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LIMITS OF LOGARITHMIC COMBINATORIAL STRUCTURES

By R. Arratia,1 A. D. Barbour2 and S. Tavaré1

University of Southern California, Universität Zürich and
University of Southern California

Under very mild conditions, we prove that the limiting behavior of
the component counts in a decomposable logarithmic combinatorial struc-
ture conforms to a single, unified pattern, which includes functional central
limit theorems, Erdös–Turán laws, Poisson–Dirichlet limits for the large
components and Poisson approximation in total variation for the total num-
ber of components. Our approach is entirely probabilistic, and the condi-
tions can readily be verified in practice.

1. Introduction. Many well-known combinatorial structures (for exam-
ple, permutations, polynomials over a finite field) are made up of elementary
components (cycles, irreducible factors) of different sizes. This paper is con-
cerned with the common statistical properties of the numbers of components
of different sizes in a structure chosen uniformly at random from all those of
size n, in the limit as n→∞. The structures we consider have two common
properties. First, if the number of components of size i in a structure of size
n is denoted by C�n�i , 1 ≤ i ≤ n, then the joint distribution of �C�n�1 � � � � � C

�n�
n �

satisfies the conditioning relation,

�CR�� ��C�n�n = c1� � � � � C�n�n = cn	

= �

[
Z1 = c1� � � � �Zn = cn

∣∣∣∣ n∑
i=1

iZi = n
](1.1)

for some sequence �Zi� i ≥ 1� of independent random variables on �+. The

requirement that
∑
i=1 iC

�n�
i = n simply reflects the fact that the size of the

structure is n. Second, the Zi have distributions satisfying the logarithmic
condition

�LC�� lim
i→∞

i��Zi = 1	 = lim
i→∞

iƐZi = θ(1.2)

for some θ > 0. Further examples of such structures are square free polyno-
mials, necklaces, mappings, mapping patterns and characteristic polynomials;
certain nonuniform measures, such as the Ewens sampling formula [Ewens
(1972)], are also covered. The most commonly studied examples belong to one
of three classes, in which the Zi’s all have Poisson distributions (assemblies),
negative binomial distributions (multisets) or binomial distributions (selec-
tions); of those mentioned above, random characteristic polynomials are the
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only exception. The Ewens sampling formula, which we denote by C∗�n�, has
Z∗
i ∼ Po�θ/i�, the case θ = 1 resulting from the uniform distribution over

permutations.
Limit theorems for various aspects of the component structure have been

proved separately for different instances of logarithmic combinatorial struc-
tures. A Poisson–Dirichlet limit for the normalized sizes of the r largest cycles
in a uniform random permutation was proved by Vershik and Shmidt (1977),
for components of a random mapping by Aldous (1985), for components of
a random mapping pattern by Mutafciev (1990) and for all assemblies and
multisets satisfying a certain complex analytic condition by Hansen (1994);
a functional central limit theorem for the component sizes was proved for
uniform random permutations by De Laurentis and Pittel (1985), for map-
pings by Hansen (1989), for the Ewens sampling formula by Hansen (1990),
for polynomials by Arratia, Barbour and Tavaré (1993) and by Hansen (1993)
and for characteristic polynomials by Goh and Schmutz (1993) and Hansen
and Schmutz (1993). Here, we show that separate treatment of the individual
instances is unnecessary. These and other limit theorems hold for all struc-
tures which satisfy the conditioning relation and very slight strengthenings
of the logarithmic condition.

The conditioning relation is used in the following way. For any y ∈ �n+, we
define

y�r� s	 = �yr� yr+1� � � � � ys�� Krs�y� =
s∑

i=r+1

yi� Trs�y� =
s∑

i=r+1

iyi�(1.3)

Then the conditioning relation implies that

�
[
C�n��1� b	 = y�1� b	] = �

[
Z�1� b	 = y�1� b	]�[Tbn�Z� = n−T0b�y�

]
�
[
T0n�Z� = n

](1.4)

and

�
[
C�n��b+ 1� n	 = y�b+ 1� n	]
= �

[
Z�b+ 1� n	 = y�b+ 1� n	]�[T0b�Z� = n−Tbn�y�

]
�
[
T0n�Z� = n

] �
(1.5)

Thus probabilities for the dependent sequence C�n� are replaced by probabili-
ties only involving the independent sequence �Zi� i ≥ 1�, at the cost of needing
to handle point probabilities for the random variables Tvm�Z�, for appropriate
choices of v and m. In (1.4), we show that if b �n and T0b�y� �n, then

�
[
Tbn�Z� = n−T0b�y�

] ≈ �
[
T0n�Z� = n

]
�(1.6)

implying that the distributions of C�n��1� b	 and Z�1� b	 are close: the counts
of small components are almost independent. For the large components, this
is clearly not the case. Instead, we divide (1.5) by the same equation, but with
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C∗�n� for C�n� and Z∗ for Z, and show that if also b� 1 then

�
[
T0n�Z� = n

] ≈ �
[
T0n�Z∗� = n]�

�
[
T0b�Z� = n−Tbn�y�

] ≈ �
[
T0b�Z∗� = n−Tbn�y�

]
�

(1.7)

This shows that the distributions of C�n��b+1� n	 and C∗�n��b+1� n	 are as close
to each other as are those of Z�b+1� n	 and Z∗�b+1� n	; and these are close to
one another for b = b�n� large enough, by the logarithmic condition. The vari-
ous limit theorems for the joint distribution of the component counts are then
deduced from those for independent random variables, using the approxima-
tion of the small components, or from those for the Ewens sampling formula
C∗�n�, using the approximation of the big components.

The key to the argument is thus some form of local limit approximation
for the distribution of the random variables Tvm�Z� =

∑m
i=v+1 iZi, which is

enough to justify (1.6) and (1.7). But although Tvm�Z� is a sum of independent
random variables, it is not approximately normally distributed. Indeed, forZ∗,

n−1T0n�Z∗� �−→Xθ�(1.8)

where � �Xθ� has a probability density pθ on �+ satisfying

pθ�x� = θx−1��x− 1 ≤Xθ < x	�(1.9)

The distribution of Xθ and its density pθ were given by Vervaat [(1972),
Theorem 4.7.7], and the weak convergence is elementary using Laplace trans-
forms, as in Arratia and Tavaré [(1994), Lemma 1]. The density function
in (1.9) satisfies an equation of the type uf′�u� + af�u� + bf�u − 1� = 0;
asymptotics for the solutions of such equations are studied in Hildebrand and
Tenenbaum (1993).

We use Qθ to denote the Lévy concentration function of � �Xθ�, and note
that Qθ�x� = O�xθ̄� as x→ 0, where θ̄ = min�θ�1�. We extend this result, by

showing that n−1Tbn�Z�
�→ Xθ for all Z satisfying the uniform logarithmic

condition below, and for all b = b�n� = o�n� as n→∞. We then establish an
approximate version of (1.9) for n−1Tbn�Z�, showing that

�
[
Tbn�Z� = s

] ≈ �θ/s��[s− n ≤ Tbn�Z� < s− b](1.10)

for s = �nx	, thus providing the required local limit approximation.
An advantage of our approach, as opposed to those based on the singularity

analysis of Flajolet and Soria (1990), is the unity of argument and great gen-
erality which results, as well as the transparency of the conditions needed for
the theorems. In contrast, the complex analytic approaches typically require
conditions to be satisfied that can be verified in the well-known examples, but
which are difficult to express directly in terms of the basic parameters of
the structures. For example, Hansen’s (1994) Poisson–Dirichlet approximation
presupposes that such a condition is satisfied, a condition which is shown in
Arratia, Barbour and Tavaré (1999) and in Theorem 3.4 in fact to be spurious.
A further advantage of our method is that it can be adapted to give bounds
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on the accuracy of the approximations [Arratia, Barbour and Tavaré (2000)].
With the notable exception of one-dimensional limiting approximations, where
Fourier methods have a long and celebrated history, and have now been very
successfully applied to component counts by Hwang (1998a, b), rates of approx-
imation are not easily obtained by complex variable arguments.

