excludes the initially negative excursions from the
support of nẐ(−·). By (15), the proof is complete. �

5. The bounded variation case. Finally, we analyze the bounded variation
case which is quite different from the rest. We both characterize the existence
of right inverses and describe the excursion measure of the reflected process.
Compared with the last section, the two situations are very far from one another.
The behavior of the excursions of Z is not only very different between the cases
but also very different when compared to the excursions of X.

5.1. Right inverses for bounded variation Lévy processes. The existence
characterization gives quite natural conditions. However, we see again that the
parallels between the “existence of right inverses” and “upward creeping” fail.
Recall first, that a bounded variation process can creep upward if and only if its
drift coefficient is positive (cf. [2], Exercise VI.9) with no restriction on the number
of positive jumps. Concerning the existence of right inverses, we provide:
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THEOREM 8. (i) A bounded variation recurrent Lévy process has right
inverses if and only if it has a positive drift coefficient b > 0 and a discrete structure
of positive jumps.

(ii) Suppose X is a bounded variation recurrent Lévy process with drift
coefficient b > 0 and Lévy measure�. Provided that �((0,∞)) <∞, the Laplace
exponent ρ of the minimal right inverse K of X is given by

bρ(q)= q +
∫

R∗
uq(0+)− uq(−y)

uq(0+) �(dy)

where uq is the bounded q-resolvent density of X that is continuous apart from
zero (cf. Bretagnolle [5]).

The proof of Theorem 8 is based on:

LEMMA 5. Let Xt = t + X+t − X−t be a recurrent bounded variation Lévy
process decomposed into unit drift, positive and negative jump parts X+ and X−.
Let H be its ascending ladder height process; cf. Chapter VI in [2]. Then the
following are equivalent:
(1) X has a right inverse.
(2) H is a compound Poisson subordinator with positive drift added.
(3) X+ is a compound Poisson process.

PROOF. “(3) ⇒ (2)” By Proposition VI.11(ii) in [2] the supremum process
of X increases immediately, and so does H . Since X only has a finite number of
positive jumps in any finite interval, so does H since every jump of H corresponds
to a jump of X under conservation of their order.

“(2) ⇒ (1)” Define sequences of successive stopping times and processes as
follows

T −0 = 0, S
(0)
t = sup

0≤s≤t
Xt , T +0 = inf

{
t > 0 : S(0)t − S

(0)
t− > 0

}
,

T −n = inf
{
t > T +n−1 :Xt = S

(n−1)
T
+
n−1−

}
, S

(n)
t = sup

T
−
n ≤s≤t

Xs,

T +n = inf
{
t > T −n : S(n)t − S

(n)
t− > 0

}
.

Then, T +0 > 0 because it corresponds to the first jump time of H . We conclude
T +n →∞ since X hits the previous maxima again. We define

Lt = S
(n)
t , T −n ≤ t < T +n , n≥ 0

which is nontrivial, as S(0) increases immediately, and without jumps. The right-
continuous inverse K of L is a right inverse of X and clearly minimal.
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“(1) ⇒ (3)” Denote the minimal right inverse by K . Look at the process
Yt = t −X−t . Assume, X+ is not compound Poisson, so Y drifts to−∞. However,
like X, Y is regular for (0,∞) and irregular for (−∞,0), so the set LY of times
where Y is at its supremum, is a heavy regenerative set, killed at an independent
exponential time with parameter k ∈ (0,∞); cf. [2], Exercise VI.6. Denote the first
jump time of X+ of a jump height in (ε,∞) by τ(ε,∞) ∼ Exp(�̄+(ε)) where �+
is the Lévy measure of X+ and Exp(p) denotes the exponential distribution with
parameter (inverse mean) p > 0. Then note that the ladder time process KY of Y
has a positive drift. Denoting the potential density of KY by v, Proposition 1.7 of
Bertoin [3] yields

P (ξ ∈LY )= v(ξ)

v(0+) −→ξ→0+ 1.

