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THE SHERRINGTON–KIRKPATRICK MODEL1

By Michel Talagrand

Université Paris VI

We provide an extremely accurate picture of the Sherrington–
Kirkpatrick model in three cases: for high temperature, for large external
field and for any temperature greater than or equal to 1 and sufficiently
small external field. We describe the system at the level of the central limit
theorem, or as physicists would say, at the level of fluctuations around the
mean field. We also obtain much more detailed information, in the form of
exponential inequalities that express a uniform control over higher order
moments. We give a complete, rigorous proof that at the generic point of
the predicted low temperature region there is “replica symmetry breaking,”
in the sense that the system is unstable with respect to an infinitesimal
coupling between two replicas.

1. Introduction. We study the famous Sherrington–Kirkpatrick (SK)
mean field model for spin glasses. This model is well understood at the physical
level [3], but despite considerable efforts, remains rather mysterious from the
point of view of mathematics. (Readers who are not experts are urged to con-
sult [8], [9]. They will find there a more detailed description of the main issues
than is possible in the present introduction.) We will denote by �N = �−1�1�N
the space of configurations. Given � = �σi�i≤N in �N, we consider the random
Hamiltonian,

HN��� = − 1√
N

∑
1≤i<j≤N

gijσiσj − ∑
i≤N
h′σi�(1.1)

where h′ ∈ �+ represents an external field and where �gij�1≤i<j≤N are inde-
pendent N�0�1� random variables that represent the disorder of the interac-
tion between the sites. Given a number β ≥ 0 (that represents the inverse of
the temperature), we are interested in Gibbs measure GN on �N, given by

GN��� = 1
Z

exp�−βHN�����(1.2)

where Z = ZN = ZN�β�h′� is the normalization factor,

ZN = ∑
�∈�N

exp�−βHN�����

The Gibbs measure is a random measure. We try to understand its struc-
ture for N large and for the typical value of the disorder. In physical terms
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this means that the disorder is “frozen in” (quenched) and that the system is
allowed to evolve according to thermal fluctuations [physically, GN��� is the
probability to observe configuration � when the system is in thermal equilib-
rium]. The reason for the name h′ for the external field is that we reserve the
simplest name for the quantity h = βh′. For mathematicians, the system is
best viewed as depending upon the two independent parameters β�h.

Throughout the paper, thermal averages, that is, averages with respect to
Gibbs measure, will be denoted by 
·�. A fundamental concept will be that of
replicas, which are simply powers of the probability space ��N�GN�. Averages
with respect to the corresponding power of GN will also be called “thermal
averages.”

It is plausible that the structure of the system depends upon the values
of the parameters �β�h�. We will call the high temperature region the region
where either h = 0� β < 1, or where h > 0 and

E
β2

ch4�βg√
q+ h� < 1�(1.3)

where g is N�0�1� and where q = q�β�h� is the solution of the equation

q = E th2�βg√
q+ h��(1.4)

It is certainly not obvious that (1.4) has a unique solution. This is consid-
ered as self-evident in the physics literature. It has probably been checked
numerically. I am not aware of any reference containing a rigorous proof.

The physicists have constructed a fascinating theory for the structure of
the system in the low temperature region, the so-called “Parisi solution.” The
physicists predict a simpler behavior in the high temperature region. It has
not yet been widely realized that this behavior is highly nontrivial when h �= 0.
This is because the best known case is the case h = 0 considered in [1]. In
that case it is not difficult to show that when β < 1, we have

lim
N→∞

1
N
E logZN = log 2 + β

2

4

(
= lim
N→∞

1
N

logEZN

)
(1.5)

and the model is well understood ([2], [5], Section 2).
By contrast, when h > 0, under (1.3), physicists predict that

lim
N→∞

1
N
E logZN = β

2

4
�1 − q�2 +E ln�2 cosh�βg√

q+ h��

= β
2

4
�1 − q�2

+ 1√
2π

∫ ∞

−∞
ln�2 cosh�βt√q+ h�� exp�−t2/2�dt�

(1.6)

when q satisfies (1.4). For h > 0, the quantity (1.6) is strictly less than
N−1 limN→∞ logEZN.
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The remarkable character of a formula such as (1.6) should be self-evident.
Such a formula is of course not accidental but is a consequence of a rich under-
lying structure. The main goal of the present paper is to provide a considerably
more accurate picture of this underlying structure than was done in [5]. There,
(1.6) is proved in the domain ��β�h��β < β0� for a certain β0 > 0.

Our approach also allows us to get information about the low temperature
region. As low temperature results are more glamorous than high temperature
results, they should be stated first.

A central concept of the physicists’ picture of the low temperature region is
that of “replica symmetry breaking,” which is formulated in [3] using objects
such as integers n, with 0 < n < 1, functions of a negative number of vari-
ables, etc. Fortunately, there are formulations of this concept that are much
more amenable to a mathematical description and I am very grateful to Marc
Mézard for having shown to me such a formulation (which was the starting
point of this paper). Let us consider a coupling t

∑
i≤N σiσ

′
i between two repli-

cas. That is, we study the space �2N with Hamiltonian

HN����′� =HN��� +HN��′� − t′ ∑
i≤N
σiσ

′
i�

where HN is given by (1.1). One can then consider the corresponding Gibbs
measure GN�t on �

2
N. Consider the quantity

ϕN�t� = E
〈� · �′

N

〉
t
�(1.7)

where �·�′ = ∑
i≤N σiσ

′
i and where 
·�t denotes average with respect toGN�t/β.

There, as well as in the rest of the paper, E denotes expectation with respect
to the disorder (i.e., the variables gij). It is self-evident for a physicist that
ϕ�t� = limN→∞ ϕN�t� exists (when no explicit mentions of β�h are made, we
understand that they are fixed).

Informal Definition 1.1. We say that there is replica symmetry breaking
if ϕ is discontinuous at zero.

The quantityN−1� ·�′ is called “overlap” of the two configurations. It mea-
sures how close they are. In words, we can define replica symmetry breaking
by saying that a very little “push” of one configuration toward the other is
sufficient to greatly increase the average overlap.

In order to give a precise meaning to Definition 1.1, when we do not know
how to prove the existence of the limit, we simply replace continuity by asymp-
totic equicontinuity.

Definition 1.2. For given values of the parameters β�h, we say that there
is replica symmetry breaking if the following condition holds.

There exists ε0 > 0, such that for each t0 > 0, and each N0,
we can find �t� < t0 and N ≥N0 with �ϕN�t� − ϕN�0�� ≥ ε0.(1.8)



REPLICA SYMMETRY BREAKING FOR THE SK MODEL 1021

Theorem 1.3. There is replica symmetry breaking at the generic point (in
the sense of Baire category) of the low temperature region.

Of course, the fact that there is replica symmetry breaking does not give
very precise information on what happens. It does not even rule out that (1.6)
still holds. [Physicists think that in the low temperature region the left-hand
side of (1.6) is strictly less than the right-hand side.] This is certainly disap-
pointing but one should also see the bright side. Currently, almost nothing
rigorous is known about the low temperature region, and it was somewhat
unexpected that a clean statement could be proved. The most notable feature
of Theorem 1.3 is that it concerns the entire low temperature region, not only
“low enough temperature.” Since it is unlikely that there is replica symmetry
breaking on the high temperature region, Theorem 1.3 can be seen at the very
least as a regorous identification of the line (1.3).

Before we comment upon the analysis behind Theorem 1.3 we have to
understand better what replica symmetry breaking is. The reader will note
that absence of replica symmetry breaking is equivalent to the following
condition:

Given ε > 0, there is t0 > 0 and N0 such that
�t� < t0 and N ≥N0 ⇒ �ϕN�t� − ϕN�0�� ≤ ε.(1.9)

Our next result shows how to characterize absence of replica symmetry
breaking by the validity of a certain exponential inequality.

Proposition 1.4. At a given value of the parameters β�h, the following are
equivalent:

There is absence of replica symmetry breaking.(1.10)

Given u > 0, there is a�u� > 0 and N0 such that(1.11)

∀N ≥N0� EG
2
n���� · �′ − 
� · �′�� ≥Nu�� ≤ exp�−Na�u���

We will prove Proposition 1.4, which is (a little more than) a very simple
fact in large deviation theory in Section 2.

To prove Theorem 1.3, we will proceed by contradiction. Assuming absence
of replica symmetry breaking, we see from (1.11) that (in a strong sense)
we have

� · �′ � 
� · �′�(1.12)

for large N and any two generic configurations ���′.
It is better to discuss the meaning and the usefulness of (1.12) as part of

the discussion of the structure behind (1.6), so we turn to the description of
the structure of the system at high temperature. The main feature is that
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one has

lim
N→∞

1
N
E
〈�� · �′ −E
� · �′��〉 = 0�(1.13)

that is, “the overlap of two generic configurations is E
� · �′�.”
Physicists seem to consider (1.13) as self-evident. As will be apparent later,

once one has obtained (1.13), it is easy to compute with Gibbs measure.
The only task facing physicists is to obtain thatN−1E
� ·�′� is approximately
the number of q of (1.4). This is easy, and from this (1.6) follows in a few lines
(see [5]). Physicists thus consider the high temperature case as trivial. It is,
however, another matter to prove (1.13). In particular, it seems at first very
hard to say anything at all about Gibbs measure. Much of the author’s work
on the SK and other models has been driven by the simple idea that to prove
(1.13) one should break it down into two statements,

lim
N→∞

1
N
E
〈�� · �′ − 
� · �′��〉 = 0�(1.14)

lim
N→∞

1
N

∣∣
� · �′� −E
� · �′�∣∣ = 0�(1.15)

Thus usefulness of these will become apparent in Section 3. In particular,
knowledge of (1.14) gives control of the error terms of a certain “Taylor type”
expansion. This is the idea of writing (1.14), (1.15) separately. When trying to
prove (1.13), one first proves (1.14); the control gained through (1.14) is then
instrumental in proving (1.15). This idea will be used here in (1.17), (1.18)
below. Going back to the discussion of Theorem 1.3, we see that an a priori
knowledge of (1.14) is provided by (1.12). The technical difficulty is that this
information is somewhat insufficient to make precise computations. It will
be completed by “thermodynamical arguments,” that is, arguments ultimately
relying upon the convexity of the function β → logZN�β�h�. We will then
be able to do computations that are precise enough to reach a contradiction.
This contradiction is a mathematically precise formulation of the statement
by physicists that “the replica symmetric solution is unstable in the low tem-
perature region.”