Four main approximations are proved in this paper. The first two, Poisson–
Dirichlet limits (Theorem 3.4) and the functional central limit theorem for
component counts (Theorem 3.5), have already been mentioned. In addition,
we prove a functional version of the Erdös–Turán (1967) law [Theorem 3.6; for
previous work in special cases see Nicolas (1984, 1985)] and a Poisson approx-
imation in total variation for the total number of components [Theorem 3.7;
see also Hwang (1999)]. For all of these results, we need a slightly stronger
version of the logarithmic condition, in the form of the uniform logarithmic
condition,

�ULC�� εi1 = i��Zi = 1	 − θ satisfies �εi1� ≤ e�i�c1�(1.11)

εil = i��Zi = l	 ≤ e�i�cl� l ≥ 2�

where e�i� ↓ 0 as i→∞ and D1 =
∑
l≥1

lcl <∞�(1.12)

Some extra condition on the e�i� or on the cl is needed at times; the assump-
tion that

∑
i≥1 i

−1e�i� < ∞ is enough for all that we consider in this paper.
For assemblies, multisets and selections, the uniform logarithmic condition is
in fact no stronger than the logarithmic condition, as is shown in the follow-
ing proposition, which is proved, together with two other technical results, in
Section 4.

Proposition 1.1. All assemblies, multisets and selections that satisfy the
logarithmic condition also satisfy the uniform logarithmic condition.

2. Preparation. This section lays the groundwork for the theorems of
Section 3, by proving the necessary properties of the distribution of the
Tvm�Z�, as discussed in the Introduction. In particular, the convergence in
distribution of n−1Tbn�Z� is proved in Theorem 2.4, and the formal version of
the local limit approximation (1.10) in Theorem 2.6. The uniform logarithmic
condition is assumed throughout, even when not explicitly mentioned.

We use two distances between probability distributions P and Q, the total
variation distance

dTV�P�Q� = sup
A

��P�A� −Q�A���

and, for distributions on �, the Kolmogorov distance

dK�P�Q� = sup
x
��P�−∞� x	 −Q�−∞� x	���
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We start by showing that theZ andZ∗ sequences have similar distributions
for large indices. We interpret 1/0 as +∞, for example when b = 0 in the
following lemma.

Lemma 2.1. For any 0 ≤ b ≤ n,

dTV

(
� �Z�b+ 1� n	��� (Z∗�b+ 1� n	)) = O(b−1 +

n∑
i=b+1

i−1e�i�
)
�

Proof. It is immediate from the uniform logarithmic condition that

dTV
(
�
(
Zi
)
��
(
Z∗
i

)) = O(i−2 + i−1e�i�
)
�

and the lemma follows by making independent couplings of the pairs
(
Zi�Z

∗
i

)
,

and using the triangle inequality. ✷

Corollary 2.2. There exists a sequence βn with limn→∞ n−1βn = 0 such
that

&n �= dTV
(
�
(
Z
[
βn + 1� n

])
��
(
Z∗[βn + 1� n

]))→ 0�(2.1)

If
∑
i≥1 i

−1e�i� < ∞, then �2�1� holds for any sequence βn such that limn→∞
βn = ∞.

Proof. Since
∑n
i=b+1 i

−1e�i� ≤ e�b� log�n/b�, it suffices to choose βn large
enough that limn→∞ e�βn� log�n/βn� = 0. ✷

We now complement these distributional approximations with a comparison
of densities, for which we need the following definition. Set

κ �= min�i� i−1�θ+D1e�i�� < 1/2��(2.2)

and note that ��Zi = 0	 ≥ 1/2 for all i ≥ κ.

Lemma 2.3. For any 0 ≤ b ≤ n and y ∈ �n+ such that y�b+1� n	 ∈ �0�1�n−b,
we have

�
[
Z�b+ 1� n	 = y�b+ 1� n	]

�
[
Z∗�b+ 1� n	 = y�b+ 1� n	] ≥ 1−Kθ

{
b−1 +

n∑
i=b+1

e�i��i−1 + yi�
}
�(2.3)

for some Kθ not depending on b, n or y. Furthermore, if b ≥ κ,

�
[
Z�b+ 1� n	 = y�b+ 1� n	]

�
[
Z∗�b+ 1� n	 = y�b+ 1� n	] ≤ exp

(
K′
θ

n∑
i=b+1

{
e�i�
{
i−1+yi

}
+i−1yi

})
�(2.4)

for some K′
θ.
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Proof. Using the uniform logarithmic condition, we have

�
[
Z�b+ 1� n	 = y�b+ 1� n	]

�
[
Z∗�b+ 1� n	 = y�b+ 1� n	] =

n∏
i=b+1

{
��Zi = 0	1−yi��Zi = 1	yi

e−θ/i�θ/i�yi

}

≥
n∏

i=b+1

{(
1−D1i

−1e�i� − θi−2(θ+D1e�1�
))

+
(
1−D1θ

−1e�i�)yi+ }(2.5)

≥ 1−
n∑

i=b+1

{
D1e�i�

(
i−1 + θ−1yi

)
+ θi−2(θ+D1e�1�

)}
�

proving the first inequality. For the second, we have

i��Zi = 1	
θ��Zi = 0	 ≤

1+D1e�i�
��Zi = 0	 ≤ �1+D1e�i��

{
1+ 2i−1�θ+D1e�i��

}
�

since �1 − x�−1 ≤ 1 + 2x in x ≤ 1/2, and the remainder of the proof follows
from (2.5). ✷

On the basis of these comparisons, the convergence in distribution of m−1×
Tvm�Z� to Xθ can be established.

Theorem 2.4. If the uniform logarithmic condition is satisfied, then, for
any sequence Bm such that limm→∞ m−1Bm = 0, it follows that

lim
m→∞ max

0≤v≤Bm
dK

(
�
(
m−1Tvm�Z�

)
�� �Xθ�

)
= 0�

where Xθ is as in �1�8�.

Proof. Assume without loss of generality that Bm ≥ βm, where βm is as
in Corollary 2.2. For each m, construct Z and Z∗ on the same probability
space �)̂m� �̂m� �̂m� in such a way that

Am �= �Z�Bm + 1�m	 �= Z∗�Bm + 1�m	�

satisfies limm→∞ �̂m�Am	 = 0; this is possible, by Corollary 2.2. Define

Xm =m−1
{
Tv�Bm�Z� +TBm�m�Z�

}
�

Ym =m−1
{
T0�Bm�Z∗� +TBm�m�Z∗�

}
�

and note that, on Acm, from the uniform logarithmic condition,

m−1Ɛ̂m�Xm −Ym� =m−1Ɛ̂m�Tv�Bm�Z� −T0�Bm�Z∗�� ≤ �θ+D1e�1��m−1Bm�

Now apply Lemma 4.2 withX =Xm,Y = Ym,A = Am andZ =Xθ, the proof

being complete because Ym
�→Xθ, in view of (1.8). ✷



1626 R. ARRATIA, A. D. BARBOUR AND S. TAVARÉ

We now turn to point probabilities for the random variables Tvm�Z�, which
we need to control in order to make precise the argument sketched in the
Introduction. The first step is to prove a crude general bound for such probabil-
ities. The argument derives from that of Theorem 4.4 of Arratia, Barbour and
Tavaré (1999).

