
The Annals of Probability
2000, Vol. 28, No. 4, 1563–1587

EIGENVALUE DISTRIBUTIONS OF RANDOM
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Let M be a randomly chosen n × n permutation matrix. For a fixed
arc of the unit circle, let X be the number of eigenvalues of M which lie
in the specified arc. We calculate the large n asymptotics for the mean
and variance of X, and show that �X −E�X��/�Var�X��1/2 is asymptoti-
cally normally distributed. In addition, we show that for several fixed arcs
I1� � � � � Im, the corresponding random variables are jointly normal in the
large n limit.

1. Introduction. There has been a great deal of recent interest in random
matrices, particularly the distribution of eigenvalues. Random matrices have
applications in fields ranging from physics to number theory, and much recent
work has explored the fact that the distributions which arise from a number of
different matrix ensembles are strikingly similar. The main matrix ensembles
which have been studied are continuous: the Gaussian ensembles and related
perturbations of the Gaussian measure, and the compact Lie groups Un, On,
and Spn. The group of permutation matrices Sn sits in Un and On, and it
is interesting to study the eigenvalue distribution for this finite group (with
uniform probability measure) to see how much of the structure on the larger
groups can be seen in a finite subgroup.

One immediate question to ask is how many eigenvalues lie in some fixed
arc of the circle. A fairly natural guess is to say that the number will be
proportional to the size of the arc. Roughly speaking this is true, but the
answer depends on a number of things – the size of the interval, where the
interval is located on the unit circle, and even whether the interval is open or
closed.

Fix an arc of the unit circle I = �e2πiα� e2πiθ�. In this paper, we study the
number of eigenvalues of a random permutation matrix which lie in this arc.
To do this, define a random variable XI

n on Sn to be the number of eigenvalues
in I. We will show for large n that the mean and variance asymptotics of XI

n

are

ESn
�XI

n� = n�θ− α� − c1 log n+ o�log n�(1.1)

and

Var�XI
n� = c2 log n+ o�log n��(1.2)
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1564 K. WIEAND

where c1 and c2 are explicit functions of α and θ. In addition, we will show
that the normalized random variable

YI
n = XI

n −E�XI
n�

�c2 log n�1/2 ⇒ � �0�1��(1.3)

as n → ∞, and give a rate of convergence.
This behavior leads to another question. Fix intervals I1 = �e2πiα1� e2πiθ1�,

I2 = �e2πiα2� e2πiθ2�� � � � � Im = �e2πiαm� e2πiθm�, and let XI1
n , XI2

n � � � � �X
Im
n be the

corresponding random variables. Individually, each of the random variables

YIk
n = X

Ik
n −E�XIk

n �(
c
�k�
2 log n

)1/2

converges to a normal random variable, and it is reasonable to ask what the
joint behavior of the random variables is. We will show that in the large n
limit, the normalized random variables follow a joint normal distribution.

This paper is organized as follows. The next section introduces some stan-
dard results for probability on the symmetric group, which will be useful
throughout the rest of the paper. In Section 3, equations (1.1) and (1.2) will
be proved, and the values of the constants c1 and c2 will be given in some
special cases. Evaluation of the constants requires some number theory; these
details can be found in the Appendix. The asymptotic joint normality will be
proved in the fourth section. Finally, in the last section, these results will be
compared with results for the unitary group.

2. Probability on the symmetric group. One advantage to working
with Sn is that random permutations are well understood. Many questions
about permutations concern only the cycle structure of the permutations; ques-
tions about the eigenvalues of a permutation matrix are among these. This
allows us to take advantage of the extensive work on cycle lengths of random
permutations. The rest of this section will be spent introducing some of the
standard tools and results concerning cycle lengths, then showing what these
tools say about XI

n.

2.1. The cycle index theorem. Let σ be a permutation in Sn, and let
�a1� a2� � � � � an� be the cycle structure of σ (so σ has a1 fixed points, a2 2-cycles,
etc.). If a permutation is chosen at random, there are many questions one can
ask about the permutation. A few examples of questions which depend only
on the cycle structure are: the number of fixed points; the number of cycles;
the length of the longest cycle. The number of fixed points, first studied by
Montmort in 1708, is one of the earliest results in probability [16]. The second
and third questions are handled by Goncharov in [11]. All three questions are
discussed in the article by Shepp and Lloyd [17].

These and many other questions about cycles can be answered easily using
the cycle index theorem.
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Definition 1. The cycle index polynomial for Sn is

ψn�x1� � � � � xn� =
1
n!

∑
σ∈Sn

n∏
i=1

x
ai�σ�
i �

The cycle index polynomials can be used to define a generating function

��z� x1� � � �� =
∞∑
n=0

znψn�x1� � � � xn��(2.1)

using ψ0 = 1. The cycle index theorem says that this generating function
factors:

Theorem 1 (Cycle index theorem).

��z�x� =
∞∏
i=1

exiz
i/i�

The proof amounts to expanding the exponentials in the right side of the theo-
rem, and comparing powers of z. (The details can be found in the introductory
section of [17].)

Observe that

ψn�x1� � � � � xn� = ESn

[
n∏

j=1

x
aj
j

]
�(2.2)

The cycle index theorem provides a simple form for the generating function,
which makes it easy to calculate information about the cycle structure of a ran-
dom permutation. One application is the following theorem, from [11], which
will be of use for calculating the mean and variance of XI

n.

Theorem 2. If a permutation σ is chosen at random from Sn, then for large
n, the numbers a1� a2� � � � � ak are asymptotically independent Poisson random
variables with parameters 1� 1

2 � � � � �
1
k
. In particular,

E�aj� =



1
j
� if j ≤ n�

0� otherwise,

E�ajak� =



1
jk

� if j+ k ≤ n�

0� otherwise,

if j �= k, and

Var�aj� =




1
j
� if j ≤ n/2�

1
j
− 1

j2
� if n/2 < j ≤ n�

0� otherwise.
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To see how the moment formulas can be proved, note that

ESn
�ak� =

(
∂

∂xk

ψn

)
�1�1� � � � �1��(2.3)

Thus the expected value ESn
�ak� can be computed using the cycle index theo-

rem by differentiating � once with respect to xk, setting all of the xj’s equal
to 1, and then reading off the coefficient of zn. In fact, all of the moments
can be calculated using a similar procedure. Diaconis and Shahshahani [7]
used this method to calculate all of the moments and prove that as n → ∞,
these moments converge to the moments of independent Poisson 1/j random
variables.