This entails that

pε = P (τ(ε,∞) ∈LX) ≥ P (τ(ε,∞) ∈LY )

=
∫ ∞

0
P
(
ξ/�̄+(ε) ∈LY

)
e−ξ dξ −→

ε→0 1

as �̄+(ε)→∞ since X+ is not compound Poisson.
Now choose δ > 0 arbitrarily small such that cδ = P (inf0≤s≤δ Xs = 0) > 0.

Then we have

pεcδ = P

(
Sτ(ε,∞)

=Xτ(ε,∞)
= inf

0≤s≤δ Xτ(ε,∞)+s
)

≤ P
(
KXτ(ε,∞)

> δ
)

which in the limit ε → 0 yields P (K0+ > δ) ≥ cδ and letting δ → 0 we get
P (K0+ > 0)= 1 which is absurd since K is a subordinator. �

PROOF OF THEOREM 8(i). We first reduce the discussion to the case of
a positive drift. If the drift b is nonpositive and K the minimal inverse, the
probability that X enters (0,∞) immediately is zero, a fortiori P (K0+ = 0) = 0
which does not agree with the subordinator property of K .

The case of a positive drift has been treated in Lemma 5. �

Part (ii) of Theorem 8 will be derived from Proposition 5 which describes the
excursions of Z and which we provide in an own subsection.
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5.2. Excursions of Z in the bounded variation case. Clearly, the excursions
of Z are not as closely related to the excursions of X as in the case of a nontrivial
Gaussian component since here X leaves zero continuously whereas Z must be
expected to jump from zero. However, we can provide a description in terms of the
measures P †

x of X started in x and killed when first hitting a = 0.

PROPOSITION 5. Let X be a bounded variation Lévy process with positive
drift coefficient b > 0 and a discrete positive jump structure. Then we have

nZ(dε)= 1

b

∫
R

P †
x (dε)�(dx)

where � is the Lévy measure of X, P †
x the probability measure on the excursion

space E under which X has the law of our given Lévy process started at x and
killed when it hits zero.

The factor 1/b is not surprising. In fact, admitting the proposition for b = 1, it
occurs naturally by a linear time change: let X have drift coefficient b and Lévy
measure �, then Yt =Xt/b has unit drift and Lévy measure �/b. Now

nZ(dε)= nZ(Y )
(
dε(·/b))= ∫

R

P †
x

(
Y ∈ dε(·/b))(�/b)(dx)

= 1

b

∫
R

P †
x (dε)�(dx)

deduces the result for b �= 1.

PROOF OF PROPOSITION 5. Let X be a bounded variation process with a
positive drift and a discrete structure of positive jumps. Assume, that excursions
started continuously occur with a positive probability. Then, an independent
exponential time T has a positive probability to hit a corresponding excursion
interval. We reverse the time by introducing the process X∗t =XT −XT−t− which
has the same distribution as X killed at T . For X∗ 0 is irregular for (−∞,0), so
the descending ladder set is discrete. One of these points (the last one) corresponds
to the starting point of the last excursion of X. This leads to a contradiction since
X∗ always jumps to its new infima.

Look at the compound Poisson case (with unit drift added). We identify the
intensity measure nZ of the Poisson excursion process in local time. It clearly
suffices to look at the law of the first excursion. The first excursion, however, starts
at the first jump which occurs at an exponential time with parameter �(R). The
jump height is independent of the jump time, its distribution is �(·)/�(R). By
the Markov property at this jump time, the process X̃ after the jump relative to
the position before the jump is a Lévy process started at the jump height. The
excursion ends when X̃ first attains zero. Due to the unit drift assumption, the
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local time coincides with the real time before the first jump. Therefore, passing to
local time retains the right frequency factor.