Lemma 2.5. If limn→∞ n−1Bn = 0, then

lim
n→∞ max

0≤b≤Bn
max
k≥0

��Tbn�Z� = k	 = 0�

Proof. Write β′n = max�Bn�βn�. Then, since Tbn�Z� = Tb�β′n�Z�+
Tβ′n� n�Z� and the two summands are independent, it follows for all b ≤ Bn
that

max
k≥0

��Tbn�Z� = k	 ≤ max
k≥0

��Tβ′n� n�Z� = k	�

However, now

max
k≥0

�
[
Tβ′n� n�Z� = k

]
≤ max

k≥0
�
[
Tβ′n� n�Z∗� = k

]
+ &n�

where limn→∞ &n = 0 from Corollary 2.2, and

max
k≥0

�
[
Tβ′n� n�Z∗� = k

]
≤ exp�−θ̄�h�n� − h�β′n��� ∼

(
β′n/n

)θ̄ → 0

as n → ∞, by Arratia, Barbour and Tavaré [(1999), Lemma 3.2]: here and
subsequently, h�m� =∑mi=1 i

−1 denotes the mth harmonic number. ✷

In the course of the proof of the local limit approximation below, we need not
only the bound in Lemma 2.5, but also a similar bound for sums defined as for
the Tvm�Z�, but with one term of the sum missing. So for any 0 ≤ v < i ≤m,
define

T
�i�
vm�Z� =

m∑
j=v+1
j�=i

jZj�(2.6)

By independence, it is immediate that

�
[
T
�i�
vm�Z� = r

]
�
[
Zi = l

] ≤ �
[
Tvm�Z� = r+ il

]
for any r� l ≥ 0, leading to the simple bounds

�
[
T
�i�
vm�Z� = r

]
≤ 2�

[
Tvm�Z� = r

]
(2.7)

whenever i ≥ κ, and, for all i,

max
r≥0

�
[
T
�i�
vm�Z� = r

]
≤ c�κ�max

s≥0
�
[
Tvm�Z� = s

]
�(2.8)
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where

c�κ� �= max

{
2�
[

min
1≤j<κ

max
l≥0

�
[
Zj = l

]]−1
}
�(2.9)

Thus point probabilities for the random variables T�i�vm�Z� can be bounded in
terms of point probabilities for theTvm�Z�; in particular, (2.8) can be combined
with Lemma 2.5.

Theorem 2.6. If the uniform logarithmic condition holds and limm→∞ m−1

Bm = 0, then

lim
m→∞ max

0≤v≤Bm
sup
s≥1

∣∣∣s�[Tvm�Z� = s]− θ�[m−1�s−m� ≤Xθ < m−1�s− v�]∣∣∣ = 0�

Proof. Temporarily, write W for Tvm�Z� and Wi for T�i�vm�Z�. Then, by
conditioning on the value l taken by Zi, we have

Ɛ
{
ZiI�W = s	} =∑

i≥1

l�
[
Zi = l

]
�
[
Wi = s− il

]
= i−1θ�

[
Wi = s− i

]+ i−1∑
l≥1

lεil�
[
Wi = s− il

]
�

(2.10)

where the εil are as defined in the uniform logarithmic condition. Multiplying
by i and adding over v+ 1 ≤ i ≤m thus immediately gives

s��W = s	 = θ
m∑

i=v+1

�
[
Wi = s− i

]+ m∑
i=v+1

∑
l≥1

lεil�
[
Wi = s− il

]
�(2.11)

Now the probabilities ��Wi = s−i	 can be replaced in the first sum by ��W =
s − i	, together with an appropriate correction, since, again conditioning on
the value l taken by Zi, we have

��W = s− i	 = ��Wi = s− i	
+ i−1θ

(
1+ εil

){
��Wi = s− 2i	 − ��Wi = s− i	

}
+ i−1θ

∑
l≥2

εil

{
��Wi = s− �l+ 1�i	

− ��Wi = s− i	
}
�

(2.12)

Thus it follows, by combining (2.11) and (2.12), that the quantity∣∣∣s�[Tvm�Z� = s]− θ�[s−m ≤ Tvm�Z� < s− v
]∣∣∣(2.13)

is bounded in terms of three sums involving the εil and point probabilities for
the random variables T�i�vm�Z�; it is for the latter that (2.7) and (2.8) are used.
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In order to show that the three sums are asymptotically negligible, we begin
by observing that we can choose a sequence wm ≥ κ such that wm → ∞ and
yet

lim
m→∞

{
h�wm� +

wm∑
i=1

e�i�
}

max
0≤v≤Bm

max
r≥0

�
[
Tvm�Z� = r

] = 0�(2.14)

in view of Lemma 2.5. Taking the first sum, for any s ≥ 1 and 0 ≤ v ≤ Bm, we
have

m∑
i=v+1

∑
l≥1

lεil��Wi = s− il	

≤
{
wm∑
i=1

+
m∑

i=wm

}
e�i�∑

i≥1

lcl�
[
Wi = s− il

]
≤ c�κ�D1

wm∑
i=1

e�i� max
0≤v≤Bm

max
r≥0

�
[
Tvm�Z� = r

]
+ 2

m∑
i=wm

e�i�∑
l≥1

lcl�
[
Tvm�Z� = s− il

]
�

where the last line follows from (2.7) and (2.8); the first contribution is then
negligible because of (2.14), and the second because it is bounded by 2D1e�wm�,
since

∑
i≥0 ��Tvm�Z� = s− il	 ≤ 1. The third sum is negligible because∣∣∣∣∣ m∑
i=v+1

i−1∑
l≥2

εil
{
��Wi = s− �l+ 1�i	 − ��Wi = s− i	

}∣∣∣∣∣
≤
{
wm∑
i=1

+
m∑

i=wm

}
i−1e�i�∑

l≥2

cl

{
�
[
T
�i�
vm�Z� = s− �l+ 1�i

]
+ �
[
T
�i�
vm�Z� = s− i

]}

≤ c�κ�D1

wm∑
i=1

e�i� max
0≤v≤Bm

max
r≥0

�
[
Tvm�Z� = r

]+ 4w−1
m e�wm�

∑
l≥2

cl�

which tends to 0 much as before, and for the second sum we have∣∣∣∣∣ m∑
i=v+1

i−1�1+ εil�
{
��Wi = s− 2i	 − ��Wi = s− i	

}∣∣∣∣∣
≤
{
wm∑
i=1

+
m∑

i=wm

}
i−1�1+ e�i�c1�

×
{
�
[
T
�i�
vm�Z� = s− 2i

]
+ �
[
T
�i�
vm�Z� = s− i

]}
�
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with the first contribution no larger than

2�1+ e�1�c1�c�κ�h�wm� max
0≤v≤Bm

max
r≥0

�
[
Tvm�Z� = r

]
�

which is negligible by (2.14), and the second contribution at most 4w−1
m �1 +

e�1�c1� → 0.
This shows that the difference (2.13) is uniformly small in the prescribed

ranges of v and s. The final step is to note that

max
0≤v≤Bm

sup
s≥1

∣∣∣��s−m ≤ Tvm�Z� < s− v	

− ��m−1�s−m� ≤Xθ < m−1�s− v�	
∣∣∣

≤ 2 max
0≤v≤Bm

dK
(
� �m−1Tvm�Z���� �Xθ�

)→ 0�

by Theorem 2.4, concluding the proof. ✷

Remark. Note that (2.13) is exactly zero for Z = Z∗:

s��Tvm�Z∗� = s	 = θ��s−m ≤ Tvm�Z∗� < s− v	�(2.15)

The two following corollaries translate the result of Theorem 2.6 into the
forms most useful for making precise the arguments sketched in the Intro-
duction. The first of them requires no proof.