2.2. The Feller coupling. In order to make use of the fact that the cycle
structure aj’s are close to independent Poisson, it is necessary to obtain some
estimates for how close they really are. A number of useful estimates due to
Arratia, Barbour, and Tavaré can be found in [1]. A summary of their results
is given below.

The work of those articles is based on the Feller coupling, a procedure for
generating random permutations. The Feller coupling was introduced in [9]
for studying the number of cycles of a random permutation. The procedure
works as follows. Let ξ1� � � � � ξn be independent Bernoulli random variables
with P�ξj = 1� = 1/j. The permutation σ will be built in cycle notation
using ξ1� � � � � ξn in reverse order. Start the first cycle with a 1. If ξn = 1, close
the current cycle, and start the next cycle with the smallest unused integer.
If ξn = 0, choose a random integer uniformly from the remaining integers
and put it in the current cycle, to the right of the last number added. Keep
building in this way, using the sequence ξn−1� ξn−2� � � � � ξ1 to determine when
to start new cycles. The result of the procedure will be a uniformly distributed
permutation in cycle notation.

For σ ∈ Sn generated by the Feller coupling, the cycle structure can be
expressed explicitly in terms of the ξj’s, which provides a means of construct-
ing a Poisson process which is close (in total variation distance) to the aj’s.
The cycle lengths are the spacings between consecutive 1’s in the sequence
ξ1� � � � � ξn, so aj will be the number of times the spacing is equal to j:

aj�σ� = ξn−j+1�1 − ξn−j+2� · · · �1 − ξn�(2.4)

+
n−j∑
i=1

ξi�1 − ξi+1� · · · �1 − ξi+j−1�ξi+j�(2.5)

For the large n limit, set

Wj =
∞∑
i=1

ξi�1 − ξi+1� · · · �1 − ξi+j−1�ξi+j(2.6)
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and

Wjm =
∞∑

i=m+1

ξi�1 − ξi+1� · · · �1 − ξi+j−1�ξi+j�(2.7)

In [1], it is shown that the Wj’s are independent Poisson random variables
with E�Wj� = 1/j (see pages 523–524). This coupling of �Wj� with �aj�
makes it easy to compare the two in a very explicit way.

One of the results in [1] compares the joint distribution of �a1� � � � � ab�n�� for
0 ≤ b�n� ≤ n with �W1� � � � �Wb�n�� while allowing b�n� to grow with n. The
authors show that as n → ∞, if b�n�/n → 0 then the total variation distance
between �a1� � � � � ab�n�� and �W1� � � � �Wb�n�� goes to zero. For the purposes of
this paper, several of their estimates will be useful. The following bound can
be found in [5].

Lemma 1. Define

Jn = min�i ≥ 1 � ξn−i+1 = 1� and Kn = min�i ≥ 1 � ξn+i = 1��
Then

−Wjn − 1�Jn+Kn=j+1� ≤ aj −Wj ≤ 1�Jn=j��

This bound implies that

n∑
j=1

�aj −Wj� ≤ 2 +
n∑

j=1

Wjn�(2.8)

In addition, the independence of the ξj’s can be used to show that

n∑
j=1

E�Wj� ≤ 1�(2.9)

which implies the following:

Lemma 2. Suppose the aj’s and the Wj’s are coupled as above, and set

Rn =
n∑

j=1

aj −Wj

�log n�1/2 �

Then Rn →p 0�

(For a proof, see pages 525–526 of [1].) A lot of work has been done with these
estimates; [3] and [5] give a number of applications, and [2] has much sharper
bounds on the total variation distance between the cycle structure numbers
and the Poisson process.
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2.3. Using cycles to study XI
n. For each element σ ∈ Sn there is a natural

way to assign a corresponding permutation matrix Mσ , namely

�Mσ�ij =
{

1� if j = σ�i��
0� otherwise.

(2.10)

Because of this relationship, the eigenvalues of Mσ depend only on the cy-
cle structure of σ . Each k-cycle in σ corresponds to a set of k eigenvalues:{
1� e2πi/k� e4πi/k� � � � � e2�k−1�πi/k}. Thus if the cycle structure of σ is
�a1� a2� � � � � an�, then Mσ has ak copies of these eigenvalues.

The random variable XI
n can be written in terms of the cycle structure

�a1� a2� � � � � an�. To simplify the notation, recall that I = �e2πiα� e2πiθ�, and
assume that 0 ≤ α < 1 and α ≤ θ < α+ 1. Of the k eigenvalues corresponding
to a k-cycle, �kθ� − �kα� of these lie in I. Thus XI

n can be written

XI
n�σ� =

n∑
k=1

ak�σ���kθ� − �kα��(2.11)

= �θ− α�
n∑

k=1

kak −
n∑

k=1

ak��kθ� − �kα��(2.12)

= n�θ− α� −
n∑

k=1

ak��kθ� − �kα��(2.13)

where the last line follows from the fact that for any permutation in Sn,∑
kak = n (and �kθ� denotes the fractional part of kθ). Equation (2.13) is the

basis for the main calculations in this paper.
The mean and variance of XI

n can be computed using Theorem 2:

ESn
�XI

n� = n�θ− α� −
n∑

k=1

ESn
�ak���kθ� − �kα��(2.14)

= n�θ− α� −
n∑

k=1

1
k
��kθ� − �kα��(2.15)

and

Var�XI
n� = Var

(
n∑

j=1

aj��jθ� − �jα��
)

(2.16)