In the general case (bounded variation with discrete positive jump structure and
unit drift), let us first focus on the excursions started by a jump in (−∞,−1/n)∪
(0,∞). Call the position of the first such jump τn. The same reasoning as above
yields the corresponding part of the excursion measure, only discounted by the
probability

pn = P (Zτn− = 0)= P (Xτn− = Sτn)

that X is at its supremum when the first jump of this type occurs. Now, letting n

tend to infinity includes all excursions started by a jump, that is, all excursions.
Also, a similar argument as for the direction “(3)⇒ (2)” of Lemma 5, shows that
pn tends to 1 so that we get the correct intensity factor. More precisely, denote
by X(n) the process X when taking away all jumps in (−∞,−1/n) ∪ (0,∞), by
Tm ∼ τm an independent (exponential) time. Then we have, for m≥ n,

pm = P
(
X(m)
τm
= S(m)τm

)≥ P
(
X
(n)
Tm
= S

(n)
Tm

) −→
m→∞ 1. �

REMARK 2. Having established that excursions start by jumps, there is also a
proof via compensation formulas which identifies the excursion measure. We shall
give an outline here.

Denote the local time excursion process of Z by (ex)x≥0, take any nonnegative
bounded continuous functional F on the excursion space. Then∫

E
F (ε)nZ(dε)

=E

( ∑
0≤x≤1

F(ex)

)

=E

( ∑
0≤t<∞

1{Lt≤1}1{Xt−=Lt }1{�Xt �=0}F
(
X̃s =Xt+s −Xt−,0≤ s ≤ T̃{0}

))

=E

(∫
[0,1]

∫
R

Ex

(
F(Xs, s ≤ T{0})

)
�(dx)dL(t)

)

= 1

b

∫
R

Ex

(
F(Xs, s ≤ T{0})

)
�(dx)

where we used the compensation formula in excursion theory (cf. Corollary IV.11
in [2]), and the compensation formula for the so-called incursion theory or theory
of exit systems (cf. Théorème XX.49 in Dellacherie, Maisonneuve and Meyer [6]).
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Proposition 5 entails part (ii) of Theorem 8 as follows:

PROOF OF THEOREM 8(ii). Clearly the drift coefficient of K has to be the
reciprocal of the drift coefficient of X, so we obtain a representation

ρ(q)= q

b
+ 1

b

∫
(0,∞)

(1− e−qx)ν(dx)

for some Lévy measure ν/b. This Lévy measure describes the jumps of K , that is,
the lengths of the excursions of Z. Therefore

ν(dx)=
∫

R

Py(T{0} ∈ dx)�(dy)

which yields, by Corollary II.18 in [2],

bρ(q)= q +
∫

R

∫
(0,∞)

(1− e−qx)Py(T{0} ∈ dx)�(dy)

= q +
∫

R

(
1− uq(−y)

uq(0+)
)
�(dy). �

5.3. Further remarks. We can compare the Lévy measure ν of K to µ, the
Lévy measure of the inverse local time A−1 at the supremum with Laplace
exponent

F(q)= 1

b
q +

∫
(0,∞]

(1− e−qx)µ(dx).

If we define

λ(dx)= 1

b

∫
R−

Py(T{0} = T[0,∞) ∈ dx)�(dy)

we can express

µ(dx)= 1

b

∫
R−

Py(T[0,∞) ∈ dx)�(dy)

= λ(dx)+ 1

b

∫
R−

Py(T{0} > T[0,∞) ∈ dx)�(dy),

ν(dx)= 1

b

∫
R∗
Py(T{0} ∈ dx)�(dy)

= λ(dx)+ 1

b

∫
R−

Py(T[0,∞) < T{0} ∈ dx)�(dy)

+ 1

b

∫
R+

Py(T{0} ∈ dx)�(dy),

where λ is the only infinite component. In the transient case we interpret these as
identities of measures on (0,∞].
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We can derive most of this from Proposition 5. Just note that, denoting the
renewal density of the ascending ladder height process H by v, we have∫

R−
Py(T{0} > T[0,∞))�(dy)=

∫
R−

v(0+)− v(−y)
v(0+) �(dy)

by [2], Theorem VI.19. The finiteness is obtained as follows. From Lemma 5 we
take that the ladder height process is compound Poisson. Therefore there is a right
derivative of v in 0. This makes the integrand integrable w.r.t. �. One obtains the
finiteness also by observing that K and A−1 coincide up to the first jump of the
supremum process.