Corollary 2.7. If limn→∞ n−1Bn = 0, then, for any x > 0,

lim sup
n→∞

max
0≤b≤Bn

max
s� �sn−1−x�<η

�s��Tbn�Z� = s	 − θ��x− 1 ≤Xθ < x	�

≤ 2θQθ�η��

Corollary 2.8. For any 0 < ε < 1 <M <∞,

lim
m→∞ max

�εm	<s≤ �Mm	

∣∣∣∣∣1− ��T0m�Z� = s	
��T0m�Z∗� = s	

∣∣∣∣∣ = 0�(2.16)

In particular,

lim
n→∞

��T0n�Z� = n	
��T0n�Z∗� = n	 = 1�

Proof. Apply Theorem 2.5 to approximate both s��T0m�Z� = s	 and
s��T0m�Z∗� = s	, and note that, for �εm	 < s ≤ �Mm	,

��m−1�s−m� ≤Xθ < m−1s	
≥ min

{
��Xθ < ε	� min

1≤x≤M
��x− 1 ≤Xθ < x	

}
�

(2.17)
✷
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3. Main results. Our proofs of the limit theorems are based on two fun-
damental results: that the small components are jointly distributed like their
independent counterparts, and the large components like those of the Ewens
sampling formula. The first part of this section consists of proving these
assertions.

Theorem 3.1 (The small components). If the uniform logarithmic condi-
tion holds and limn→∞ n−1bn = 0, then

lim
n→∞dTV

(
�
(
C�n��1� bn	

)
�� �Z�1� bn	�

)
= 0�

Proof. It is immediate from (1.4) that

dTV

(
�
(
C�n��1� b	)�� �Z�1� b	�

)
= ∑
r≥0

�
[
T0b�Z� = r

]{
1− �

[
Tbn�Z� = n− r

]
�
[
T0n�Z� = n

] }
+
�

(3.1)

Now, writing b = bn = o�n� and applying Corollary 2.7 with x = 1 and η =√
b/n, it follows that

lim
n→∞ max

0≤r≤�√bn	

∣∣�n− r��[Tbn�Z� = n− r]− θ��Xθ < 1	∣∣ = 0�

and in particular that limn→∞ n�T0n�Z� = n	 = θ��Xθ < 1	; hence

lim
n→∞

�√bn	∑
r=0

��T0b�Z� = r	
{

1− ��Tbn�Z� = n− r	
��T0n�Z� = n	

}
+
= 0�(3.2)

Since also, from Markov’s inequality and the uniform logarithmic condition,∑
r>�√bn	

��T0b�Z� = r	 ≤ �bn�−1/2ƐT0b�Z� ≤ �θ+D1e�1���b/n�1/2 → 0�

the theorem follows. ✷

Theorem 3.2 (The large components). If the uniform logarithmic condition
holds and limn→∞ bn = ∞, limn→∞ n−1bn = 0, then

lim sup
n→∞

dTV
(
� �C�n��bn + 1� n	��� �C∗�n��bn + 1� n	�)

= O
(

lim sup
n→∞

n∑
i=bn+1

i−1e�i�
)
�

If
∑
i≥1 i

−1e�i� <∞, or if, in general, bn ≥ βn for all n sufficiently large, then

lim
n→∞dTV

(
� �C�n��bn + 1� n	��� �C∗�n��bn + 1� n	�) = 0�
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Proof. Appealing to (1.5), and suppressing the index n where possible,
we have

dTV
(
� �C�b+ 1� n	��� �C∗�b+ 1� n	�)
=∑

y

��C∗�b+ 1� n	 = y�b+ 1� n		

×
{

1− ��C�b+ 1� n	 = y�b+ 1� n		
��C∗�b+ 1� n	 = y�b+ 1� n		

}
+

=∑
y

��C∗�b+ 1� n	 = y�b+ 1� n		

×
{

1− ��Z�b+ 1� n	 = y�b+ 1� n		
��Z∗�b+ 1� n	 = y�b+ 1� n		

× ��T0b�Z� = n− t	
��T0b�Z∗� = n− t	

��T0n�Z∗� = n	
��T0n�Z� = n	

}
+
�

(3.3)

where t is shorthand for Tbn�y� and the y-sum runs over �n+ with Tbn�y� ≤ n.
Fix any 0 < ε < 1 < M < ∞. Then, for t such that εb ≤ n − t ≤ Mb, we

have from (2.15) that

��Tbn�C∗� = t	 =
��Tbn�Z∗� = t	��T0b�Z∗� = n− t	

��T0n�Z∗� = n	

= n��Tbn�Z
∗� < t− b	

t��T0n�Z∗� < n	 ��T0b�Z∗� = n− t	

≥ ��n−1Tbn�Z∗� < 1− n−1�M+ 1�b	
��n−1T0n�Z∗� < 1	

× ��T0b�Z∗� = n− t	�

(3.4)

Thus, since b = bn →∞ and bn = o�n�, it follows from (1.8) that

lim inf
n→∞ ��Tbn�C∗� ∈ �n−Mb�n− εb		

≥ lim
m→∞��m−1T0m�Z∗� ∈ �ε�M		 = ��ε ≤Xθ ≤M	�

and hence that

lim sup
n→∞

��Tbn�C∗� �∈ �n−Mb�n− εb		 ≤ ��Xθ �∈ �ε�M		�(3.5)

Thus the contribution to (3.3) from elements y for which Tbn�y� �∈ �n −Mb�
n− εb	 can be made arbitrarily small, by choosing ε to be small and M to be
large.