=
n∑

j=1

1
j
��jθ� − �jα��2(2.17)

−
n∑

j=1

n∑
k=n−j+1

1
jk

��jθ� − �jα����kθ� − �kα���

Thus calculating the asymptotics of the mean and variance for XI
n is a matter

of obtaining asymptotics for the sums in (2.15) and (2.17). This will be done
in the next section.
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For two intervals I1 and I2, the formula for covariance of XI1
n and X

I2
n is

similar to the variance formula:

Cov�XI1
n �XI2

n � =
n∑

j=1

1
j
��jθ1� − �jα1����jθ2� − �jα2��

−
n∑

j=1

n∑
k=n−j+1

1
jk

��jθ1� − �jα1����kθ2� − �kα2���
(2.18)

3. Mean and variance asymptotics. The goal of this section is the cal-
culation of the asymptotics of E�XI

n� and Var�XI
n� from equations (2.15) and

(2.17). The main part of the calculation is finding asymptotics for sums of the
form

n∑
j=1

1
j
��jθ� − �jα��m�(3.1)

Fortunately, the problem of evaluating these sums can be translated into a
standard number theory question by means of an elementary analysis theo-
rem.

This section will be organized in two parts. The technical theorem will be
proved in the first part, and used in the second.

3.1. Logarithmic summability. The first part of the theorem below is a
special case of a more general theorem. The general case can be found on
page 15 of [14].

Theorem 3. Let �ωk�k≥1 be a sequence of real numbers such that 0 ≤ ωk ≤
K for some constant K < ∞, for all k.

1. If there is a number L < ∞ for which

lim
n→∞

1
n

n∑
k=1

ωk = L�

then

lim
n→∞

1
log n

n∑
k=1

ωk

k
= L�

2. Suppose in addition that there are positive constants A and b such that for
all n ≥ 1, ∣∣∣∣∣ 1n

n∑
k=1

ωk −L

∣∣∣∣∣ < An−b�

Then there is a constant C which depends on A and b such that for n > 1,∣∣∣∣∣ 1
log n

n∑
k=1

ωk

k
−L

∣∣∣∣∣ ≤ C

log n
�
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Proof (Part 1). Define two sequences �sn� and �tn� by

sn = 1
n

n∑
k=1

ωk�(3.2)

and

tn = 1
Hn

n∑
k=1

ωk

k
�(3.3)

where Hn =∑n
k=1

1
k
. Also define a transformation M by

Mij =




1
�j+ 1�Hi

� if i < j�

1
Hi

� if i = j�

0� otherwise.

(3.4)

It is easy to check that the row sums of M are all 1 and that for fixed j,
limi→∞Mij = 0. It is also fairly straightforward to show that Ms = t. Because
the row sums of M are all 1, we have

tn −L = Mn1�s1 −L� +Mn2�s2 −L� + · · · +Mnn�sn −L��(3.5)

Suppose ε > 0 is given. Find an integer N0 such that for all k > N0, �sk −
L� < ε

2 . Next choose N1 big enough that for all n > N1 and all k ≤ N0,
Mnk ≤ ε/4N0K. Then for all n > max�N0�N1�,

�tn −L� ≤
N0∑
k=1

Mnk�sk −L� +
n∑

k=N0+1

Mnk�sk −L�(3.6)

≤ ε

4N0K
N02K+ ε

2
= ε�(3.7)

Thus

lim
n→∞

1
Hn

n∑
k=1

ωk

k
= L�(3.8)

Finally, by observing that Hn ∼ log n+O�1�, we have

lim
n→∞

1
log n

n∑
k=1

ωk

k
= L�(3.9)

Proof (Part 2). Finding a rate for the convergence in this theorem is
mostly a matter of making use of the definition of Mij and bounding the
terms carefully. Recall equation (3.5),

tn −L = Mn1 �s1 −L� + · · · +Mnn �sn −L� �(3.10)
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Then using (3.4)

�tn −L� ≤
n∑

k=1

Mnk

∣∣sk −L
∣∣(3.11)

≤ 1
Hn

(
A

nb
+

n−1∑
k=1

A

�k+ 1�kb

)
(3.12)

≤ A

Hn

(
1 +

n−1∑
k=1

1
k1+b

)
�(3.13)

Because b is positive, the sum
∑∞

k=1 1/k1+b converges. Since Hn ∼ log n+O�1�,
we can find a constant C so that

�tn −L� ≤ C

log n
�(3.14)

which is the desired result. ✷

3.2. Applying the theorem. Using the functions f�x� = x and f�x� = x2,
Theorem 3 can be applied to see that

n∑
j=1

1
j
��jθ� − �jα�� = c1 log n+ o�log n��(3.15)

n∑
j=1

1
j
��jθ� − �jα��2 = c2 log n+ o�log n��(3.16)

where

c1 = lim
n→∞

1
n

n∑
j=1

��jθ� − �jα��(3.17)

and

c2 = lim
n→∞

1
n

n∑
j=1

��jθ� − �jα��2�(3.18)

The mean follows immediately:

ESn
�XI

n� = n�θ− α� − c1 log n+ o�log n��(3.19)

For the variance of XI
n, there is a second sum in (2.17) to study,

n∑
j=1

n∑
k=n−j+1

1
jk

��jθ� − �jα����kθ� − �kα���(3.20)

but this sum is bounded for all n, because
n∑

j=1

n∑
k=n−j+1

1
jk

=
n∑

j=1

1
j2

≤ π2

6
�(3.21)
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Thus the variance is

Var�XI
n� = c2 log n+ o�log n��(3.22)

This still leaves the problem of evaluating the constants c1 and c2. The
mean constant c1 can always be evaluated; the variance constant is not so
easy to calculate in general. Calculation of the constants uses some standard
number theory results. The details are somewhat tedious, but the ideas are
interesting, so this is done in the Appendix. The values of the constants for a
few special cases are given below.