We now go back to the discussion of the high temperature region. The major
problem left is the proof of (1.6) in the entire region (1.3). This, unfortunately,
seems harder than expected. A number of signs (such as the analysis of [5],
Section 6) point to the fact that one should not only attempt to prove (1.13)
but that one should also attempt to control higher moments, that is, prove
exponential inequalities. The natural form of these inequalities is stronger
than (1.11); so they imply in particular that there is no replica symmetry
breaking. Even though this approach has yet to succeed in covering the entire
region (1.3), it does provide in the region it succeeds a considerably more
detailed picture than was obtained in [5]. Another important motivation for
proving exponential inequalities is that the information they contain can be
“transferred” to a slightly different value of the parameters β�h, as will be
apparent in the proof of Theorem 1.7.
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Theorem 1.5 (Very high temperature). There is a number L such that if
Lβ ≤ 1, then for all h and all t,

E
〈
exp t�� · �′ −E
� · �′��〉 ≤ expLt2N�(1.16)

To see that this is stronger than (1.11), let us observe [following the phi-
losophy of (1.14), (1.15)] that an inequality such as (1.16) is equivalent to the
following two inequalities:

E exp t�
� · �′� −E
� · �′�� ≤ expL1t
2N�(1.17)

E exp t�� · �′ − 
� · �′�� ≤ expL2t
2N�(1.18)

That (1.16) implies (1.17) follows from Jensen’s inequality. That (1.16) implies
(1.18) follows from

exp t�� · �′ − 
� · �′�� = exp t�� · �′ −E
� · �′�� exp t�
� · �′�� −E
� · �′���
(1.16), (1.17) and Cauchy–Schwarz. That (1.17), (1.18) imply (1.16) follows by
a similar argument. Thus (1.16) implies (1.11) because (1.18) already implies
(1.11) (using Chebyshev’s inequality).

We will leave to the reader to show that under the condition of Theorem 1.5
we have

�E
� · �′� −Nq� ≤ L(1.19)

so that (1.16) implies

∀ t�E
exp t�� · �′ −Nq�� ≤ 2 expLt2N�(1.20)

One marginal benefit of our new approach is that now we can control bigger
regions than we could in [5].

Theorem 1.6 (Large external field). Given any β > 0 there is a number
L�β� such that if h ≥ L�β� then, for all t ≥ 0,

E
〈
exp t�� · �′ −E
� · �′��〉 ≤ expL�β�t2N�(1.21)

Theorem 1.7 (Small external field). Given 0 < β < 1, there is a number
h�β� > 0 such that if h < h�β�, then (1.21) holds for all t > 0.

The proof of this theorem is somewhat different from the proof of Theorems
1.5, 1.6. It uses in an essential way the knowledge of the case h = 0 that has
been obtained through special methods [5].

The method we have developed allows not only proving exponential inequal-
ities, but also limit theorems, and we explain a general result in this direction.
We consider k replicas �1� � � � ��k. For a subset J = �j1� j2� of �1� � � � � k�, we
write fJ = �j1 · �j2 −E
�1 · �2�; for a collection � of such subsets, we write
f� = ∏

J∈� fJ.
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Theorem 1.8. In the domain of Theorems 1.6 to 1.8, the limit of

N−�card � �/2E
f� �(1.22)

exists a N→ ∞.

The proof of the theorem also contains an explicit method for computing
the limit. We will prove (in Corollary 6.2) a central limit theorem concerning
a “symmetrized” version of the overlaps using this method. It is likely that
there is a simple algebraic structure behind the limits of Theorem 1.8, but
this remains to be found.

One feels that Theorems 1.5 and 1.8 open the door to results whose accuracy
will be limited only by the energy one is willing to invest in them. For example,
it seems almost certain that one can compute

lim
N→∞

�E
� · �′� −Nq�(1.23)

and even that there is an asymptotic expansion for E
� ·�′�. (Here, as below,
“almost certain” means that the author has not completely checked that what
looks like the obvious approach does work.) Whether the general term of this
expansion can be explicitly computed is unclear. If we denote by SK�β�h� the
right-hand side of (1.6), it is not difficult to show that (1.6) can be improved into

supN�E logZN −NSK�β�h�� <∞(1.24)

and again one can ask the question of an asymptotic expansion of E logZN−
NSK�β�h�. The existence seems almost certain, but can it be computed ef-
fectively? It is again almost certain (through the Martingale central limit
theorem) that N−1/2�logZN − E logZN� is asymptotically normal, but how
precisely can it be understood? All these questions are better left for future
research.

The paper is organized as follows. The simple Proposition 1.4 is proved in
Section 2. The purpose of this proposition is to motivate our other results,
and Section 2 is independent of the rest of the paper. The serious work starts
in Section 3, where we prove the estimates upon which our approach (by induc-
tion on N) relies. Similar estimates were used first in the more complicated
case of the Hopfield model [6]. It seems well worth proving them in detail in
the present setting, since the present paper demonstrates how useful they are.
Section 3 then ends with the proof of Theorem 1.3. The exponential inequal-
ities are proved in two stages. In Section 4, we prove inequalities of the type
(1.17). In Section 5, we use these to reach the full result (1.16). Convergence
results are then proved in Theorem 6.1.

2. Proof of Proposition 1.4. We first prove Proposition 1.4. Consider the
functionR = R����′� on �N×�N given byR����′� = �1/N�∑i≤N σiσ ′

i. Then,
if 
·� denotes thermal average in �2N, we have the identity


R�t = 
R exp tNR�

exp tNR�
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so that

ϕ�t� = E
R exp tNR�

exp tNR� �(2.1)

We prove that (1.11) implies (1.10). We write, since �R� ≤ 1,


R exp tNR� ≤ �
R� + u�
exp tNR� + exp �t�N〈
1�R≥
R�+u�

〉
so that

ϕ�t� ≤ E
R� + u+ exp�2�t�N�E〈
1�R≥
R�+u�

〉
�(2.2)

We read (1.11) as

E
〈
1�R≥
R�+u�

〉 ≤ exp�−Na�u��
so that, for �t� ≤ a�u�/4 and N ≥N0, (2.2) implies

ϕ�t� ≤ ϕ�0� + u+ exp�−Na�u�/2��
A lower bound based on the same principle completes the proof that (1.11)
implies (1.10), so we turn to the converse. We observe first that

ϕ�t� − ϕ�0� = E
R′ exp tNR′�

exp tNR′� �

where R′ = R − 
R�. Given ε ≥ 0, we can find t > 0 such that (for N large
enough) we have

ϕ�t� ≤ ϕ�0� + ε� ϕ�−t� ≥ ϕ�0� − ε�(2.3)

In particular, if we consider the event

"1 =
{
R′ exp tNR′�


exp tNR′� ≤ 4ε
}

we have P�"1� ≥ 3/4. On "1 we can write


R′ exp tNR′� ≤ 4ε
exp tNR′�(2.4)

so that

5ε
〈
1�R′≥5ε� exp tNR

′〉 ≤ 4ε
exp tNR′�
≤ 4ε

〈
1�R′≤5ε� exp tNR

′〉
+ 4ε

〈
1�R′≥5ε� exp tNR

′〉
and thus

ε
〈
1�R′≥5ε� exp tNR

′〉 ≤ 4ε exp 5tεN

so that 〈
1�R′≥6ε�

〉 ≤ 4 exp�−tεN��
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In a similar manner, we find an event "2 with P�"2� ≥ 3/4 such that on
"2 we have 〈

1�−R′≥6ε�
〉 ≤ 4 exp�−tεN�

so that on "1 ∩"2 we have〈
1��R′ �≥6ε�

〉 ≤ 8 exp�−tεN��(2.5)

This inequality is ill adapted to the concentration of measure argument
that will follow because R′ depends upon GN through 
R�. To remove this
dependence, we use the classical device of symmetrization. We consider the
function R̃ on �4N given by

R̃��1��2��3��4� = R��1��2� −R��3��4�
so that (2.5) implies that on "1 ∩"2,〈

1�R̃�≥12ε

〉 ≤ 16 exp�−tεN��(2.6)

So, sinceP�"1∩"2� ≥ 1/2, we have shown that the medianM of the random
variable

X = log
〈
1�R̃�≥12ε

〉
is at most log 16 − tεN. If we think of X as a function of the Gaussian r.v.
gij, it is elementary to see that the Lipschitz constant L of this function is at
most 8β

√�N− 1�/2. The Gaussian isoperimetric inequality then implies that

P�X ≥M+ u� ≤ exp
(

− u
2

2L2

)
≤ exp

(
− u2

64β2N

)
�

In particular,

P

(
X ≥ log 16 − tεN

2

)
≤ exp

(−ε2t2N/K�β�)�
where K�β� denotes a quantity that depends upon β only, and that is not
necessarily the same at each occurrence. Since 
1�R̃�≥12ε

〉 ≤ 1, we have, for N
large enough,

E
1�R̃�≥12ε

〉 ≤ 2 exp
(−ε2t2N/K�β�)�(2.7)

Since �R̃� ≤ 2, for a = ε2t2/2K�β� we have

E
expa�R̃�� ≤ 3 exp�12εaN�
and thus by Jensen’s inequality,

E
expa�R′�� ≤ 3 exp 12εaN

so that

E
〈
1��R′ �≥13ε�

〉 ≤ 3 exp�−εaN�� ✷
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3. How to use the cavity method. The basis of the cavity method is the
following simple result. In this result, as well as in the rest of the paper, we
denote by ��1� � � � ��k� a point in a replica �kN of order k.