For the contributions to (3.3) from y such that Tbn�y� ∈ �n −Mb�n − εb	,
we use Corollary 2.8 to give

lim
n→∞ min

�εb	<n−t≤�Mb	
��T0b�Z� = n− t	
��T0b�Z∗� = n− t	 = 1
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and

lim
n→∞��T0n�Z∗� = n	/�T0n�Z� = n	 = 1�

for y ∈ �n+ with y�b+ 1� n	 ∈ �0�1�n−b, Lemma 2.3 gives

lim inf
n→∞

��Z�b+ 1� n	 = y�b+ 1� n		
��Z∗�b+ 1� n	 = y�b+ 1� n		 ≥ 1−O

(
n∑

i=b+1

e�i�
{
i−1 + yi

})
�

and a simple calculation gives

�
[
C∗�b+ 1� n	 �∈ �0�1�n−b] ≤ b−1θ2�

finally,

∑
y

��C∗�b+ 1� n	 = y�b+ 1� n		
n∑

i=b+1

e�i�yi

=
n∑

i=b+1

e�i�ƐC∗i = O
(

n∑
i=b+1

i−1e�i�
)
�

from Lemma 4.1. Collecting these facts, it follows that

lim sup
n→∞

dTV�� �C�b+ 1� n	��� �C∗�b+ 1� n	��

≤ ��Xθ �∈ �ε�M		 +O
(

lim sup
n→∞

n∑
i=b+1

i−1e�i�
)
�

for any 0 < ε < 1 <M <∞, and the theorem is proved. ✷

These two theorems, describing the behavior of the small and the large
components separately, are enough for proving any limit theorems which are
essentially governed by the behavior either of the small or the large compo-
nents alone, and, since the two ranges often overlap substantially, this covers
most applications. However, for Theorem 3.7, the joint distribution of all the
components simultaneously is required in an essential way; in order to cope
with this, we use a conditional variant of Theorem 3.2.

Theorem 3.3 (The large components, conditional form). For any combina-
torial structure satisfying the uniform logarithmic condition,

lim
n→∞ max

n/2≤l≤n
dTV

(
� �C�βn + 1� n	�Tβn�n�C� = l��

� �C∗�βn + 1� n	�Tβn�n�C∗� = l�
) = 0�

where βn is as defined in Corollary 2.2.
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Proof. We write b for βn throughout, and suppress the index n where
possible. For any y ∈ �0�1�n such that

∑n
i=b+1 iyi = l, we first use Lemma 2.3

and Theorem 2.6 to show that

��C�b+ 1� n	 = y�b+ 1� n	�Tbn�C� = l	
��C∗�b+ 1� n	 = y�b+ 1� n	�Tbn�C∗� = l	

= ��Z�b+ 1� n	 = y�b+ 1� n		
��Z∗�b+ 1� n	 = y�b+ 1� n		

��Tbn�Z∗� = l	
��Tbn�Z� = l	

(3.6)

≥ 1− �D1/θ�
l∑

i=b+1

e�i�yi −O�η�l� n��

≥ 1− �D1/θ�
{ �l/2	∑
i=b+1

e�i�yi + e��l/2	�
l∑

i=�l/2	+1

yi

}
−O�η�l� n���

(3.7)

where limn→∞ maxn/2≤l≤n η�l� n� = 0. We thus find that, for any A ⊂ �n−b+ ,

��C�b+ 1� n	 ∈ A�Tbn�C� = l	
≥ ��C∗�b+ 1� n	 ∈ A�Tbn�C∗� = l	

− �

[
n⋃

i=b+1

{
C∗i ≥ 2

}∣∣∣∣Tbn�C∗� = l
]

(3.8)

− �C1/θ�
�l/2	∑
i=b+1

e�i���C∗i = 1�Tbn�C∗� = l	 −O�η�l� n���

since, if Tbn�C∗� = l, then
∑l
i=�l/2	+1C

∗
i ≤ 1. Hence there are two remaining

elements in (3.8) to be shown to be small.
First, using the logarithmic relation and (2.15) and recalling the defini-

tion (2.6) of T�i�bn�Z�, we observe that, for i ≤ l/2,

��C∗i = 1�Tbn�C∗� = l	 =
�
[
Z∗
i = 1

]
�
[
T
�i�
bn�Z∗� = l− i

]
�
[
Tbn�Z∗� = l]

≤ e−θ/i θ
i

eθ/i�
[
Tbn�Z∗� < l− i− b]

�
[
Tbn�Z∗� < l− b]

(
l

l− i
)
= O(i−1)

uniformly in n/2 ≤ l ≤ n, by Theorem 2.4, so that

lim
n→∞ max

n/2≤l≤n
�D1/θ�

�l/2	∑
i=b+1

e�i���C∗i = 1�Tbn�C∗� = l	 = 0�(3.9)
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Then, by similar estimates,

��C∗i = r�Tbn�C∗� = l	 =
e−θ/i

r!

(
θ

i

)r��T�i�bn�Z∗� = l− ir	
��Tbn�Z∗� = l	

≤ 1
r!

(
θ

i

)r��Tbn�Z∗� < l− ir− b	
��Tbn�Z∗� < l− b	

( �l/r�
�l/r� − i

)
�

(3.10)

If i ≤ l/2r, we bound (3.10) by 2θr/r!ir; if l/2r < i < l/r, we bound by
(�2rθ�r/

r!lr
)(�l/r�/�l/r− i�), and if i = l/r, we bound by ��rθ�r/r!lr��l/��Tbn �Z∗� <

l− b	�. Adding over the range i ≥ b+ 1, this gives

�

[
n⋃

i=b+1

{
C∗i = r

}∣∣∣Tbn�C∗� = l
]

≤ 2θr

r!br−1
+ �2eθ�r
r3/2lr−1

log�l/r� + �eθ�r
r1/2lr−1��T0n�Z∗� < n/4	 �

uniformly in n/2 ≤ l ≤ n, for all n so large that βn < n/4. Hence, adding over
r ≥ 2, it follows that

max
n/2≤l≤n

�

[
n⋃

i=b+1

{
C∗i ≥ 2

}∣∣∣∣∣Tbn�C∗� = l
]
= O�b−1 + n−1 log n� → 0(3.11)

as n→∞. Putting (3.9) and (3.11) into (3.8) gives the theorem. ✷

Armed with these fundamental approximation theorems, we can now pro-
ceed to the main applications. The first is a Poisson–Dirichlet limit for the
large components in local form; the traditional distributional limit theorem is
a direct consequence of this more detailed result, by Scheffé’s theorem. The
argument is much as in Arratia, Barbour and Tavaré [(1999), Theorem 4.5],
but our conditions are now rather weaker. Define L�n�j to be the size of the
jth largest component of C�n�, so that, if n ≥ l1 > l2 > · · · > lr ≥ 1 are
such that t = ∑r

j=1 lj ≤ n, then the events �L�n�1 = l1� � � � �L�n�r = lr� and

�C�n��lr + 1� n	 = yl�lr + 1� n	; C�n�lr ≥ 1� are the same, where

ylli = 1� 1 ≤ i ≤ r− 1� ylj = 0� j ∈ �lr + 1� n	\�l1� � � � � lr��
Theorem 3.4 (Poisson–Dirichlet local limit theorem). Fix any r ≥ 1, and

suppose that 1 > x1 > x2 > · · · > xr > 0 satisfy 0 < 1−∑ri=1 xi �= mxr for any
integer m ≥ 1. Then, if the uniform logarithmic condition holds,

lim
n→∞n

r��L�n�1 = �nx1	� � � � �L�n�r = �nxr		 = f�r�θ �x1� � � � � xr��

where f�r�θ is the joint density of the first r components of the PD�θ� Poisson–
Dirichlet process.
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Proof. Suppressing the index n where possible, and writing li = �nxi	,
1 ≤ i ≤ r, b = lr − 1 and t = ∑ri=1 li, it follows from the conditioning relation
that

��L1 = l1� � � � �Lr = lr	
�
[
C∗�lr + 1� n	 = yl�lr + 1� n	� C∗lr = 1

]
=∑
s≥1

{
��Z�lr + 1� n	 = yl�lr + 1� n	� Zlr = s	
��Z�lr + 1� n	 = yl�lr + 1� n	� Zlr = 1	(3.12)