Example 1. If α = 0, then XI
n is the number of eigenvalues in �1� e2πiθ�,

and the formulas for the constants simplify to

c1 = lim
n→∞

1
n

n∑
j=1

�jθ��

c2 = lim
n→∞

1
n

n∑
j=1

�jθ�2�

This case is discussed in detail in Chapter 5 of [19]. The values of the constants
are c1 = 1/2 and c2 = 1/3 for irrational θ, and c1 = �q − 1�/2q and c2 =
�q− 1��2q− 1�/6q2 for rational θ = p/q. [See (A.7) – (A.10) in the Appendix.]

At first glance, this may look very strange. However, since all of the eigen-
values of a permutation matrix are rational multiples of 2π, it is not so sur-
prising that there would be some sort of boundary effect which would not be
present when the interval ends at an irrational multiple of 2π. (Notice that
as the denominator of a rational θ becomes larger, c1 approaches 1/2 and c2
approaches 1/3.)

Example 2. If α and θ are both irrational, then c1 = 0. If, in addition, α
and θ are linearly independent over �, then c2 = 1/6. These results follow
follow from (A.9) and (A.10) and from Corollary 1.

Choosing endpoints to be irrational and linearly independent of each other
should eliminate most of the effects due to the rational spacing of the eigenval-
ues, allowing any underlying structure to be seen. When comparing results
for permutation matrices with results for unitary matrices, this is the case
which will be used.

Example 3. Suppose that α is irrational and θ = p/q is rational. Then

c1 = q− 1
2q

− 1
2
= − 1

2q
(3.23)

and

c2 = 1
6
+ 1

6q2
�(3.24)

[See equations (A.7) – (A.10) and Theorem 11.]
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Example 4. If α = p/q and θ = r/s are both rational, then from (A.7)

c1 = 1
2q

− 1
2s

�(3.25)

There is no simple form for c2 in most cases, but using (A.8) and (A.17), c2 can
be calculated by evaluating the sum in

c2 = �q− 1��2q− 1�
6q2

+ �s− 1��2s− 1�
6s2

− 2
qs

qs∑
j=1

{
jp

q

}{
jr

s

}
�(3.26)

Example 5. For the general case with α and θ irrational and linearly de-
pendent over �, c1 = 0 follows from (A.9), but formulas for c2 can be calculated
for only some of the cases (the same cases covered in Theorem 12). If θ and α
are related by θ = rα+ p/q, then

c2 = 1
6
− 1

6rq2
�(3.27)

This follows from (A.10) and Theorem 12. While there is no formula for c2 in
the most general case, the pattern established so far makes it seem reasonable
to expect that in general c2 is around 1/6.

Remark. A half-open interval I = �e2πiα� e2πiθ� was chosen because of the
simplicity of the formula (2.13) for XI

n. If α and θ are irrational, then it makes
no difference whether the interval is open or closed (since all of the eigenvalues
are roots of unity).

If α = p/q, then for the closed interval Jc = �e2πiα� e2πiθ�,

XJc
n = n�θ− α� −

n∑
k=1

ak��kθ� − �kα�� + ∑
k�q�k≤n

ak�(3.28)

if θ = r/s, then for the open interval Jo = �e2πiα� e2πiθ�,

XJc
n = n�θ− α� −

n∑
k=1

ak��kθ� − �kα�� − ∑
k�s�k≤n

ak�(3.29)

All of the results in this paper are true in these cases as well; the main
difference is a change in the coefficient of the log n term. In the case where
both α and θ are rational (as in Example 4), c1�open� = �1/2q� + �1/2s� and
c1�closed� = −�1/2q� − �1/2s�. Generally, the constants are more difficult to
compute in the open and closed cases than in the half-open interval used
throughout.

4. Limiting normality.

4.1. Joint limiting distribution. Fix a finite number of intervals on the
unit circle, I1 = �e2πiα1� e2πiθ1�, I2 = �e2πiα2� e2πiθ2�� � � � � Im = �e2πiαm� e2πiθm�,
and let X

I1
n , XI2

n � � � � �X
Im
n be the corresponding random variables. Also, let
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c
�k�
1 and c

�k�
2 be the mean and variance constants for X

Ik
n . The goal of this

section will be to investigate the behavior of the normalized random variables

YIk
n =

X
Ik
n −E

[
X

Ik
n

]
(
c
�k�
2 log n

)1/2 �

Let Z = �Z1� � � � �Zm� be jointly distributed normal random variables with
covariance matrix

Dkk = 1(4.1)

and

Dkl =
1(

c
�k�
2 c

�l�
2

)1/2 lim
n→∞

1
n

n∑
j=1

��jθk� − �jαk����jθl� − �jαl���(4.2)

The following will be the main result of this section.

Theorem 4. As n → ∞, �YI1
n � � � � �Y

Im
n � ⇒ �Z1� � � � �Zm��

Using the Cramér-Wold device, Theorem 4 will follow from:

Theorem 5. For each �t1� � � � � tm� ∈ �m,

t1Y
I1
n + · · · + tmY

Im
n ⇒ t1Z1 + · · · + tmZm�

as n → ∞.

The proof of Theorem 5 will make use of the Feller coupling estimates
described in Section 2.2. Suppose the random permutation has been chosen
by the Feller coupling procedure, and let �Wj� be the independent Poisson
random variables constructed in Section 2.2. For each �t1� � � � � tm� ∈ �m, set

V
�t�
n�j =

Wj − 1
j

�log n�1/2


 m∑
k=1

tk(
c
�k�
2

)1/2 ��jθk� − �jαk��


(4.3)

and

T
�t�
n =

n∑
j=1

V
�t�
n�j�(4.4)

T
�t�
n is the analogue of t1Y

I1
n + · · · + tmY

Im
n .

First, observe that

∣∣∣t1YI1
n + · · · + tmY

Im
n −T

�t�
n

∣∣∣ ≤

 m∑

k=1

�tk�(
c
�k�
2

)1/2



∣∣∣∣∣

n∑
j=1

aj −Wj

�log n�1/2

∣∣∣∣∣ �(4.5)
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By Lemma 2, this converges in probability to 0. By Slutsky’s theorem (see
page 72 of [8]), to prove Theorem 5 it is only necessary to understand the
limiting behavior of T�t�

n .
Since the Wj’s are independent, the Lindeberg-Feller theorem should apply.