The argument to establish the existence of a right inverse for Theorem 8 also
works in the case of unbounded variation whenever the structure of positive jumps
is discrete. However, our converse argument relies crucially on the irregularity
of 0 for (−∞,0) which X no longer fulfills when the variation is unbounded. We
refer to Theorem 6 instead, where we use a different argument to generalize the
existence result of Theorem 8.

A comparison of Proposition 5 and Theorem 7 shows the very different behavior
of the two cases: whereas in the case of a nontrivial Gaussian component all
excursions of Z start continuously from zero, the bounded variation case has no
such excursions but initiates every excursion by a jump. The latter behavior can
also be contrasted to the behavior of the excursions of X away from zero which all
start continuously since a.s. no jump starts from zero, due to the positive drift.

APPENDIX

Proposition 2 states that X = X+ − X− with X− spectrally positive α-stable
and X+ symmetric β-stable, 0 < 2α − 2 < β < α < 2, has no right inverses.

PROOF OF PROPOSITION 2. We have

�(ψ+(ξ))= |ξ |β, �(ψ+(ξ))= 0,

�(ψ−(ξ))= |ξ |α, �(ψ−(ξ))= c sgn(ξ)|ξ |α, c=− tan(πα/2) ∈ (0,∞),

as we take, for example, from [2], Section VIII.1.
Following the proof of Theorem 6 until the estimations, we obtain for the

resolvent densities vq of −X− and uq of X by focusing on the real part of the
integrand

uq(0)− uq(x)− (vq(0)− vq(x))

x

= 1

2π

∫ ∞
−∞

(
1− cos(xξ)

x
�
( −ψ+(−ξ)
(q +ψ−(ξ))(q +ψ(−ξ))

)

+ sin(xξ)

x
�
( −ψ+(−ξ)
(q +ψ−(ξ))(q +ψ(−ξ))

))
dξ
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and we show that this quantity tends to infinity as x tends to zero. More precisely,
we show that the sin-term tends to infinity and that the cos-term does not tend to
−∞ quicker than the sin-term tends to infinity.

First, we show that the integrand f (ξ) of the sin-term is eventually decreasing
when taking away the sin itself. Indeed, when differentiating

f (ξ)= c
2qξα+β + ξα+2β + 2ξ2α+β

(q2 + 2qξα + (1+ c2)ξ2α)(q2 + 2qξα + (1+ c2)ξ2α + 2qξβ + ξ2β + 2ξα+β)
the leading term is negative:

f ′(ξ)=

c
(1+ c2)2(4α+ 2β − 4α − 4α)ξ6α+β +O(ξ5α+2β + ξ6α)

ξ(q2 + 2qξα + (1+ c2)ξ2α)2(q2 + 2qξα + (1+ c2)ξ2α + 2qξβ + ξ2β + 2ξα+β)2
.

Second, we split the integral into the positive and negative parts of sin, as an
alternating sum of eventually decreasing numbers. By restricting to small x we can
even assume that the first positive period of sin contains the whole nondecreasing
part of f . We may now focus on the first positive and negative parts of sin.

Third, we eliminate the nondecreasing part of f : denote by ξ0 the barrier after
which f is decreasing. Choose M > 1 such that∫ Mξ0

ξ0

f (ξ) dξ ≥Mξ0f (Mξ0).

This is possible since the left-hand side is increasing in M and the right-hand side
decreases to zero (f (ξ)∼ ξβ−2α). Clearly, for all x < π/2Mξ0,∫ Mξ0

0
sin(xξ)f (ξ) dξ ≥

∫ Mξ0

ξ0

sin(xξ)f (ξ) dξ ≥ sin(xξ0)Mξ0f (Mξ0),

−
∫ π/x+Mξ0

π/x
sin(xξ)f (ξ) dξ ≤ sin(Mxξ0)Mξ0f (π/x)

and the former dominates the latter if

sin(xξ0)

sin(Mxξ0)
≥ f (π/x)

f (Mξ0)

which is valid below a threshold x0, say, since the left hand side tends to 1/M as
x tends to zero, whereas the right hand side tends to zero.