× ��T0b�Z� = n− t− �s− 1�lr	
��T0b�Z∗� = n− t	

��T0n�Z∗� = n	
��T0n�Z� = n	

}
Note that, for n sufficiently large, at most x−1

r

(
1−∑ri=1 xi

)+2 values of s give
nonzero contributions to the sum. Now, from Lemma 2.3, we have

lim
n→∞

��Z�lr + 1� n	 = yl�lr + 1� n	� Zlr = 1	
��Z∗�lr + 1� n	 = yl�lr + 1� n	� Z∗

lr
= 1	 = 1

and

lim
n→∞

��Z�lr + 1� n	 = yl�lr + 1� n	� Zlr = s	
��Z∗�lr + 1� n	 = yl�lr + 1� n	� Z∗

lr
= 1	 = 0� s ≥ 1�

furthermore, from Corollary 2.8, limn→∞��T0n�Z∗� = n	/��T0n�Z� = n	 = 1.
Finally, it follows from Corollary 2.8 that

lim
n→∞�

[
T0b�Z� = n− t

]/
�
[
T0b�Z∗� = n− t

]
= 1

and that

lim
n→∞�

[
T0b�Z� = n− t−mlr

]/
�
[
T0b�Z∗� = n− t

]
<∞(3.13)

for 1 ≤m ≤ �x−1
r �1−

∑
i=1 rxi�	. Thus we have established that

lim
n→∞

��L1 = �nx1	� � � � �Lr = �nxr		
��C∗�lr + 1� n	 = yl�lr + 1� n	� C∗lr = 1	 = 1�

and the theorem now follows from the corresponding theorem for C∗, proved
in Arratia, Barbour and Tavaré [(1999), Theorem 3.3]. ✷

Note that if z = x−1
r

(
1−∑ri=1 xi

)
is an integer, then (3.13) is no longer true

for m = z.
For the next limit theorem, the FCLT for the component counts, we define

the process Wn by

Wn�t� = �θ log n�−1/2
�nt	∑
i=1

(
C
�n�
i − ƐZi

)
� 0 ≤ t ≤ 1�(3.14)
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Theorem 3.5 (FCLT for the component counts). If the uniform log-
arithmic condition holds, and, in addition, either

∑
s≥1 s

2cs < ∞ or e�i� =
o
(�log i�−1/2

)
as i→∞, then Wn ⇒W in D�0�1	, where W is standard Brow-

nian motion. In the latter case,
∑�nt	
i=1 ƐZi can be replaced in the definition of

Wn by θt log n.

Proof. The “small components” argument reduces the problem to a FCLT
for the independent random variables Zi, and the conditions additional to the
uniform logarithmic condition are only needed to prove this FCLT.

Choose bn → ∞ in such a way that bn ≥ βn for all n, bn = o�n� and
log�n/bn� = o��log n�1/2� as n→∞. Then

lim
n→∞dTV

(
�
(
C�bn + 1� n	)�� �C∗�bn + 1� n	�

)
= 0

by Theorem 3.2 and the definition of βn in Corollary 2.2, and

lim
n→∞dTV

(
� �C�1� bn	��� �Z�1� bn	�

)
= 0

by Theorem 3.1. Furthermore,

Ɛ

{
n∑

i=bn+1

C∗i

}
= O

(
log�n/bn�

)
from Lemma 4.1, so that

�log n�−1/2
n∑

i=bn+1

C∗i
�→0�

and replacing C∗i by Zi and using the logarithmic condition to bound the
expectations shows that

�log n�−1/2
n∑

i=bn+1

Zi
�→0

also. Hence, to prove the theorem, it is enough to show that W′
n ⇒ W in

D�0�1	, where

W′
n�t� = �θ log n�−1/2

�nt	∑
i=1

�Zi − ƐZi�(3.15)

is the partial sum process for a sequence of independent random variables.
The theorem stated comes from showing that

sup
0≤t≤1

�W′
n�t� −W′′

n�t��
�→0�(3.16)

where

W′′
n�t� = �θ log n�−1/2

�nt	∑
i=1

(
I�Zi = 1	 − ��Zi = 1	)�(3.17)
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and then applying a FCLT for independent bounded random variables to W′′
n;

note that
�nt	∑
i=1

Var�I�Zi = 1	� =
�nt	∑
i=1

��Zi = 1	 +O�1�

= θt log n+O
(�nt	∑
i=1

i−1e�i�
)
�

(3.18)

To prove (3.16) if
∑
s≥1 s

2cs <∞, use Kolmogorov’s inequality, observing that

Var

{
n∑
i=1

�Zi − I�Zi = 1	�
}
≤

n∑
i=1

Ɛ�Zi − I�Zi = 1	�2

=
n∑
i=1

∑
s≥2

s2��Zi = s	

≤
n∑
i=1

i−1e�i�∑
s≥2

s2cs = o�log n��

If e�i� = o��log i�−1/2�, note instead that

Ɛ

{
n∑
i=1

�Zi − I�Zi = 1	�
}
=

n∑
i=1

∑
s≥2

s��Zi = s	

≤ D1

n∑
i=1

i−1e�i� = o(�log n�1/2)�
whence also, using (3.18),

�nt	∑
i=1

ƐZi =
�nt	∑
i=1

��Zi = 1	 + o(�log n�1/2) = θt log n+ o(�log n�1/2)�
This completes the proof. ✷

The Erdös–Turán law states that the logarithm of the order of a uniform
random permutation is asymptotically normally distributed; if

Or�y� = l�c�m��i� 1 ≤ i ≤ r� yi ≥ 1�
for any vector y, then{

1
3θ log3 n

}−1/2 (
logOn

(
C�n�

)− 1
2θ log2 n

)
�→� �0�1��(3.19)

Here, we prove a functional form of their theorem for general logarithmic
combinatorial structures. Define

Un�t� =
{

1
3θ log3 n

}−1/2 (
logO�nt	

(
C�n�

)− 1
2θt

2 log2 n
)
�(3.20)

and write U�t� =W�t3�, where W is standard Brownian motion.
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Theorem 3.6 (Erdös–Turán, functional form). If the uniform logarithmic
condition holds and in addition

∑
i≥1 i

−1e�i� <∞, then Un ⇒ U in D�0�1	.

Proof. The “large components” argument reduces the problem to the cor-
responding theorem for the Ewens sampling formula, proved in Barbour and
Tavaré [(1994), Theorem 1.3]. The condition

∑
1≥1 i

−1e�i� <∞ implies that for
any sequence bn →∞, however slowly,

lim
n→∞dTV�� �C�bn + 1� n	��� �C∗�bn + 1� n	�� = 0�(3.21)

where, as usual, we suppress indices n where possible. Then, for any b,

sup
0≤t≤1

∣∣∣logO�nt	�C�b+ 1� n	� − logO�nt	�C�
∣∣∣ ≤ b∑

i=1

Ci log i�(3.22)

This inequality is used to ensure that, for an appropriate choice of b = bn,
logO�nt	�C� and logO�nt	�C�b+ 1� n	� are asymptotically equivalent, the same
of course being true with C∗ for C, and (3.21) implies the equivalence of
logO�nt	�C�b+ 1� n	� and logO�nt	�C∗�b+ 1� n	�.