The following fact, which is the main condition needed for the Lindeberg-Feller
theorem, can be verified easily by standard arguments.

Lemma 3. Fix an integer 0 < K < ∞. Let �ωj�j≥1 be any sequence of real
numbers such that �ωj� ≤ K for all j. Then for any ε > 0,

n∑
j=1

E



∣∣∣Wj − 1

j

∣∣∣2 ω2
j

log n
�
∣∣∣∣Wj −

1
j

∣∣∣∣ > ε �log n�1/2

�ωj�


→ 0�

as n → ∞.

Now that the ideas have been outlined, the details can be done carefully.

Proof of Theorem 5. Set

ωj =
m∑
k=1

tk(
c
�k�
2

)1/2 ��jθk� − �jαk���(4.6)

It is easy to see that

�ωj� ≤
m∑
k=1

�tk�(
c
�k�
2

)1/2 �(4.7)

so applying Lemma 3, the array V
�t�
n�j satisfies the conditions of the Lindeberg-

Feller theorem and

T
�t�
n ⇒ � �0� σ2��(4.8)

where

σ2 = lim
n→∞

n∑
j=1

E
[
�V�t�

n�j�2
]

(4.9)

= lim
n→∞

1
log n

n∑
j=1

1
j


 m∑

k=1

tk(
c
�k�
2

)1/2 ��jθk� − �jαk��




2

�(4.10)

The limit can be found by applying Theorem 3:

σ2 =
m∑
k=1

m∑
l=1

tktlDkl�(4.11)
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Since ∣∣∣t1YI1
n + · · · + tmY

Im
n −T

�t�
m

∣∣∣→p 0�(4.12)

we have

t1Y
I1
n + · · · + tmY

Im
n ⇒ �

(
0�

m∑
j=1

m∑
k=1

tjtkDjk

)
�(4.13)

as n → ∞, which is the distribution of t1Z1 + · · · + tmZm. ✷

Except in a few special cases, the entries of the covariance matrix D are
not easy to compute. One case will be worked out in the next section, for
comparison with similar results for continuous groups.

Remark. Hambly, Keevash, O’Connell and Stark [12] prove a similar the-
orem for the logarithm of the characteristic polynomial of a random permuta-
tion matrix; their work gives another proof of Theorem 4 for a single interval.

Remark. Theorem 3, Lemma 2 and Lemma 3 imply a more general result
concerning linear combinations of the aj’s. Let �β�j≥1 be a sequence of real
numbers which satisfy 0 ≤ βj ≤ K for some K < ∞. Suppose these numbers
also satisfy

lim
n→∞

1
n

n∑
j=1

βj = A > 0�(4.14)

lim
n→∞

1
n

n∑
j=1

β2
j = B > 0�(4.15)

where A and B are both finite. Finally, set

ζn =
n∑

j=1

βjaj�(4.16)

Then E�ζn� = A log n+ o�log n�, Var�ζn� = B log n+ o�log n� and

ζn −E�ζn�
�B log n�1/2 ⇒ � �0�1�(4.17)

as n → ∞. (A related result concerning linear combinations of cycles can be
found in example D of [3].)

4.2. Rate of convergence for a single interval. Let <�x� be the standard
normal distribution function. For a single interval I = �e2πiα� e2πiθ�, YI

n con-
verges to normal at a rate of �log n�−1/2.
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Theorem 6. There exists a constant h = h�α� θ� such that for all x and n,

sup
x

∣∣∣P [YI
n ≤ x

]−<�x�
∣∣∣ ≤ h

�log n�1/2
�

The proof of this theorem will make use of the following fact from [5] (see
page 174).

Lemma 4. Let B be a random variable and η be a positive constant with
supx �P�B ≤ x� − <�x�� ≤ η. Suppose A1 and A2 are independent random
variables with �A1 −B� ≤ A2 and E�A2� < ∞. Then

sup
x

∣∣∣P�A1 ≤ x� −<�x�
∣∣∣ ≤ 3

(
η+ 4E�A2�

�2π�1/2

)
�

Proof of Theorem 6. Reusing the notation from Section 4.1, let

V
�t�
n�j =

Wj − 1
j

�c2 log n�1/2 ��jθ� − �jα��(4.18)

and

Tn =
n∑

j=1

Vn�j�(4.19)

Note that for each j, E�Vj� = 0. Also,

n∑
j=1

Var�Vj� =
1

c2 log n

n∑
j=1

1
j
��jθ� − �jα��2 ∼ 1 + o�1�(4.20)

and
n∑

j=1

E��Vj�3� =
1

�c2 log n�3/2

n∑
j=1

(
2
j3

e−1/j + 1
j

)
��jθ� − �jα��3(4.21)

∼ c3

��c2�3 log n�1/2 + o

(
1

�log n�1/2

)
�(4.22)

where

c3 = lim
n→∞

1
n

n∑
j=1

��jθ� − �jα��3�(4.23)

Applying the Berry-Esséen Theorem (page 544 of [10]) shows that there is a
constant k for which

sup
x

∣∣∣P�Tn ≤ x� −<�x�
∣∣∣ ≤ k

�c2 log n�1/2
�(4.24)
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To get back to Yn, note that

�Yn −Tn� ≤
n∑

j=1

�aj −Wj�
�c2 log n� 1

2

·
∣∣∣�jθ� − �jα�

∣∣∣(4.25)

≤ 1
�c2 log n�1/2

[
2 +

n∑
j=1

Wjn

]
�(4.26)

Note that Yn and
∑

Wjn are independent. Applying Lemma 4,

sup
x

∣∣∣P�YI
n ≤ x� −<�x�

∣∣∣ ≤ 3
�log n�1/2

(
k+ 12

�2πc2�1/2

)
(4.27)

= h

�log n�1/2
�(4.28)

✷

Remark. If α and θ are rational numbers or irrational numbers of finite
type, it should be possible to use discrepancy bounds on the rates of conver-
gence for the constants c2 and c3 to find explicit values for the constants k
and h in Theorem 6.