Proposition 3.1. For a function f��1� � � � ��k�, we have

E
〈
f��1� � � � ��k�〉 = E 1

Z
Av
f� �0(3.1)

where

� = exp
(
β√
N

∑
l≤k
εlg · �l + h∑

l≤k
εl

)
and Z = Av
� �0. In these formulas, Av means average over all values �εl�l≤k,
εl = ±1; ��1� � � � ��k� is the generic point in �kN−1; 
·�0 denotes integration in

�kN−1 with respect to the Gibbs measure GkN−1 at inverse temperature β′ =
β�1− 1/N�1/2; g denotes an independent sequence of N�0�1� r.v., independent
of all the other sequences considered and f is shorthand for f��1� � � � ��k�,
where �l = �ηl1� � � � � ηlN−1� εl�.

Proof. This is mere algebraic identity if one writes

−H��l� = 1√
N

∑
i≤j≤N−1

gijσ
l
iσ
l
j + h ∑

i≤N−1

σli

+ σlN
(

1√
N

∑
i≤N−1

giN−1σ
l
i + h

)
and one sets εl = σlN. The change of temperature is due to the change of
normalization as one goes from N to N− 1 sites. Once reason for introducing
h is that this quantity does not change when going from 
·� to 
·�0. ✷

Proposition 3.1 brings to light the importance of being able to estimate the
right-hand side of (3.1). The technique to do this has been developed in [T6],
where, we study the more difficult and more complicated case of the Hopfield
model. Even in the simpler case being considered here, there is a computa-
tional aspect that is apparently intrinsic. At a certain (mostly algebraic) level
things are complicated. This contributes significantly to the difficulty of the
problem. Thus, in order to avoid readers being scared by Theorem 3.2 below,
we had better explain in words what is going on. This theorem is a kind of
power expansion, as in

f�x� = f�x0� + �x− x0�f′�x0� +S�
where f�x0� is the main term, �x − x0�f′�x0� a first-order term, and S a
higher-order term. In (3.2) below, the term I is the “main term”, the “first-
order term” is the sum of four pieces labeled II to V. The individual pieces
II to V have no special meaning on their own. This is simply the way they
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come out of the computation. Readers probably feel, rather appropriately, that
they should not care about the way Theorem 3.2 is proved before it has been
demonstrated what a powerful tool it is. In that case, they should proceed
as follows. After reading the definitions (3.2), (3.10), (3.11), they should read
Proposition 3.6 (and the comment following it), the simplest case of applica-
tion of Theorem 3.2. They should then move to Proposition 3.5, the second
simplest case of application, and finally to Proposition 3.4. This proposition is
the way the terms I to V of Theorems 3.2 will actually be used everywhere
in the present paper. The formulation is somewhat simpler in Proposition 3.4
than in Theorem 3.2, and there is no need to understand the more compli-
cated formulation of Theorem 3.2 until one is willing to understand its proof.
Even in the formulation of Proposition 3.4, the “first-order” terms II to V are
complicated. Again, they come out of computation, and it is not obvious how
to interpret them. Rather, the task is to figure out ways through the jungle,
such as in Proposition 3.6. After having gained a feeling for the terms I to V,
readers might try to look at the error term (3.8), the control of which is, of
course, the essential point.

Readers might wonder why Theorem 3.2 (or even Proposition 3.4) is dumped
upon them at this stage, rather than working out first manageable cases like
Proposition 3.6. The reason is simple. Proposition 3.6 looks simpler because
there is algebraic cancellation, but the main point (control of the error term) is
not any easier. Readers must realize that the author was driven to Theorem 3.2
against his will, as it is better to go once for all through this computation
rather than repeating many difficult separate cases.

Theorem 3.2. With the notation of Proposition 3.1, there is a numberK�k�
depending upon k only such that we have

E
〈
f
(
�1� � � � ��k

)〉 = I + II + III + IV + V +S�(3.2)

where

I = E 1

chkX

Avf�0�0�(3.3)

II = E β2

chkX

〈
Avf�0

∑
l<l′
εlε

′
l

�̇l · �̇l′
N

〉
0
�(3.4)

III = −E β2

chkX

〈
Avf�0

∑
l≤k

�̇l · b
N

〉
0
�(3.5)

IV = E β2

chkX

〈
Avf�0

(∑
l≤k
εl

)(∑
l≤k
εl
�̇l · b
N

)〉
0
�(3.6)

V = −kβ2E thX

chkX

〈
Avf�0

(∑
l≤k
εl
�̇l · b
N

)〉
0
�(3.7)
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�S� ≤ β4K�k� exp 4kβ2
〈
Av�f�

( ∑
l≤k+1

(
�̇l · b
N

)2

+ ∑
l� l′≤k+2

(
�̇l · �̇l′
N

)2〉
0
�(3.8)

There,

�0 = expX
∑
l≤k
εl�(3.9)

b = 
��0� �̇l = �l − b = �l − 
�l�0�(3.10)

X = β√
N

g · b + h�(3.11)

and the thermal integral in (3.8) is over �k+2
N−1, with the natural identification

of Av�f� as a function on �k+2
N−1. Moreover, when f has the property that

f �= 0 �⇒
∣∣∣∣∑
l≤k
εl

∣∣∣∣ ≤ k− 1

and when h ≥ 4β2, we can improve the estimate in (3.8) by a factor exp�−h/4�.

Since this result is the cornerstone of the present paper, it does not seem
appropriate to ask the reader to struggle through the more complicated version
of [6], and we will provide a complete proof. Fortunately, the part of the proof
that was tricky to discover is simple to explain; the rest is mere computation.
Let us consider the quantity

Ẑ = exp
(
k
β

′2

2
�1 − b�

)
chkX�

where

b = �N− 1�−1�b�2 = 1
N− 1

∑
i≤N−1

b2i �

The basic idea is that Ẑ is the “main part” of Z. We use the identity

U

Z
= 2U

Ẑ
− UZ
Ẑ2

+ U�Ẑ−Z�2
Ẑ2Z

(3.12)

so that

E

∣∣∣∣UZ − 2U

Ẑ
+ UZ
Ẑ2

∣∣∣∣ ≤ E �U��Ẑ−Z�2
Ẑ2Z

�(3.13)

We will use this for

U = 
Avf� �0
so that

�U� ≤ U′ = 
Av�f�� �0�
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Also, use of Jensen’s inequality shows that Z ≥ chkX so the right-hand side
of (3.13) is at most

E
U′�Ẑ−Z�2
Ẑ2chkX

�(3.14)

Products of the type UZ�U′Z, etc. can be expressed as integrals over replicas
of order 2k, as will be detailed below. To compute expectations, it is natural
first to integrate in g, conditionally upon the quenched variables implicit in

·�0. This will be denoted by Eg. It then appears that the heart of the matter is
as follows. Consider an integer m ≥ 0, a function f̄ on �mN−1, numbers �εl�l≤m�
εl = ±1. We would then like to estimate

Eg
1

chmX

〈
f̄ exp

(∑
l≤m
εl

(
β√
N

g · �l + h
))〉

0
�(3.15)

where 
·�0 now denotes thermal average in �mN−1.

Proposition 3.3. There is a number K�m�, depending upon m only such
that the expression (3.15) is equal to

Am�VI + VII + VIII + IX + X +S1��
where A = exp�β′2�1 − b�/2�, and

VI = Eg
exp-X
chmX


f̄�0�(3.16)

VII = Eg
β2 exp-X
chmX

〈
f̄
∑
l<l′
εlεl′

�̇l · �̇l
N

〉
0
�(3.17)

VIII = −β2Eexp-X
chmX

〈
f̄

∑
l≤m

�̇l · b
N

〉
0
�(3.18)

IX = β2-Eexp-X
chmX

〈
f̄

∑
l≤m
εl
�̇l · b
N

〉
0
�(3.19)

X = −mβ2E thX exp-X
chmX

〈
f̄

∑
l≤m
εl
�̇l · b
N

〉
0

(3.20)

and

�S1� ≤ β4K�m� exp�2mβ2�

×E
〈
�f̄�

( ∑
l≤m+2

(
�̇l · b
N

)2

+ ∑
l≤l′≤m+2

(
�̇l · �̇l′
N

)2)〉
0
�

(3.21)

There - = ∑
l≤m εl, and the thermal integral in (3.21) is on �m+2

N−1, with the

natural identification of �f̄� as a function on this space. Moreover, if h ≥ 4β2,
and if �-� ≤m− 1, the estimate (3.21) can be improved by a factor exp�−h/4�.
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Wewill proveProposition 3.3 later. Let us explain how it implies Theorem3.2.
First we will use it to evaluate 2EU/Ẑ−E�UZ/Ẑ2�. To evaluate EU/Ẑ, we
fix ε1� � � � � εk and we use Proposition 3.3 for m = k and

f̄��1� � � � ��k� = f��1� � � � ��k��(3.22)

where �l = �ηl1� � � � � ηlN−1� εl�. Since Ẑ = AkchkX, we see after averaging
over all choices ε1� � � � � εk that the terms VI to X create the contributions of
the terms I to V, respectively, while the term S1 is of the type (3.8). To evaluate
UZ, we observe that

UZ =
〈
Avf exp

(
β√
N

∑
l≤2k

εlg · �l + h ∑
l≤2k

εl

)〉
0
�

There Av means average over all values of ε1� � � � � ε2k = ±1� 
·�0 denotes a
thermal integral in �2kN−1, and f has the same meaning as in Proposition 3.1.
In particular f depends only upon �1� � � � ��k. Fixing the values of ε1� � � � � ε2k,
we will use Proposition 3.3 for m = 2k, where the function.

f̄��1� � � � ��2k� = f��1� � � � ��k�(3.23)

is defined as in (3.22). The remainder (3.21) is again of the type (3.8).

Claim. After averaging upon εk+1� � � � � ε2k, the contributions of the terms
VI to X relative to UZ/Ẑ2 are identical to the contributions of the terms VI to
X relative to U/Ẑ.