To exploit (3.22), we first use (4.1) to show that, if b ≤ n/2, then

b∑
i=1

ƐC∗i log i ≤ 2θ
b∑
i=1

i−1 log i = O
(

log2 b
)
�

Then, by Theorem 3.1, if bn = o�n� as n→∞,

lim
n→∞dTV

(
� �C�1� bn	��� �Z�1� bn	�

)
= 0�

so that �
(∑bn

i=1Ci log i
)

and �
(∑bn

i=1Zi log i
)

are asymptotically equivalent,
and the logarithmic condition implies that

∑b
i=1 ƐZi log i = O

(
log2 b

)
also.

Hence, for the particular choice bn = exp
{√

log n
}
, we have

�log n�−3/2
bn∑
i=1

C∗i log i
�→0� �log n�−3/2

bn∑
i=1

Ci log i
�→0�(3.23)

Applying (3.21), (3.22) and (3.23), it thus suffices to show that U∗
n ⇒ U,

where U∗
n is defined as in (3.20), but with C∗ for C; and this is proved in

Barbour and Tavaré [(1994), Theorem 1.3].
Our final example concerns the total number of components, K0n�C�n�� =∑n
i=1C

�n�
i . The FCLT, Theorem 3.4, already gives a normal approximation for

K0n�C�n��, under a slight strengthening of the uniform logarithmic condition.
Here, we sharpen the mode of approximation to total variation.

Theorem 3.7. If the uniform logarithmic condition holds, then

lim
n→∞dTV

(
� �K0n�C�n����� �K0n�Z��

) = 0�(3.24)
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If either
∑
s≥1 s

2cs <∞ or e�i� = o��log i�−1/2�, then

lim
n→∞dTV

(
� �K0n�C�n����Po�θ log n�) = 0�(3.25)

Proof. Because total variation is a very strong metric, we have to take
careful account of both small and large components; the techniques used up to
now to prove convergence in distribution, which involve showing that the con-
tribution from one or other end is negligible, are no longer adequate. Instead,
suppressing the index n, we write

K0n�C� =K0b�C� +Kbn�C��(3.26)

for suitably chosen b = bn, use the small components approximation to show
that K0b�C� and K0b�Z� are equivalent, and then show that, conditionally
on the small components, the distribution of Kbn�C� is still close to that of
Kbn�Z�, this last being established by way of C∗ and Z∗, using the large
components approximation.

First, for βn as defined in Corollary 2.2, we have

lim
n→∞dTV

(
� �C�1� βn	��� �Z�1� βn	�

) = 0�(3.27)

Then, from Theorem 3.3, it follows that

limn→∞ sup
n/2≤l≤n

dTV

(
� �C�βn + 1� n	 � Tβn�n�C� = l��

� �C∗�βn + 1� n	 � Tβn�n�C∗� = l�
)
= 0�

(3.28)

whereas

��Tβn�n�C� < n/2	 = ��T0� βn�C� > n/2	
≤ 2n−1ƐT0� βn�Z�(3.29)

+ dTV
(
� �C�1� βn	��� �Z�1� βn	�

)
→ 0�

from the uniform logarithmic condition and (3.27). Finally, by the conditioning
relation,

� �C�βn + 1� n	�Tβn�n�C� = l� = � �Z�βn + 1� n	�Tβn�n�Z� = l��(3.30)

In view of (3.28) and (3.30) with Z∗ for Z, the main item still to be considered
is � �Kbn�Z∗��Tbn�Z∗� = l� for b = βn and n/2 ≤ l ≤ n; the rest is just tidying.

Now the unconditional distribution of Kbn�Z∗� is Po�λbn�, where

λbn =
n∑

i=b+1

θ/i ∼ θ log�n/b��(3.31)

Conditional onKbn�Z∗� = s, Z∗�b+1� n	 has the multinomial MN �s�pb+1� � � �,
pn� distribution, where pr = θ/�rλbn�, b + 1 ≤ r ≤ n. Thus, conditional on
Kbn�Z∗� = s, Tbn�Z∗� has the distribution of Ws �=

∑s
j=1Uj, where the Uj
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are independent and identically distributed and ��Uj = r	 = pr, b+1 ≤ r ≤ n.
Hence, using Bayes’ theorem, we deduce that, for n/2 ≤ l ≤ n,

��Kbn�Z∗� = s � Tbn�Z∗� = l	

= Po�λbn��s���Ws = l	
��Tbn�Z∗� = l	(3.32)

= Po�λbn��s�
�sθ/λbn���Ws−1 ≤ l− b− 1	
θ��Tbn�Z∗� ≤ l− b− 1	 �

where the denominator comes from (2.15) and the numerator is because

Ɛ
{
WsI�Ws = l	

} = s n∑
r=b+1

rpr��Ws−1 = l− r	�(3.33)

Hence, since �s/λbn�Po�λbn��s� = Po�λbn��s− 1�, and writing λ1 = λbn − λ3/4
bn ,

λ2 = λbn + λ3/4
bn , we find that

dTV
(
� �Kbn�Z∗��Tbn�Z∗� = l��1+ Po�λbn�

)
≤ Po�λbn���0� λ1	 ∪ �λ2�∞��

+ sup
0≤b≤βn

sup
s∈�λ1� λ2�

{
dK
(
� �Ws��� �Tbn�Z∗��)

��n−1Tbn�Z∗� ≤ 1/2− �b+ 1�/n	

}
→ 0�

(3.34)

uniformly in n/2 ≤ l ≤ n, by Corollary 4.3 and Theorem 2.4, since βn+1 < n/4
for all n sufficiently large. Combining (3.28), (3.30) and (3.34), it follows that

lim
n→∞ sup

n/2≤l≤n
dTV

(
�
(
Kβn�n�C��Tβn�n�C� = l

)
�1+ Po�λbn n�

)
= 0�(3.35)

furthermore, from (3.29) and (3.30), this also implies that

lim
n→∞ sup

n/2≤l≤n
dTV

(
�
(
Kβn�n�C��Tβn�n�C� = l

)
��
(
Kβn�n�Z�

)) = 0�(3.36)

To conclude the proof, let pkt�Y� denote ��K0b�Y� = k, T0b�Y� = t	; then,
again with b = βn, we have

2dTV
(
� �K0n�C���� �K0n�Z��

)
≤ ∑
k≥0

∑
t≥0

∑
s≥0

∣∣∣��K0b�C� = k�T0b�C� = t�Kbn�C� = s	

− ��K0b�Z� = k�T0b�Z� = t	��Kbn�Z� = s	
∣∣∣

≤ ∑
k≥0

∑
t≥0

pkt�C�
∑
s≥0

∣∣∣��Kbn�C� = s �K0b�C� = k�T0b�C� = t	

− ��Kbn�Z� = s	
∣∣∣

+ 2dTV
(
� �K0b�C��T0b�C���� �K0b�Z��T0b�Z��

)
�
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The latter contribution is negligible, by (3.27). In the former, by the conditional
relation, we have

��Kbn�C� = s �K0b�C� = k�T0b�C� = t	 = ��Kbn�C� = s � Tbn�C� = n− t	�
leading to a contribution of at most

2 sup
n/2≤l≤n

dTV

(
� �Kbn�C� � Tbn�C� = l��� �Kbn�Z��

)
+ ��T0b�C� > n/2	�

which is also negligible, by (3.36) and (3.29). This proves (3.24).
For the last part, we apply the Stein–Chen method to show that

lim
n→∞dTV

(
� �K0n�Z���Po�θ log n�) = 0�(3.37)