5. Discussion. The symmetric group has been connected to random ma-
trix theory for continuous ensembles in a number of ways. One connection can
be found in [7], which studies the trace of a randomly chosen matrix from one
of the compact Lie groups and the trace of a random permutation matrix. An-
other connection arises from the following question: if a permutation is chosen
at random from Sn, what is the length of the longest increasing substance?
This problem has a long history, but recent work by Baik, Deift, and Johans-
son (see [4]) has shown that the length of the longest increasing subsequence
follows the same distribution as the largest eigenvalue of a random matrix
chosen from the Gaussian Unitary Ensemble (when both random variables
are properly scaled).

To put the results of this paper into a bigger picture, it is interesting to
compare them with similar results for some of the continuous matrix groups.
The easiest family of groups to work with is Un. We begin with a short de-
scription of what is known about the eigenvalue distribution on these groups,
and then compare the unitary group with the permutation group.

5.1. Eigenvalue distribution onUn. Since Un is a compact Lie group, it has
a unique left-invariant probability measure. For all of the results below, this
is the probability measure which is used. For any interval I = �e2πiα� e2πiθ� on
the unit circle, let TI

n be the random variable on Un which counts the number
of eigenvalues in I. The mean and variance of TI

n are known to be

E�TI
n� = n�θ− α�(5.1)

and

Var�TI
n� =

1
π2

log n+O�1��(5.2)
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(The mean is easy to see by symmetry; complete asymptotics for the vari-
ance were calculated by Rains in [15].) Furthermore, the normalized random
variable

VI
n = TI

n − n�θ− α�
1
π
�log n�1/2(5.3)

converges in distribution to a standard normal random variable as n → ∞
(see Chapter 2 of [19]).

The joint behavior of V
I1
n � � � � �V

Ik
n is somewhat surprising. The theorem

below is stated for two intervals for simplicity (for a proof, see Chapter 3 of
[19]).

Theorem 7. Let I1 and I2 be two open arcs on the unit circle.

1. If I1 and I2 do not have a common endpoint (the intervals may overlap),

then V
I1
n and V

I2
n converge in distribution to independent normal random

variables with mean 0 and variance 1 as n → ∞.
2. If I1 = �eiα� eiβ� and I2 = �eiβ� eiγ�, then as n → ∞, V

I1
n and V

I2
n converge

in distribution to jointly distributed normal random variables with mean
0, variance 1 and covariance −1/2�

3. If I1 = �eiα� eiβ� and I2 = �eiα� eiγ�, then as n → ∞, V
I1
n and V

I2
n converge

in distribution to jointly distributed normal random variables with mean
0� variance 1 and covariance 1/2�

Remark. Similar behavior can be seen in a number of random matrix
settings. See, for example [6]. Other related results can be found in [18].

5.2. Comparison of results. The random variable TI
n is the analogue of XI

n.
The mean and variance asymptotics given in (5.1) and (5.2) for TI

n are similar
to the mean and variance asymptotics for XI

n given in (3.19) and (3.22). In
both cases, the first order term of the mean is proportional to the size of the
interval; also, in both cases the variance grows as log n, which is fairly slow.
(This is a reflection of the fact that the eigenvalues of a random permutation
or unitary matrix are much more evenly spaced than n independent randomly
chosen points would be.) One striking difference between the two cases is that
the coefficient of log n in the variance does not depend on the interval for the
unitary group, while it does for the permutation group. While this may be
surprising at first, since the eigenvalues of permutation matrices are always
rational multiples of 2π, there can be a significant contribution to XI

n at the
endpoints of the interval.

The limiting normality in the single-variable case holds for both groups (for
permutation matrices, this follows from Theorem 4, with m = 1). The inter-
esting question is whether the behavior exhibited in Theorem 7 can also be
seen for permutation matrices. In general, the behavior is not the same. For
example, if I1 = �1� i� and I2 = �−1�−i�, then Y

I1
n and Y

I2
n are positively cor-

related, even though there is no common endpoint. This is not too surprising,
because of the contribution of eigenvalues at the endpoints. However, under
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special circumstances these effects can be minimized and the behavior which
appears does match the behavior random unitary matrices.

Theorem 8. Let α, β, γ, and δ be irrational numbers which are linearly
independent over the rational numbers.

1. If I1 = �e2πiα� e2πiβ� and I2 = �e2πiγ� e2πiδ� do not have a common endpoint
�the intervals may overlap�, then Y

I1
n and Y

I2
n converge in distribution to

independent normal random variables with mean 0 and variance 1� as n →
∞.

2. If I1 = �eiα� eiβ� and I2 = �eiβ� eiγ�, then as n → ∞, Y
I1
n and Y

I2
n converge

in distribution to jointly distributed normal random variables with mean
0� variance 1 and covariance −1/2�

3. If I1 = �eiα� eiβ� and I2 = �eiα� eiγ�, then as n → ∞, Y
I1
n and Y

I2
n converge

in distribution to jointly distributed normal random variables with mean
0� variance 1 and covariance 1/2�

Proof. All three results will follow from Theorem 4, by evaluation of the
covariance constants D12. Because of the assumptions on α, β, γ, and δ, in
all cases, the mean and variance constants were mentioned in Example 2:
c
�1�
1 = c

�2�
1 = 0 and c

�1�
2 = c

�2�
2 = 1/6. The covariance constants in the three

parts of the theorem can be calculated from formulas in the Appendix [see
equation (A.10) and Corollary 1]. ✷

Theorem 8 can be extended (under appropriate conditions) for any number
of intervals. The covariance structure will be the same, provided that all end-
points are linearly independent irrational numbers. Though the general case
is not nearly so nice, the intervals in Theorem 8 are fairly typical in the sense
that if four endpoints are chosen at random from the unit circle, they will be
irrational and linearly independent with probability 1.