Proof. The basic observation is that the function f̄ of (3.23) depends only
upon �1� � � � ��k, so that 〈

f̄�̇l · �̇l′ 〉0 and
〈
f̄�̇l

′ · b〉0
are zero unless l� l′ ≤ k. This makes it obvious that the contributions of the
terms VI to VIII are the same for UZ/Ẑ2 and U/Ẑ, using simply the fact that

Av
εk+1� ε2k=±1

expX
∑
l≤2k

εl = �chX�k expX∑
l≤k
εl�(3.24)

As for the contribution of the term IX to UZ/Ẑ2, we split it in

XI = β2
(∑
l≤k
εl

)
Eg

expX�∑l≤2k εl�
ch2kX

〈
f̄
∑
l≤k
εl
�̇l · b
N

〉
0

and

XII = β2
( ∑
k<l≤2k

εl

)
Eg

expX�∑k≤l≤2k εl�
ch2kX

〈
f̄
∑
l≤k
εl
�̇l · b
N

〉
0
�
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Using (3.24), after averaging upon εk+1� � � � � ε2k, the contribution of XI to
UZ/Ẑ2 is the same as the contribution of the term IX relative to U/Ẑ. After
averaging over εk+1� � � � � ε2k, the contribution of XII to UZ/Ẑ2 is

kβ2Eg
expX�∑l≤k εl�

chkX

〈
f̄
∑
l≤k
εl
�̇l · b
N

〉
0

(3.25)

and the contribution of X to UZ/Ẑ2 is

− 2kβ2Eg
expX�∑l≤k εl�

chkX

〈
f̄
∑
l≤k
εl
�̇l · b
N

〉
0
�(3.26)

Combining these two gives exactly the contribution of the term X relative
to U/Ẑ. ✷

Let us rewrite (3.13) as

E
U

Z
= 2E

U

Ẑ
−EUZ

Ẑ2
+W�(3.27)

where W ≥ 0,

EW ≤ E U′

chkX
− 2E

U′Z

ẐchkX
+E U′Z2

Ẑ2chkX
�(3.28)

What we have shown at that stage is that combining the contributions of the
terms VI to X relative to 2EU/Ẑ and EUZ/Ẑ2 creates exactly the terms I to V
of Theorem 1.3. To finish the proof, it suffices to show that the combination of
the terms VI to X relative to the three terms on the right of (3.28) cancel out.
But this is obvious, because the argument we use to prove the claim shows
that when evaluating E�U′Zr/ẐrchkX�, after averaging over the ε’s, these
contributions do not depend upon r. Theorem 3.2 is proved. ✷

Proof of Proposition 3.3. We have to estimate

Eg
exp-X
chmX

〈
f̄ exp

β√
N

∑
l≤m
εl�g��̇l�

〉
0
�(3.29)

This is a Gaussian integral. We will first take the expectation conditionally
upon X, that is, conditionally upon θ = �β/√N�g · b. This expectation will
be denoted by Eθ, and we first have to learn how to compute these. We will
assume b �= 0, and we will leave the much easier case b = 0 to the reader.
Let us write

a�x� = x · b
�b� �
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so that x − a�x�b is orthogonal to b, and thus

Eθ exp
β√
N

g · x = Eθ exp
(
β√
N

g · �x − a�x�b� + θa�x�
)

= exp
(
β2

2N
�x − a�x�b�2 + θa�x�

)
(3.30)

= exp
(
β2

2N
�x�2 + θa�x� − a�x�2

2
Eθ2

)
�

using the fact that Eθ2 = β2�b�2/N.
Next, we learn how to evaluate

E

(
exp-X
chmX

exp
(
θa− a

2

2
Eθ2

))
�(3.31)

It is very useful to observe the general fact (that is obvious writing the
expectation as integrals) that for any function W�θ�, we have

E

(
W�θ� exp

(
aθ− a

2Eθ2

2

))
= EW�θ+ aEθ2��(3.32)

We will use this for

W�x� = exp-�x+ h�
chm�x+ h� �(3.33)

Thus

W′�x� = - exp-�x+ h�
chm�x+ h� −mexp-�x+ h�

chm�x+ h� th�x+ h�

and by elementary estimates,

�W′′�x�� ≤ 5m2 exp-�x+ h�
chm�x+ h� �(3.34)

In particular, since exp-�x+ h� ≤ 2mch�x+ h��-�, we have

�W′�x�� ≤ 5m22m

chm−�-��x+ h�
�(3.35)

For clarity, we will first treat the case where �-� =m (or, more generally when
we do not attempt to use that �-� < m). We will later indicate the necessary
modifications when �-� < m. In that case, (3.35) provides a uniform bound
on W′. We then use Taylor’s formula to see that the quantity (3.31) is

E
exp-X
chmX

+ aEθ2
(
E-

exp-X
chmX

−mEexp-X
chmX

thX
)

+S�a��(3.36)

where

�S�a�� ≤ 5m22m�aEθ2�2�(3.37)
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We then rewrite the quantity (3.29) as〈
f̄Eg

exp-X
chmX

exp
β√
N

g · x
〉
0

(3.38)

where x = ∑
l≤m εl�̇l. We write Eg = EgEθ, so that (3.38) is〈

f̄Eg
exp-X
chmX

Eθ exp
β√
N

g · x
〉
0
�(3.39)

We use (3.30) to evaluate Eθ and then the evaluation of (3.31) by (3.36), for
a = a�x��Eθ2 = β2�b�2/N, so that

a�x�Eθ2 = β2x · b
N
�(3.40)

Thus, the quantity (3.29) can be written as the sum

XII + XIII + XIV + XV�

where

XII = Eg
exp-X
chmX

〈
f̄ exp

(
β2

2N

∥∥∥ ∑
l≤m
εlη̇

l
∥∥∥2)〉

0
�(3.41)

XIII = β2Eg-
exp-X
chmX

〈
f̄

(∑
l≤m
εl
�̇l · b
N

)
exp

(
β2

2N

∥∥∥∥ ∑
l≤m
εl�̇

l

∥∥∥∥2)〉
0
�(3.42)

XIV = −mβ2Eg
exp-X
chmX

thX
(3.43)

×
〈
f̄

(∑
l≤m
εl
�̇l · b
N

)
exp

(
β2

2N

∥∥∥∥ ∑
l≤m
εl�̇

l

∥∥∥∥2)〉
0
�

�XV� ≤ 5β4m22m
〈
�f̄� ∑

l≤m
εl
�̇l · b
N

∣∣∣∣2 exp( β22N

∥∥∥∥ ∑
l≤m
εl�̇

l

∥∥∥∥2)〉
0
�(3.44)

We have ∥∥∥∥∑
l≤m
εl�̇

l

∥∥∥∥ ≤ 2m
√
N(3.45)

and thus

�XV� ≤ 5β4m32m exp�2m2β2�
〈
�f̄� ∑

l≤m

(
�̇l · b
N

)2〉
0
�(3.46)

To study XII to XIV, we first study∥∥∥∥∑
l≤m
ε̇l�̇

l

∥∥∥∥2 = ∑
l≤m

��̇l�2 + ∑
l<l′

2εlεl′ �̇
l · �̇l′ �(3.47)
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Next,

��̇l′ �2 = ��l − b�2 = ��l�2 + �b�2 − 2�l · b
=N− 1 − �b�2 − 2�̇l · b

so that

exp
(
β2

2N

∥∥∥∥ ∑
l≤m
ε̇l�̇

l

∥∥∥∥2) = exp
(
m
β

′2

2
�1 − b�

)
eu = Ameu(3.48)

for

u = β
2

N

(
− ∑
l≤m

�̇l · b + ∑
l<l′
εlεl′ �̇

l · �̇l′
)
�

We observe that

�u� ≤ β2
(
2m+ 4m

�m− 1�
2

)
= 2m2β2

so that, since

�eu − 1 − u� ≤ u2eu ≤ u2eu ≤ u22m2 exp�2m2β2��
we have

eu = 1 + u+R�u�(3.49)

for

�R�u�� ≤ 2u2m2 exp�2m2β2��
We use (3.49) in (3.48) and substitute in each of the terms XII to XIII. We
get nine terms. Elementary estimates (such as �ab� ≤ a2 + b2, etc.) show that
the contribution of R�u� to XII, of u and R�u� to XIII and XIV are swallowed
by the error term (3.21). The contribution of u to XII is VII and VIII; the
contributions of 1 to XIII and XIV are (3.19) and (3.20), respectively.

To finish the proof, it suffices now to show how to improve upon the error
term when �-� < m. Consider the function

2�y� = EW�θ+ y��
Then, by (3.35),

2′′�y� ≤ 5m22mE
1

ch�θ+ y+ h� �

Now, for �y� ≤ h/2, we have, since Eθ2 ≤ β2,

E
1

ch�θ+ y+ h� ≤ 1
ch�h/4� +P�θ ≥ h/4�

≤ 1
ch�h/4� + exp

(
− h2

32β2

)
≤ 3 exp�−h/4�
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if h ≥ 8β2. Since the quantity aEθ2 of (3.32) satisfies �aEθ2� ≤ 2mβ2, it follows
that if 2mβ2 ≤ h/2, then we can improve the right-hand side of (3.37) by a
factor 3 exp�−h/4�. To complete the proof, one then observes that, if �-� < m,

E
exp-X
chmX

≤ 2m+1 exp
(

−h
4

)
�

an inequality that is obtained by previous arguments. This completes the proof
of Proposition 3.3, and hence of Theorem 3.2. ✷

In order to avoid repeating the same computation, let us state the following
principle, which is the way Theorem 3.2 will be actually used.