If
∑
s≥1 s

2cs < ∞, we can use Barbour and Hall [(1984), Theorem 4,
inequality (4.4)] directly, since then

∑
1≥1�ƐZi�2 <∞ and

∑n
i=1 Ɛ�Zi�Zi−1�� =

o�log n�. If not, for any bounded g� �+ → �, writing λ = ∑n
i=1 ��Zi = 1	,

K =K0n�Z� and Ki =K−Zi, we have

Ɛ�λg�K+ 1� −Kg�K��

=
n∑
i=1

{
��Z1 = 1	Ɛ�g�K+ 1� − g�Ki + 1�� −∑

r≥2

��Zi = r	Ɛg�Ki + r�
}
�

so that

�Ɛ�λg�K+ 1� −Kg�K���

≤
n∑
i=1

{
��Zi = 1	ƐZiM1�g� + ��Zi ≥ 2	M0�g�

}
�

(3.38)

where M0�g� = supj≥1 �g�j�� and M1�g� = supj≥1 �g�j + 1� − g�j��. Now
λ ∼ θ log n, and the test functions g appearing in the Stein–Chen argument for
total variation approximation satisfy M0�g� ≤ λ−1/2 and M1�g� ≤ λ−1. Thus,
for these functions, (3.38) is of order �log n�−1/2∑

i=1 i
−1e�i�, by the uniform

logarithmic condition, and (3.37) follows under the additional condition on e�i�.

4. Technical complements.

Proof of Proposition 1.1. We show that if the �Zi� are Poisson, negative
binomial or binomial random variables which satisfy the logarithmic condi-
tion, then they also satisfy the uniform logarithmic condition.

When Zi ∼ Po�θi� or Zi ∼ Bi�mi�pi�, observe that the logarithmic condi-
tion implies that, for s ≥ 2,

i��Zi = s	 ≤
i

s!
�ƐZi�s ≤

θs∗
s!is−1

≤ i−1cs�

where cs = θs∗/s! and θ∗ = supi≥1 iƐZi <∞; the uniform logarithmic condition
follows automatically, with e�i� = max�i−1� supj≥i �j��Zj = 1	 − θ��.
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When Zi ∼ NB�mi�pi�, the argument is somewhat more complicated. If
mi ≥ 1 and s ≥ 2, we have

i��Zi = s	 ≤


i�mipi�s
s!

(
1+ s

mi

)s
≤ i

s!
�2mipi�s� if s ≤mi;

ipsi2
mi+s−1 ≤ i�4pi�s ≤ i�4mipi�s� if s > mi,

and i��Zi = s	 ≤ imipsi if mi < 1; thus, whatever the value of mi, we have

i��Zi = s	 ≤ i�4θ∗/i�s + θ∗ps−1
i �

with θ∗ as before. Now the logarithmic condition implies that

��Zi = 2	/��Zi = 1	 = 1
2�mi + 1�pi → 0

as i → ∞, so that pi → 0 also. Hence, for s ≥ 2 and i > i1 = max�8θ∗� i0�,
where i0 = max�i� pi > 1/2�, we have i��Zi = s	 ≤ e0�i�cs with e0�i� =
max

(
i−1� pi

)
and cs = 5θ∗2−�s−2�; hence �i��Zi = s	 − δs1θ� ≤ e�i�cs for all

i > i1 and s ≥ 1, with e�i� = supj≥imax��j��Zj = 1	−θ�� e0�j��. The extension
to all i ≥ 1 is immediate, because ƐZ2

i <∞ for all i. ✷

Lemma 4.1. For the Ewens sampling formula, we have, for any 0 ≤ b ≤ n,

(i)
n∑

i=b+1
ƐC∗�n� ≤ 2θ log�n/b� + 1�

(ii)
n∑

i=b+1
e�i�ƐC∗�n� ≤ 2θ

�n/2	∑
i=b+1

i−1e�i� + e��n/2	�.

Proof. It follows from the Feller coupling [Barbour and Tavaré (1994),
Proposition 1.1] that

ƐC
∗�n�
i ≤ θ

i
+ θ

θ+ n− i ≤
2θ
i
� 1 ≤ i ≤ n/2�(4.1)

whereas, since
∑n
i=1 iC

∗�n�
i = n, it is always the case that

∑n
i=�n/2	+1 ƐC

∗�n�
i ≤ 1.

The lemma now follows immediately. ✷

Lemma 4.2. Let X, Y and Z be random variables. Let copies X̂ and Ŷ
of X and Y be constructed on a common probability space �)̂� �̂ � �̂�, and let
A ∈ �̂ be such that V = �X̂ − Ŷ�I�Ac	 satisfies Ɛ̂V < ∞. Let QZ denote the
concentration function of � �Z�. Then

dK�� �X��� �Y�� = O
(
QZ

(√
Ɛ̂V

)
+ dK�� �Y��� �Z�� + �̂�A�

)
�
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Proof. The argument is routine: for instance, given any t ∈ � and ε > 0,
it follows that

��X ≤ t	 ≤ �̂�Ŷ ≤ t+ ε	 + �̂��X̂− Ŷ� > ε	
≤ dK�� �Y��� �Z�� + ��Z ≤ t	 +QZ�ε� + �̂�A	 + ε−1Ɛ̂V

≤ 2dK�� �Y��� �Z�� + ��Y ≤ t	 +QZ�ε� + �̂�A	 + ε−1Ɛ̂V�
choose ε =

√
Ɛ̂V, and note that x = O�QZ�x�� as x→ 0. ✷

Corollary 4.3. For any 0 ≤ b < n, s ≥ 1, let Wbn
s = ∑s

i=1Ul, where
�Ul� l ≥ 1� are independent and identically distributed with ��Ul = r	 =
θ/�rλbn�, b + 1 ≤ r ≤ n, and where λbn = ∑n

i=b+1 θ/i; let S ∼ Po�λbn� be
independent of the Ul. Then, if Bn = o�n� as n→∞,

lim
n→∞ max

0≤b≤βn
max

�s−λbn�≤λ3/4
bn

dK

(
Wbn
s �W

bn
S

)
= 0�

Proof. Apply Lemma 4.2 with X = n−1Wbn
s , Y = n−1Wbn

S , A = ! and
Z =Xθ, noting that

n−1Ɛ

∣∣∣∣∣ s∑
l=1

Ul −
S∑
l=1

Ul

∣∣∣∣∣ ≤ n−1Ɛ�S− s�ƐU1

≤ �Ɛ�S− ƐS� + �ƐS− s��θ�1− b/n�λ−1
bn

= O
(
λ
−1/2
bn + λ−1

bn �s− λbn�
)
�

For �s− λbn� ≤ λ3/4
bn , this gives

dK��
(
Wbn
s

)
��
(
Wbn
S �
)
= O

(
Qθ
(
λ
−1/8
bn

))+ dK(� (n−1Wbn
S

)
�� �Xθ�

)
�

But Wbn
S has the same compound Poisson distribution as Tbn�Z∗�, and

lim
n→∞ max

0≤b≤Bn
dK
(
� �n−1Tbn�Z∗���� �Xθ�

) = 0�

by Theorem 2.4. Since also λBn�n →∞ as n→∞, the proof is complete. ✷
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