The results in this paper still leave many questions unanswered. One sub-
ject of much interest in the mathematical physics setting is the distribution
of the spacing between the eigenvalues. While this has been studied for many
of the continuous matrix groups and ensembles, this question has not been
studied for the permutation matrices. Another question, which is closely re-
lated to the work in this paper, is whether there is another limiting process
which is buried under the structure which appears in Theorems 7 and 8. Both
questions could be quite useful for understanding how permutations fit into
the random matrix picture.

APPENDIX: CALCULATION OF CONSTANTS

The mean, variance, and covariance constants derived in this paper are

c1 = lim
n→∞

1
n

n∑
j=1

��jθ� − �jα���(A.1)
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c2 = lim
n→∞

1
n

n∑
j=1

��jθ� − �jα��2(A.2)

and

D12 = 1(
c
�1�
2 c

�2�
2

)1/2 lim
n→∞

1
n

n∑
j=1

��jθ1� − �jα1����jθ2� − �jα2���(A.3)

These constants can be easy or difficult to compute depending on the values of
α and θ. When separated into pieces, these sums contain three basic elements:

s1�β� = lim
n→∞

1
n

n∑
j=1

�jβ��(A.4)

s2�β� = lim
n→∞

1
n

n∑
j=1

�jβ�2(A.5)

and

s3�β� γ� = lim
n→∞

1
n

n∑
j=1

�jβ��jγ��(A.6)

These three limits are the building blocks for the examples in Section 3 and
for Theorem 8.

This Appendix will be spent calculating s1, s2, and s3 in as many cases as
possible.

A.1. The single-variable constants, s1 and s2. First suppose β is rational,
say β = p/q. In this case, the numbers �jβ� cycle through some rearrange-
ment of the numbers 1/q�2/q� � � � � �q− 1�/q�0, and the numbers �jβ�2 cycle
through some rearrangement of the numbers 1/q2�4/q2� � � � � �q − 1�2/q2�0.
Thus

s1�β� =
1
q

q−1∑
j=0

j

q
= q− 1

2q
(A.7)

and

s2�β� =
1
q

q−1∑
j=0

j2

q2
= �q− 1��2q− 1�

6q2
�(A.8)

Next, if β is irrational then

s1�β� = 1/2�(A.9)

s2�β� = 1/3�(A.10)

This can be shown using a classical number theory result, essentially due to
Weyl:
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Theorem 9. Let f be any Riemann integrable function on �0�1�, and let θ
be any irrational number. Then for any real number b,

lim
n→∞

1
n

n∑
k=1

f��kθ+ b�� =
∫ 1

0
f�x�dx�

Proof. If b = 0 (or any other integer), this follows directly from Theorem
1.1, page 2 and Example 2.1, page 8 of [13]; if b �= 0, a simple modification of
Example 2.1 is required. ✷

Remark. Before looking at s3, it is worth mentioning the rates of conver-
gence of the limits in s1 and s2. First, it is relatively easy to see that when
β = p/q, ∣∣∣∣∣ 1n

n∑
j=1

�jβ� − q− 1
2q

∣∣∣∣∣ ≤ q

n
(A.11)

and ∣∣∣∣∣ 1n
n∑

j=1

�jβ�2 − �q− 1��2q− 1�
6q2

∣∣∣∣∣ ≤ q

n
�(A.12)

Also, using the notion of discrepancy and several good number theory esti-
mates, it can be shown that for almost every irrational β, there are finite
constants K1�β� and K2�β�, and 0 < b�β� ≤ 1 for which∣∣∣∣∣ 1n

n∑
j=1

�jβ� − 1
2

∣∣∣∣∣ ≤ K1

nb
(A.13)

and ∣∣∣∣∣ 1n
n∑

j=1

�jβ�2 − 1
3

∣∣∣∣∣ ≤ K2

nb
�(A.14)

for all n. Here is why these bounds are relevant. The numbers s1 and s2
arise from sums of the form

∑n
j=1�jβ�/j and

∑n
j=1�jβ�2/j. By combining the

estimates above with part 2 of Theorem 3, these sums have asymptotics

n∑
j=1

�jβ�
j

= s1�β� log n+O�1��(A.15)

n∑
j=1

�jβ�2

j
= s2�β� log n+O�1�(A.16)

for all rational β and almost every irrational β. The details of these estimates
and asymptotics can be found in section 5.4 of [19].
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A.2. The two-variable constant s3. For any β and γ, s3�β� γ� can be calcu-
lated numerically to any desired degree of accuracy. However, a closed formula
can be found for only some cases. These cases are summarized below.

We first mention the situation when both β = p/q and γ = r/s are rational.
There is no single closed formula which covers all of the cases, but s3 can
always be computed exactly as the average

s3�β� γ� =
1
qs

qs∑
j=1

{
jp

q

}{
jr

s

}
�(A.17)

The easiest case which has a simple answer is when β and γ are irrational
numbers which are linearly independent over �. In this case, there is a two-
dimensional analogue of Theorem 9.

Theorem 10. Let f and g be any Riemann integrable functions on �0�1�,
and let β and γ be any irrational numbers which are linearly independent over
the rational numbers. Then

lim
n→∞

1
n

n∑
k=1

f��kβ��g��kγ�� =
(∫ 1

0
f�x�dx

)(∫ 1

0
g�y�dy

)
�

Proof. See Theorem 6.1 and Example 6.1 on page 48 of [13]. ✷

Using Theorem 10 with f�x� = x and g�y� = y proves the following.