Proposition 3.4. In the special case where the function f��1� � � � ��k� of
(3.2) is of the type

f��1� � � � ��k� = f̄��1� � � � ��k� ∏
k∈I
σkN�(3.50)

where �l = �σl1� � � � � σlN−1�, and f̄ is a function on �kN−1, the terms I to V of
(3.2) as follows, where n = card I,

I = E thnX
f̄�0�(3.51)

II = β2E thn−2X

〈
f̄

∑
l� l′∈I

�̇l · �̇l′
N

〉
0

+ β2E thn+2X

〈
f̄

∑
l� l′ �∈I

�̇l · �̇l′
N

〉
0

(3.52)

+ β2E thnX
〈
f̄
∑
l<l′

�̇l · �̇l′
N

〉
0
�

where all the sums are over l < l′, and, in the third sum, we have either l ∈ I,
l′ �∈ I or l �∈ I, l′ ∈ I,

III + IV + V = −nβ2E thnX
〈
f̄
∑
l∈I

�̇l · b
N

〉
0

+ �n− 1�β2E thn−2X

〈
f̄
∑
l∈I

�̇l · b
N

〉
0

− �n+ 1�β2E thn+2X

〈
f̄
∑
l�∈I

�̇l · b
N

〉
0

+ nβ2E thnX
〈
f̄
∑
l�∈I

�̇l · b
N

〉
0
�

(3.53)

The proof is a tedious but perfectly straightforward computation.
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Proposition 3.5. If f̄ is a function on �kN−1 and if

f��1� � � � ��k� = f̄��1� � � � ��k��σ1N − σ2N�σ3N�(3.54)

then, writing �̃ = �1 − �2, the contributions of the terms I to V of Theorem
3.2 are

β2E
1

ch2X

〈
f̄
�̃ · �3

N

〉
0

− 3β2E
th2X

ch2X

〈
f̄
�̃ · b
N

〉
0

+ β2E th2X

ch2X

〈
f̄

∑
4≤l≤k

�̃ · �̇l
N

〉
0
�

(3.55)

The proof is again a straightforward computation. We use Proposition 3.4
for I = �1�3�, then for I = �2�3�, and substract the corresponding results.

It is good to observe that the function f of (3.55) satisfies

f �= 0 ⇒
∣∣∣∣∑
l≤k
σlN

∣∣∣∣ ≤ k− 2

because when f �= 0, we have σ1N = −σ2N. Thus, if needed in the estimation of
the remainder term of Theorem 1.3, we can use the “improved version” with
extra factor exp�−h/4�. This will be used in the proof of Theorem 1.6.

The simplest case of application of Theorem 3.2 is as follows.

Proposition 3.6. If f̄ is a function on �kN−1, and if

f��1� � � � ��k� = f̄��1� � � � ��k��σ1N − σ2N��σ3N − σ4N��(3.56)

then the contribution of the terms I to V of Theorem 3.2 is

β2E
1

ch4X

〈
f̄

��1 − �2� · ��3 − �4�
N

〉
0
�(3.57)

For the proof, apply Proposition 3.5 twice.
We now turn to the proof of Theorem 1.3. To make the proof understandable,

we will first prove a simpler and weaker result. All our proofs will be at h fixed.

Definition 3.7. Given h, and given β0, we say that there is uniform
absence of symmetry breaking at �β0� h� if (1.9) holds uniformly in a neigh-
borhood of β0; that is, if there exists δ > 0 such that given ε0, we can find
t0 > 0�N0 such that

�β− β0� ≤ δ� �t� < t0 and N >N0 ⇒ �ϕN�β�t� − ϕN�β�0�� ≤ ε0�
where ϕN�β�t� is given by (1.7), at inverse temperature β and external field
h′ = h/β.

We will prove the following.

Proposition 3.8. If there is uniform absence of replica symmetry breaking
at �β0� h�, then �β0� h� belongs to the high temperature region.
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Of course, this also means that if �β0� h� belongs to the low temperature
region there can never be uniform absence of replica symmetry breaking at
�β0� h�. After proving Proposition 3.8, it will be a separate task to explain
how to modify the proof so that the work “uniform” can be removed, at the
expense of possibly losing control of a small (in the sense of Baire category) set
of parameters. This will show that at the generic point of the low temperature
region, there is no absence of replica symmetry breaking; that is, there is
replica symmetry breaking.

We now start the proof of Proposition 3.8. As we assume that there is
uniform absence of replica symmetry breaking at β0, Proposition 1.4 shows
that (1.11) holds uniformly for β in a certain neighborhood of β0 (always
at given h). This condition will be used as follows (where, as usual, �̃ =
�1−�2). If f is any function of �1��2� � � � then in estimatingE
��̃·�3�f�, given
u > 0 we can write this quantity as E
��̃ ·�3�1���̃·�3�≤Nu�f� with error at most
N�f�∞E
1���̃·�3�≥Nu�� so that, if, say, �f�∞ ≤ N2, this error is exponentially
small in N. To simplify the exposition, we will not write these exponentially
small terms. We will describe the above phenomenon by saying that eventu-
ally, only the small �= o�1�� values of �̃ · �3/N are relevant.

The principle of the proof is to establish relation (3.68) below. This is exactly
how physicists derive the low temperature region using the cavity method;
the difference is that we control regorously the error terms rather than pre-
tending that we are “at the limit” and ignoring them. The main tool for this
is Theorem 3.2. To use this theorem successfully, we need to know that the
r.v. N−1
� · �′� does not behave pathologically (see note added in proof). This
will be proved using “thermodynamical” arguments resembling Proposition 5.1
of [5]. In order to make the proof readable, these are delayed until the end
of the main computation. These arguments will first imply [as a consequence
of (11)] that the variance of N−1
� · �′� goes to zero, “for most β”, in a sense
that was made precise in [5]. For clarity, we first pretend that this is the case
for all β in a neighborhood of β0. Changing N into N − 1, we see that the
variance of N−1�b�2 = 
� · �′/N�0 also goes to zero.

We set

qN�β� = E
〈
� · �′

N

〉
�(3.58)

We evaluate qN�β� in two different ways. We write, using symmetry among
the variables, that

qN�β� = E〈
σNσ

′
N

〉 = E th2X+ o�1��(3.59)

qN�β� = E〈
σNσ

′
N� = 1

N− 1
E
� · �′��

= E
〈
� · �′

N− 1

〉
0

+ o�1�(3.60)

= qN−1�β′� + o�1��
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Each of these relations follows from Proposition 3.4, where it is now obvious
that all the terms but (3.51) are o�1�, and that the remainder (3.8) is also o�1�
because, as we explained, only the o�1� values of �̃ · �3 are relevant. Now,
since the variance of N−1/2�b� vanishes asymptotically, (3.59) implies that

qN�β� = E th2
(
gβ

√
qN−1�β′� + h

)
+ o�1�

and comparing with (3.60) we see that qN−1�β′� [and hence qN�β�] converges
to a root q�β� of the equation

q = E th2�gβ√
q+ h��

Consider now the quantity

CN = CN�β� = E〈��̃ · ��3 − �4��2〉�
By symmetry among the variables,

CN =NE〈
σ̃N�σ3N − σ4N��̃ · ��3 − �4�〉

=NE〈(
σ̃N�σ3N − σ4N�)2〉

+NE〈
σ̃N�σ3N − σ4N��̃ · ��3 − �4�〉�

(3.61)

The two terms on the right will be computed through Proposition 3.4. Using
this proposition with f̄ = 1, a simple computation shows that

E
〈(
σ̃N�σ3N − σ4N�)2〉 = 4E th4Y+ o�1��

where Y = gβ√q�β� +h. To handle the other term, we use Proposition 3.6 to
write

NE
〈
σ̃N�σ3N − σ4N��̃ · ��3 − �4�〉 = E β2

ch4X

〈(��̃ · ��3 − �4�)2〉0 +S�

where

�S� ≤N
〈 ∑
l� l′≤6

∣∣�̃ · ��3 − �4�∣∣( ��̇l · �̇l′ �2
N

+ ��̇l · b�2
N

)〉
0
�

Use of Cauchy–Schwarz and Jensen’s inequality shows that

�S� ≤ LN2E

〈∣∣∣∣ �̃ · �3

N

∣∣∣∣3〉
0
�(3.62)

As previously explained, it follows from (1.11) that the contribution to the
right-hand side of (3.62) eventually comes from arbitrarily small values of
���1 − �2� · �3�/N, so that �S� = o�DN−1�, where

DN = E〈��̃ · �3�2〉�
Consider the function

ξ�x� = E β2

ch4β�g√
x+ h�
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so that

E
β2

ch4X

〈��̃ · ��3 − �4��2〉 = E
(
ξ

( �b�√
N

)〈��̃ · ��3 − �4��2〉)�
Even though we know that �b�2/N = 
�·�′/N�0 is in probability close to q�β�,
it could in principle be the case that a fixed proportion of the contribution to
E
��̃·��3−�4��2�0 comes from the vanishing event where �
�·�′/N�0−q�β�� ≥
a for some a > 0 independent of N. It will be shown at the end of the proof
that this pathology does not happen, so that we have

E

(
β2

ch4X

〈��̃ · ��3 − �4��2〉0) =
(
E
β2

ch4Y

)
CN−1 + o�CN−1��(3.63)

where CN−1 = CN−1�β′�.
It is obvious that CN ≤ 4DN. Thus, we get the estimate

CN =
(
E
β2

ch4Y

)
CN−1 + o�DN−1� + 4NE th4Y+ o�N��(3.64)

If we knew that o�DN−1� is also o�CN−1�, we could deduce from (3.64) that
E�β2/ch4Y� ≤ 1. As this holds in a neighborhood of β0, we must have strict
inequality at β0, which is what we want to prove. Unfortunately, even though
it will a posteriori be true that both CN and DN are of order N, I do not
know how to prove a priori that they are of the same order, and the rest of
the argument is devoted to pass this difficulty. This argument involves several
relations such as (3.64), which will not be detailed. First, it will help to know
that CN and CN−1 are close. To see this, we write

CN = E〈(
�̃ · ��3 − �4� + σ̃N · �σ3N − σ4N��2〉�

We expand the square and we compute each term with Proposition 3.4. We get

CN = CN−1 + o�DN−1� + o�N�
and thus (3.64) yields

CN−1 = θCN−1 + o�DN−1� + 4NE
1

ch4Y
+ o�N�(3.65)

for θ = θ�β� = E�β2/ch4Y�.
Next, we compute

DN =NE〈�σ̃Nσ3N���̃ · �3�〉
=NE〈�σ̃Nσ3N�2〉 +NE〈�σ̃Nσ3N��̃ · �3〉�

This is handled as (3.61), except that we now use Proposition 3.5 rather than
Proposition 3.6 to handle the last term. We get, using that 
��̃ · �3���̃ · b��0 =

��̃ · �3�2� − 1

2
��̃ · ��3 − �4��2�,

DN = γDN−1 + δCN−1 + o�DN−1� + 2NE
1

ch2Y
+ o�N��(3.66)
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where

γ = γ�β� = β2E
(

1

ch2Y
− 3 th2Y

ch2Y

)
� δ = 3

2
β2E

th2Y

ch2Y
�

As in the case of CN, we show that DN � DN−1, so that (3.66) implies

DN−1 = γDN−1 + δCN−1 + o�DN−1� + 2NE
1

ch2Y
+ o�N��(3.67)

We now prove that θ�β0� < 1. Assuming for contradiction that θ�β� ≥ 1,
we can find β1 close enough to β0 so that (1.11) holds, but that θ�β1� > 1�
γ�β1� �= 1. Then (3.67) implies, since γ�β1� �= 1, that DN−1 = O�CN−1 +N�.
Substitution of this in (3.65) shows that

CN−1 = θ�β1�CN−1 + o�CN−1� + 4NE
1

ch4Y
+ o�N�(3.68)

so that for large N we reach the contradiction that CN−1 > CN−1. ✷

Let us now address the technical points that were left aside, and in partic-
ular the issue of the behavior of 
� · �′�/N. The reader will check that what
was needed to make the previous proof complete is the following.