Fourth, the rest of the first positive and negative parts of sin is strong enough to
diverge to infinity when x goes to zero:∫ 2π/x

0

sin(xξ)

x
f (ξ) dξ =

∫ π/x

0

sin(xξ)

x

(
f (ξ)− f (π/x + ξ)

)
dξ

≥
∫ π/x

π/2x

sin(xξ)

x

(
f (ξ)− f (π/x + ξ)

)
dξ
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≥
∫ π

π/2

sin(η)

x2
dη
(
f (π/x)− f (3π/2x)

)

=− 1

x2

π

2x
f ′(cxπ/x)

≥ εx−2−1−(β−2α−1) = εx2α−β−2−→
x→0

∞

where the cx ∈ [1,3/2] come from the mean value theorem and do not influence
the estimate as they are bounded above and below.

Fifth, look at the cos-term, whose coefficient can be expressed as

g(ξ)= (c2 − 1)ξ2α+β − ξα+2β − 2qξα+β − qξ2β − q2ξβ

(q2 + 2qξα + (1+ c2)ξ2α)(q2 + 2qξα + (1+ c2)ξ2α + 2qξβ + ξ2β + 2ξα+β)

and this is eventually positive if and only if c2 > 1, that is, α < 3/2. In these cases,
we can therefore neglect the cos-term and this part of the proof is complete.

Let us now take α ≥ 3/2. Here the argument is more subtle, since, in fact, the
cos-terms diverge as well as x tends to zero and so, we need to compare them to
the sin-terms ∫ ∞

0

1− cos(xξ)

x
g(ξ) dξ +

∫ ∞
0

sin(xξ)

x
f (ξ) dξ

=
∫ ∞

0

1− cos(xξ)

x

(
g(ξ)− 1

x
f ′(ξ)

)
dξ.

It is easily seen that ξ ∈ [0, ξ1] do not influence the limit behavior. Furthermore, we
have for all ε > 0 and c̃ := c− ε > 0, ξ1 sufficiently large and x ≤ x0 sufficiently
small, ∫ ∞

ξ1

1− cos(xξ)

x

(
g(ξ)− 1

x
f ′(ξ)

)
dξ

≥
∫ ∞
ξ1

1− cos(xξ)

x

(
γgξ

β−2α − 1

x
γf ξ

β−2α−1
)
dξ

where γg = (1 − c̃2)/(1 + c2)2 and γf = 2c̃(2α − β)/(1 + c2)2. Now again,
ξ ∈ [0, ξ1] do not influence the limit behavior, we can therefore again look at
integrals over [0,∞). Substituting η = xξ yields∫ ∞

0

1− cos(xξ)

x

(
γgξ

β−2α − 1

x
γf ξ

β−2α−1
)
dξ

= x2α−β−2γg

(
γ

∫ ∞
0

(
1− cos(η)

)
ηβ−2α−1 dη

−
∫ ∞

0

(
1− cos(η)

)
ηβ−2α dη

)
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FIG. 1. a �→ γ (a,2− a)
∫∞
0 (1− cos(η))ηa−3 dη− ∫∞

0 (1− cos(η))ηa−2 dη.

and the proof is complete when the term in parentheses is positive. Let us rewrite
it as a function of a = β − 2α + 2 and γ , where a ∈ (0,2− α); that is, α ∈ [3/2,
2− a). As γ (a,α)= 2c̃(2− a)/(1− c̃2) (0 < c̃=− tan(πα/2)− ε) is decreasing
in α,

γ (a,α)

∫ ∞
0

(
1− cos(η)

)
ηa−3 dη−

∫ ∞
0

(
1− cos(η)

)
ηa−2 dη

> γ (a,2− a)

∫ ∞
0

(
1− cos(η)

)
ηa−3 dη−

∫ ∞
0

(
1− cos(η)

)
ηa−2 dη

and the latter is positive by the plot in Figure 1. �
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