Corollary 1. If β and γ are linearly independent irrational numbers,

s3�β� γ� =
1
4
�

Another straightforward case is if one of the numbers is rational and the
other is irrational:

Theorem 11. Suppose β = p/q and suppose γ is irrational. Then

s3�β� γ� =
1
4
− 1

4q
�

Proof. For k = 1�2� � � � � q, set αk = �kp/q�. Rewrite the sum in s3 as

s3 = lim
n→∞

(
1

q�n
q
�

� n
q �∑

j=0

q∑
k=1

αk��qj+ k�γ�

+
(

1
n
− 1

q�n
q
�

) � n
q �∑

j=0

q∑
k=1

αk��qj+ k�γ�(A.18)

+ 1
n

n∑
j=� n

q �+1

�jγ��jβ�
)
�
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The second and third terms are bounded by q/n, so both terms disappear in
the limit. Thus

s3 = 1
q

q∑
k=1

αk


 lim

n→∞
1

q�n
q
�

� n
q �∑

j=0

q∑
k=1

��qj+ k�γ�

 �(A.19)

Now apply Theorem 9 to each of the limits, using θ = qγ, b = kγ, and f�x� = x.
This shows that

s3�β� γ� =
1
2q

q∑
k=1

{
kp

q

}
= q− 1

4q
�(A.20)

✷

Finally, if β and γ are irrational numbers which are linearly dependent
over �, then there are integers p, q, r, and s (with p and q relatively prime,
r and s relatively prime, and q and s positive) so that

γ = r

s
β+ p

q
�(A.21)

Although the closed form of s3�β� γ� will not be given in general, one can hope
that some intuition can be taken from the linearly independent case in Corol-
lary 1. A reasonable guess is that s3 is approximately 1/4 with a correction
term which will depend on p, q, r, and s. The following theorem, which covers
the cases with s = 1, supports this guess.

Theorem 12. Suppose that β is irrational and γ = rβ+ p/q. Then

s3�β� γ� =
1
4
+ 1

12rq2
�

Proof. The constant r will be assumed to be positive. (Since s3 deals only
with fractional parts �jγ�, if r is negative, γ can be replaced with γ̃ = �r��1−
β� + p/q. It is easy to check that �jγ� = �jγ̃�.)

First, consider the easier case s3�β� rβ�. Note that

�jrβ� = r�jβ� −
r−1∑
k=1

1�jβ�≥k/r�(A.22)

Substituting this into the formula for s3 shows that

s3�β� rβ� = lim
n→∞

1
n

n∑
j=1

(
r�jβ�2 −

r−1∑
k=1

�jβ�1�jβ�≥k/r

)
(A.23)

= r

3
−

r−1∑
k=1

lim
n→∞

1
n

n∑
j=1

�jβ�1�jβ�≥k/r�(A.24)
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For each of the limits above, apply part 1 of Theorem 9 using

f�x� =
{
x� if x ≥ k/r�
0� otherwise.

(A.25)

Then

s3�β� rβ� =
r

3
−

r−1∑
k=1

(
1
2
− k2

2r2

)
(A.26)

= 1
4
+ 1

12r
�(A.27)

In the general case,

s3�β� γ� = lim
n→∞

1
n

n∑
j=1

{
jrβ+ jp

q

}
�jβ��(A.28)

Start by writing{
jrβ+ jp

q

}
= �jrβ� +

{
jp

q

}
− 1�jrβ�≥1−�jp/q��(A.29)

Then

s3 = lim
n→∞

1
n

n∑
j=1

�jrβ��jβ� +
{
jp

q

}
�jβ�(A.30)

− lim
n→∞

1
n

n∑
j=1

�jβ�1�jrβ�≥1−�jp/q�

= 1
2
+ 1

12r
− 1

4q
− lim

n→∞
1
n

n∑
j=1

�jβ�1�jrβ�≥1−�jp/q��(A.31)

where the last line follows from (A.27) and Theorem 11. The remaining prob-
lem is to evaluate the limit

L = lim
n→∞

1
n

n∑
j=1

�jβ�1�jrβ�≥1−�jp/q��(A.32)

For k = 1�2� � � � � q, set αk = �kp/q�. So

L = lim
n→∞

(
1

q�n
q
�

� n
q �∑

j=0

q∑
k=1

��qj+ k�β�1�jrβ�≥1−αk

+
(

1
n
− 1

q�n
q
�

) � n
q �∑

j=0

q∑
k=1

��qj+ k�β�1�jrβ�≥1−αk(A.33)

+ 1
n

n∑
j=� n

q �+1

�jβ�1�jrβ�≥1−�jp/q�

)
�
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As in the proof of Theorem 11, the second and third limits are zero and

L =
q∑

k=1

lim
n→∞

1
q�n

q
�

� n
q �∑

j=0

q∑
k=1

��qj+ k�β�1�jrβ�≥1−αk �(A.34)

For each k, let

Lk = lim
n→∞

1
q�n

q
�

� n
q �∑

j=0

q∑
k=1

��qj+ k�β�1�jrβ�≥1−αk �(A.35)

Theorem 9 can be applied to each of these, using θ = qβ, b = kβ. Using
equation (A.22),

Lk =
∫ 1

0
fk�x�dx�(A.36)

where

fk�x� =

x� if rx−

r−1∑
D=1

1x≥ D
r
≥ 1 − αk�

0� otherwise.

(A.37)

Thus

Lk =
r−1∑
D=0

∫ D+1
r

1−αk+D
r

xdx(A.38)

= 1
2
− r− 1

2r
�1 − αk� −

�1 − αk�2

2r
�(A.39)

This means that

L = 1
q

q∑
k=1

1
2
− r− 1

2r
�1 − αk� −

�1 − αk�2

2r
�(A.40)

Using the fact that the αk’s cycle through 0� � � � � �q− 1�/q,

L = 1
q
− r− 1

2rq

q∑
k=1

k

q
− 1

2rq

q∑
k=1

k2

q2
(A.41)

= 1
4
− 1

4q
+ 1

12r
− 1

12rq2
�(A.42)

Finally putting this into (A.31),

s3�β� γ� =
1
4
+ 1

12rq2
�(A.43)
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[1] Arratia, R., Barbour, A. D. and Tavaré, S. (1992). Poisson process approximations for the
Ewens sampling formula. Ann. Appl. Probab. 2 519–535.
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