Lemma 3.9. Given an interval I such that (1.11) holds uniformly in I and
ε > 0, we can find β in I and N such that the following holds:

E

(〈�·�′

N

〉
−qN�β�

)2

≤ ε�(3.69)

E

((〈�·�′

N

〉
−qN�β�

)2〈(�·�3

N

)2〉)
≤ εE

〈(
�̃·�3

N

)2〉
+exp�−N/K��(3.70)

It is useful to note [for obtaining (3.63)] that in the left-hand side of (3.70),
one can replace �̃ · �3 by �̃ · ��3 − �4�.

Proof. We consider the random convex function

fN�β� = 1
N

logFN�β�

so that

∂fN�β�
∂β

= 1
N3/2

∑
i<j

gij
σiσj��

We note the important fact that, by integration by parts,

Egij
σiσj� = E ∂

∂gij

σiσj� = β√

N
�1 −E
σiσj�2�
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so that if we set

r = β

N2

∑
i<j


σiσj�2

we have

r−Er = −
(
∂fN�β�
∂β

−E∂fN�β�
∂β

)
+ 1
N3/2

∑
i<j

(
gij
σiσj� − ∂

∂gij

σiσj�

)
and thus

�r−Er�2 ≤ 2
(
∂fN�β�
∂β

−E∂fN�β�
∂β

)2

+ 2
(

1
N3/2

∑
i<j

(
gij
σiσj� − ∂

∂gij

σiσj�

))2

= 2A2 + 2B2�

(3.71)

We will prove only (3.70), leaving the similar and easier (3.69) to the reader.
We will prove the following, given ε′ > 0:

(3.72) For all β, if N is large enough, we have

E

(
B2

〈(
�̃ · �3

N

)2〉)
≤ ε′E

〈(
�̃ · �3

N

)2〉
�

(3.73) If for some t > 0, we have

�3�73a� �EfN�β+ t� −EfN�β− t� − 2EfN�β�� ≤ tε′/4�

then if N is large enough, we have

E

(
A2

〈(
�̃ · �3

N

)2〉)
≤ ε′E

〈(
�̃ · �3

N

)2〉
�

Together with (3.71) this proves that

E

(
�r−Er�2

〈(
�̃ · �3

N

)2〉)
≤ 4ε′E

〈(
�̃ · �3

N

)2〉
�(3.74)

Let us first explain why this will prove (3.70). We have

r

β
= 1
N2

∑
i<j


σiσj�2 =
〈
1
N2

∑
i<j

σiσ
′
iσjσ

′
j

〉

= 1
2

〈(
� · �′

N

)2〉
− 1

2N
�

Now

XN =
〈(

� · �′

N

)2〉
−

〈
� · �′

N

〉2
=

〈(
� · �′

N
−

〈
� · �′

N

〉)2〉
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is controlled by (1.11) [For each a > 0, we have P�XN ≥ a� ≤ exp�−N/K� for
N large enough] and thus (3.74) implies that for large N we have

β2

4
E

((〈
� · �′

N

〉2
−E

(〈
� · �′

N

〉2))2〈( �̃ · �3

N

)2〉)
≤ 4ε′

〈(
�̃ · �3

N

)2〉
�

(3.75)

Since �E�
� · �′/N�2� − qN�β�2� can be made small by (3.69), this implies
(3.70), provided q�β� > 0 (which is true for h > 0).

So, it remains to prove (3.72), (3.73). The proof of (3.73) is easy but tedious
(see [5], Proposition 4.3, for complete details of a similar result) so we just
sketch it. We write

fN�β� − fN�β− t�
t

≤ ∂

∂β
fN�β� ≤ fN�β+ t� − fN�β�

t

and we use concentration of measure to argue that for each η > 0, the proba-
bility that �fN�β� −EfN�β�� ≥ η is exponentially small, and after elementary
manipulations, we get that P��
∂/∂β�fN�β� − E�∂fN/∂β��β�� ≥ ε′ + η′� ≤
exp�−N/K� for each η′ > 0, which of course is sufficient.

The proof of (3.72) is also easy and tedious. One simply expands B2, and
one integrates by parts twice to eliminate all the factors gij. One finds a sum
of terms of the type〈(

�̃ · �3

N

〉2(〈�l1 · �l2
N

〉2
−

〈
�l3 · �l4
N

〉2)〉
�(3.76)

where l1� l2� l3� l4 are replica indices, and of terms that are at most �K/N�
E
��̃ · �3/N�2� for obvious reasons. But terms such as (3.76) are controlled
by (1.11). ✷

We now turn to the proof of Theorem 1.3. We recall that a subset of �2 is
said to be of first Baire category if it is contained in a countable union of closed
sets with empty interior. We will prove the following, that is more precise than
Theorem 1.3.

Theorem 3.10. If we fix h > 0, the set of β for which θ�β� > 1, and there
is absence of replica symmetry breaking at (β�h) and for which there is of first
Baire category.

Thus, given h > 0, there is replica symmetry breaking at the “generic” point
β where θ�β� > 1. We of course expect that this should be true at every point
of the low temperature region.

Proof. We fix h once and for all. Given integers k� l�N, we consider the set

U�k� l�N� = {
β�EG2

N��� · �′ − 
� · �′�� ≥ 2−kN� ≤ exp�−2−lN��
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We observe thatU�k� l�N� is closed (because everything depends continuously
upon β at N finite). Thus the set

V�k� l�N0� = ⋂
N≥N0

U�k� l�N�

is closed. Consider the set W of those β such that θ�β� ≥ 1 and that there is
absence of replica symmetry breaking at �β�h�. Then

W ⊂ ⋂
k

⋃
l

⋃
N0

V�k� l�N0�

by definition. Let us assume for contradiction that W is not of first Baire
category. We will appeal to an elementary topological argument. If a set W is
not of first Baire category, and if W ⊂ ⋂

k

⋃
n V�k�n�, where the sets V�k�n�

are closed, thenW ∩ ⋂
k

⋃
n

◦
V�k�n� is not of first Baire category, where ◦

V�k�n�
is the interior of V�k�n�. This is simply because⋂

k

⋃
n

V�k�n�
∖(⋂

k

⋃
n

◦
V�k�n�

)
⊂ ⋃
k�n

(
V�k�n�\ ◦

V�k�n�
)

is of first Baire category, and because the union of two (or even countably
many) sets of first Baire category is still of first Baire category. This shows
that we can find β1 with θ�β1� > 1, γ�β1� �= 1 with the property that for each
k, there are integers l�k��N0�k� such that β1 is in the interior of U�k� l�k�,
N0�k��; that is, for some δ = δ�k� > 0 we have

�β− β1� < δ⇒ ∀N ≥N0�k��
EG2

N

{�� · �′ − 
� · �′�� ≥ 2−kN
} ≤ exp�−2l�k�N��

(3.77)

The reader will check that this is sufficient to obtain a contradiction along
the lines of the proof of Proposition 3.8. [Equation (3.77) gives us enough room
to use (3.73).] ✷

4. Exponential inequalities I. As a first stage toward the control of

E
〈
exp t�� · �′ −E
� · �′��〉

we will control

E
〈
exp t�� · �′ − 
� · �′��〉�

Rather than dealing with � · �′ − 
� · �′�, we find it convenient to use a
more symmetric expression, namely ��1 − �2� · �3. We will prove statements
of the type

E
exp t�̃ · �3� ≤ exp t2NM�(4.1)

where �̃ = �1 − �2. To prove such a statement it suffices, by symmetry, to
consider t ≥ 0. We assume t ≥ 0 in this section.

To understand how (4.1) relates to a statement of the type

E
〈
exp t�� · �′ − 
� · �′��〉 ≤ exp t2NM′�(4.2)
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we observe that by Jensen’s inequality we have, setting b1 = 
��,〈
exp t��1 − b1� · �3〉 ≤ 〈

exp t�̃ · �4〉�(4.3) 〈
exp t��1 − b1� · b1

〉 ≤ 〈
exp t�̃ · �3〉(4.4)

so that, writing

� · �′ − 
� · �′� = �� − b1� · �′ + b1 · ��′ − b1�
and using (4.3), (4.4) and Cauchy–Schwarz, (4.2) follows from (4.1).

Theorem 4.1. There exists a number L0 such that if βL0 ≤ 1, then

∀ t�∀ N�E〈
exp t�̃ · �3〉 ≤ exp t2NL0�(4.5)

Proof. We will try to control the derivative of the left-hand side of (4.5);
that is

Un�t� β� = E〈
�̃ · �3 exp t�̃ · �3〉(4.6)

By symmetry between the variables, we have

UN�t� β� =NE〈
σ̃Nσ

3
N exp t�̃ · �3〉

=NE〈
σ̃Nσ

3
N exp tσ̃Nσ

3
N exp t�̃ · �3〉(4.7)

using the notation of Section 3. Now σ̃Nσ
3
N ∈ �−2�0�2� so that

σ̃Nσ
3
N exp tσ̃Nσ

3
N ≤ σ̃Nσ3N ch 2t+ sh 2t

and, since shx ≤ x chx for x ≥ 0, we have

Un�t� β� ≤N ch 2t
(
E
〈
σ̃Nσ

3
N exp t�̃ · �3〉

+2tE
〈
exp t�̃ · �3〉)�(4.8)

We use Theorem 3.2 and Proposition 3.5 to see that

NE
〈
σ̃Nσ

3
N exp t�̃ · �3〉=NE〈

σ̃Nσ
3
N�exp t�̃ · �3 − 1�〉

=E β2

ch2X

〈
�̃ · �3 exp t�̃ · �3〉

0

− 3Eβ2
th2X

ch2X

〈
�̃ · b exp t�̃ · �3〉

0 +S�

(4.9)

where

�S� ≤ K
N
β4 exp 16β2

×E
〈
� exp t�̃ · �3 − 1�

〈∑
l≤5

��̇l · b�2 + ∑
l≤l′≤6

��̇l · �̇l′ �2
〉〉

0
�

(4.10)
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Next, we need a bound for E
〈
exp t�̃ ·�3

〉
. For this, we simply go back to (3.1),

use that Z ≥ 1 and we get

E
〈
exp t�̃ · �3〉 ≤ exp 8β2E

〈
exp t�̃ · �3〉

0�(4.11)

We now observe the nice fact that〈
�̃ · �3 exp t�̃ · �3〉

0 ≥ 0(4.12)

so that

E
1

ch2X

〈
�̃ · �3 exp t�̃ · �3〉

0 ≤E〈
�̃ · �3 exp t�̃ · �3〉

0

=UN−1�t� β′��
(4.13)

Combining these estimates, and assuming without loss of generality that
β ≤ 1, we have

UN�t� β� ≤ ch 2t
(
β2UN−1�t� β′� +NKtE〈

exp t�̃ · �3
〉
0

− 3Eβ2
th2X

ch2X
E
〈
�̃ · b exp t�̃ · �3〉

0 + �S�
)
�

(4.14)

This statement will be used to show by induction uponN that if L0 is large
enough and β ≤ 1/L0, the following condition holds for t ≥ 0:

�SN� UN�t� β� ≤ 2NL0t expNt
2L0�

Certainly this holds for N = 1 (the system is then nonrandom). Since β′ ≤ β,
we can use (SN) to show that, for t ≥ 0,

E
〈
exp t�̃ · �3〉

0 =
∫ t
0
UN−1�s� β′�ds ≤ exp�N− 1�t2L0�(4.15)

This also holds for t ≤ 0 by symmetry. Using ch 2t ≤ exp 2t2, we then get from
(4.14) that (since we can assume that β2 ≤ 1/2)

UN�t� β� ≤ �L0 +K�Nt exp t2�2 + �N− 1�L0�

+ ch 2t
(

−3β2E
th2X

ch2X
E
〈
�̃ · b exp t�̃ · �3〉

0 +S
)
�

(4.16)

The first term looks good, but unfortunately we do not know that
〈
�̃ · b

exp �̃ · �3
〉
0 ≥ 0, and we must also control S.

To control S, we will use the following principle.

Lemma 4.2. Consider two random variables V�W, and assume

∀ t ∈ �� E exp tV ≤ expAt2�(4.17)

∀ t ∈ �� E exp tW ≤ expBt2�(4.18)
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Then,

E�V� � exp tW− 1� ≤Kt
√
AB expBt2�(4.19)

EV2� exp tW− 1� ≤KtA
√
B�1 + t

√
B� expBt2�(4.20)

Proof. We will distinguish the cases Bt2 ≥ 1 and Bt2 ≤ 1.

Case 1. Bt2 ≥ 1. We write, for s ≥ 0� n ∈ �1�2��
E�V�n � exp tW− 1� ≤ snE� exp tW− 1�

+E��V�n� exp tW− 1�1��V�≥s���
Using Hölder’s inequality, we see that the last term is at most

�E�V�4n�1/4�E1��V�≥s��1/4�E�1 + exp tW�2�1/2�(4.21)

Now, using (4.18),

E�1 + exp tW�2 ≤ 2�1 +E exp 2tW� ≤ 2�1 + exp 4Bt2�
≤ 4 exp 4Bt2�

Using (4.17) and the Chebyshev inequality, we get

E1��V�≥s� ≤ 2 exp
(

− s
2

4A

)
�

Finally, (4.17) implies E ch tV ≤ expAt2, so that∑
r≥0

t2r

�2r�!EV
2r ≤ expAt2�

Taking t2 = A−1, this implies EV2r ≤ KAr for r ≤ 8. It then follows from
(4.21) that

E�V�n � exp tW− 1� ≤2sn exp t2B

+KAn/2 exp
(
2Bt2 − s2

4A

)
�

(4.22)

We take s = 4t
√
AB to conclude. [The first term to the right of (4.22) then

dominates, since Bt2 ≥ 1.]

Case 2. Bt2 ≤ 1. We then use Cauchy–Schwarz,

E�V�n� exp tW− 1� ≤ �EV2n�1/2�E�exp tW− 1�2�1/2�
We have seen that EV2n ≤ KAn. Also, we have EW = 0 by (4.18), so that
E exp tW ≥ 1, and thus

E�exp tW− 1�2 = E exp 2tW−E2 exp tW+ 1

≤ E exp 4t2B− 1 ≤Kt2B
since t2B ≤ 1. The result follows. ✷
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We continue the proof of Theorem 4.1. We will use the fact that the two
successive integrals 
·� and E can be viewed as one single expectation to
which we can apply Lemma 4.2.

To prove Theorem 4.1, assuming that �SN−1� holds we will show that �SN�
holds (provided L0 is large enough). Condition �SN−1� implies

E
〈
exp t�̃ · �3〉

0 ≤ exp t2L0�N− 1��
that is, (4.18) for B = L0�N− 1�, so that Lemma 4.2 implies

E
〈��̃ · b� exp t�̃ · �3〉

0 ≤KtL0N exp t2�N− 1�L0�(4.23)

To control the remainder S, we observe that we can use the trivial bounds

E
〈��̇l · b�2� exp t�̃ · �3 − 1�〉0 ≤ 2NE

〈��̇l · b� � exp t�̃ · �3 − 1�〉0�
E
〈��̇l · �̇l′ �2� exp t�̃ · �3 − 1�〉0 ≤ 4NE

〈��̇l · �̇l′ � � exp t�̃ · �3 − 1�〉0�
Now �̇l · �̇l′ satisfies (using Cauchy–Schwarz)

E
〈
exp t�̇l · �̇l〉0 ≤ exp 2t2�N− 1�L0

so that, by Lemma 4.2,

E�S� ≤Kβ2NtL0 exp t
2�N− 1�L0�

Using (4.16), we then obtain

UN�t� β� ≤ �L0 +K+Kβ2L0�Nt exp t2�2 + �N− 1�L0��(4.24)

If we take L0 ≥ 2, then 2 + �N − 1�L0 ≤ NL0. If we take β ≤ 1/L0, then if
L0 ≥ 3K, we have L0 +K+Kβ2L0 ≤ 2L0, and (4.24) becomes

UN�t� β� ≤ 2L0Nt exp t
2NL0�(4.25)

which is condition �SN�. This completes the proof of Theorem 4.1. ✷

Theorem 4.3. There exists L0 such that given β0 > 0, there exists h0 such
that if h ≥ h0� β ≤ β0, then for each t,

E
〈
exp t�̃ · �3〉 ≤ exp t2NL0�

The proof is similar to that of Theorem 4.1. One has to take advantage of
the fact that

Eg
1

ch2X
≤ P

(
β
g · b√
N

≥ h
2

)
+ 1

ch2 h/2

≤ exp
(

− h
2

8β2

)
+ 1

ch2 h/2

becomes small for β ≤ β0 and large h; and one has to take advantage of the
version of Proposition 3.5 with improved bounds for the error term at large h.
The details are left to the reader.

We now turn to the proof of the following first stage of the proof of
Theorem 1.7.
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Theorem 4.4. Given β0 < 1, there is a constant L�β0� and a number
h�β0� > 0 such that if β ≤ β0 and h ≤ h�β0� we have

∀ t ∈ �� E
〈
exp t�̃ · �3〉 ≤ expNt2L�β0��

The proof differs in two important respects from the proof of the previous
theorems. First, it will not be possible to start the induction atN = 1 because
we will use estimates that become efficient only at large N. Second, the esti-
mate we have are efficient only at small t (unless we are in the previous cases)
and for larger values of t we will need another argument, the starting point
of which is the following.

Proposition 4.5. If h = 0 and β ≤ β0 < 1, then for each t,

E
〈
exp t�̃ · �3〉 ≤ expL�β0�Nt2�(4.26)

where L�β0� depends upon β0 only.

This is an easy consequence of the fact, proved in [5], that if β ≤ β0,

E

〈
exp

1
NL

�� · �′�2
〉

≤ L�

There, as in the rest of this section, L denotes a number depending upon
β0 only, not necessarily the same at each occurrence.

Corollary 4.6. If β ≤ β0 < 1, then

E
〈
exp t�̃ · �3〉 ≤ expN�6h+Lt2��(4.27)

Proof. Fixing β, let us consider

ψ�h� = E
exp t�̃ · �3��(4.28)

where the thermal bracket on the right is taken for the external field h′ = h/β.
Then a straightforward computation shows that

ψ′�h� =E
〈∑
i≤N

�σ1i + σ2i + σ3i � exp t�̃ · �3
〉

−3E
〈
exp t�̃ · �3〉 〈 ∑

i≤N
σi

〉(4.29)

so that, by a very brutal bound, since �σi� = 1,

ψ′�h� ≤ 4Nψ�h�(4.30)

and ψ�h� ≤ ψ�0� exp 4hN. ✷

To prove Theorem 4.4, we will prove the following statement.
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Proposition 4.7. Given β0 < 1, there exists a number L1 = L1�β0� and a
number h = h�β0� such that if h ≤ h�β0� and β ≤ β0, for each t ≥ 0, we have

�SN� UN�t� β� = E〈
�̃ · �3 exp t�̃ · �3〉 ≤ 2NL1t expNt

2L1�

We observe that from (4.27), we have

t ≥
√
h⇒ E

〈
exp t�̃ · �3〉 ≤ expNLt2�(4.31)

The first step is to complement (4.31) by getting information for t ≤ √
h. In

that case we write

E
〈
exp t�̃ · �3〉 ≤ (

E
〈
exp

√
h�̃ · �3〉)t/√h

≤ expNLt
√
h

so that, for all t > 0, we have

E
〈
exp t�̃ · �3〉 ≤ expNL�t2 + t

√
h��(4.32)

Using that �ex − 1� ≤ �x�e�x� we have, for each b > 0,

E
〈
�̃ · �3 exp t�̃ · �3〉 = E〈

�̃ · �3�exp t�̃ · �3 − 1�〉
≤ tE〈��̃ · �3�2 exp t��̃ · �3�〉
≤ t�E
��̃ · �3�4��1/2 expNL�t2 + t

√
h�

(4.33)

since e�x� ≤ ex + e−x. Now,

t4

4!
E
〈��̃ · �3�4〉 ≤ 1

2

(
E
〈
exp t�̃ · �3〉 + 〈

exp�−t�̃ · �3�〉)
≤ expNL�t2 + t

√
h�

and taking t = min�1/NL√
h�1/

√
NL� we get

E
��̃ · �3�4� ≤Kmax
(�NL�2� �NL

√
h�4)

so that (4.33) gives

E
〈
�̃ · �3 exp t�̃ · �3〉 ≤KtNL�1 +NLh� expNL(t2 + t

√
h
)
�(4.34)

Since 1 +NLh ≤ 2 expNLh, this shows that �SN� is automatically satisfied
for t ≥ √

h, provided L1 is larger than a certain number L�β0� (independent
of h). Next we show that �SN� is automatically satisfied for N ≤ L1/hL�β0�,
where L�β0� depend only upon β0. Indeed, if L1 ≥KNL2h, then we have

NL�1 +NLh� ≤ L1N� expNL(t2 + t
√
h
) ≤ 2 expNL1t

2�

since

Lt
√
h ≤ L1t

2

2
+ hL

2

2L1
�
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We now attack the main part of the proof, the proof of �SN� when t ≤ √
h

andN ≥ L1/hL�β0�. Looking back at (4.14), we see that we can no longer use
that β is small to make the term

− 3E
β2 th2X

ch2X

〈
�̃ · b exp t�̃ · �3〉

0(4.35)

small. Rather, we will use the fact that th2X is small. Taking first the expec-
tation in g, we see that the term (4.35) is at most

3E th2X
〈��̃ · b� � exp t�̃ · �3 − 1�〉0

≤ 3Eϕ
( ��b��√
N
�h

)〈��̃ · b� � exp t�̃ · �3 − 1�〉0�(4.36)

where, for g standard normal,

ϕ�a�h� = E th2�βag + h��
For h small, E��b��/√N will be small; the problem is that there might be

an exceptional set of quenched variables over which ��b��/√N is large, and we
have to show that such a set is small enough to be irrelevant, a technical point
better skipped by the reader.

Consider a parameter c to be determined later, and ψ�c� h� = supa≤c ϕ�a�h�.
Then the term on the right of (4.36) is at most

3ψ�c� h�E〈��̃ · b� � exp t�̃ · �3 − 1�〉
+E1���b��≥c√N�

〈��̃ · b� � exp t�̃ · �3 − 1�〉�(4.37)

It follows from (4.27) that if t ≥ √
h we have

E exp t
� · �′� ≤ expNLt2�(4.38)

We have 
� · �′� = ��
����2. Using (4.38) for N− 1 rather than N, we have

E exp t��b��2 ≤ expNLt2

so that, if c ≥ L√
h, we have

P���b��2 ≥ c
√
N� ≤ exp

Nc2

L
�(4.39)

Using Hölder’s inequality, the last term of (4.37) is at most

exp
(

−Nc
2

L

)
�E〈��̃ · b�4〉�1/4�E〈�exp t�̃ · �3 − 1�2〉�1/2

and, as shown in the proof of Lemma 4.2, under �SN−1� this is at most

KL1tN exp
(

−Nc
2

4
+KNt2L1

)
≤KL1Nt exp

(
− Nc

2

K

)
under the conditions

t2 ≤ h� c2 ≥KhL1� c2 ≥ Lh�(4.40)
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As for the remainder term S of (4.14), (4.20) shows that it is at most

KN

(
t2L2

1+ tL
3/2
1√
N

)
exp t2�N−1�L1 ≤KNtL1

(√
hL1 +

√
L1

N

)
exp t2�N−1�L1

since t ≤ √
h. Regrouping these contributions, we get from (4.14) that

UN�t� β� ≤ 2θL1Nt exp t
2NL1�(4.41)

where

θ ≤ β2 +K
(
ψ�c� h� + 1

L1
+ exp

(
−Nc

2

L

)
+

√
hL1 +

√
L1

N

)
�

But we have seen that �SN� is automatically satisfied for N ≤ L1/hL, so we
can assume N ≥ L1/hL, and thus

θ ≤ β2K
(
ψ�c� h� + 1

L1
+ exp

(
−L1c

2

hL

)
+

√
hL

)
�

To choose the parameters, we choose c small enough and L1 ≥ L�β0� large
enough that

β20 +K
(
ψ�c�0� + 1

L1

)
< 1�

We then choose h�β0� small enough to ensure that θ ≤ 1 and that (4.40) hold
provided h ≤ h�β0�. The proof is complete. ✷

5. Exponential inequalities II. In this section, we prove Theorem 1.5.
The proof of Theorem 1.5 resembles the proof of Theorem 4.1 and uses the
results of this theorem in an essential way.

We use the notation qN = E
� · �′/N�, so that qN = qN�β�h�. There is a
considerable psychological obstacle to the proof of Theorem 1.5. Namely, when
one tries to gather information about E
exp t�� · �′ − NqN�� by induction
uponN, when going toN−1, one has to replaceNqN by �N−1�qN−1, where
qN−1 = qN−1�β′� h�. One feels that to prove anything at all one will need to
have very detailed information about

δN =NqN − �N− 1�qN−1(5.1)

and that this change of centering will cause enormous difficulty. This turns
out not to be case, and this is indeed surprising. Theorem 1.5 follows from the
following.

Proposition 5.1. There exists a number L1 such that if βL1 ≤ 1, then for
all t ≥ 0, we have

E
〈�� · �′ −NqN� exp t�� · �′ −NqN�〉 ≤ 2NtL1 exp t

2NL1�(5.2)

E
〈�NqN − � · �′� exp t�NqN − � · �′�〉 ≤ 2NtL1 exp t

2NL1�(5.3)
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The reason why we have to prove these two inequalities is that we would
like to know that

E
〈
exp t�� · �′ −NqN�〉 ≤ exp t2NL1(5.4)

for all values of t, whether positive or negative (this is needed in Lemma 5.2)
and that (in contrast with what happened in Section 4) we can no longer use
symmetry to say that (5.4) is equivalent to the case t ≥ 0. We will denote by
UN�β� t� the right-hand side of (5.2). [The similar study of the right-hand side
VN�β� t� of (5.3) is left to the reader.] We will use in an essential way that,
according to Theorem 4.1, we have

E
〈
exp t�̃ · �3〉 ≤ exp t2NL0(5.5)

for a certain number L0.
We start the study of UN�β� t� as usually by the relation

UN�β� t� =NE〈�σNσ ′
N − qN� exp t�σNσ ′

N − qN�f̄〉�(5.6)

where

f̄ = exp t�� · �′ −NqN��(5.7)

Lemma 5.2. If �x� ≤ 2 and t ≥ 0, we have

xetx ≤ sh 2t+ x ch 2t ≤ �x+ 4t� ch 2t�(5.8)

Proof. If ϕ�x� = xetx, then ϕ′�x� = �1 + tx�etx� ϕ′′�x� = t�2 + tx�etx, so
that either ϕ′�x� < 0 or ϕ′′�x� > 0. It is then clearly enough to check that the
left inequality in (5.8) is satisfied for x = ±2. ✷

We then deduce from (5.6) that

UN�t� β� ≤N ch 2tE
(〈�σNσ ′

N − qN�f̄〉 + 4t
f̄�) �(5.9)

To prove Proposition 5.1, we argue by induction overN, so that we assume
the induction hypothesis,

�SN−1�
∀ t ≥ 0�∀β ≤ β0�UN−1�β� t� ≤2L1�N− 1�t exp�N− 1�t2L1�

∀ t ≥ 0�∀β ≤ β0�VN−1�β� t� ≤2L1�N− 1�t exp�N− 1�t2L1

and thus

∀ t ∈ ��∀β ≤ β0� E
exp t�� · �′ − �N− 1�qN−1��0
≤ exp�N− 1�t2L1�

(5.10)

Lemma 5.3. We have

�δN� ≤KL1�(5.11)
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Proof. We have

NqN = E
� · �′�
= E
σNσ ′

N� +E
� · �′��
To estimateE
�·�′� we use Theorem 3.2 and Proposition 3.4 in the case n = 2,
I = �. We get

E
� · �′� =E
� · �′�0 + β2E
〈
� · �′ �̇ · �̇′

N

〉
0

+β2E�1 − 2 th2X�
〈
� · �′

(( �̇ · b
N

)
+

( �̇′ · b
N

))〉
0

+S1�

(5.12)

where (using the bound �� · �′� ≤N), we have

�S1� ≤Kβ2E
〈��̇ · b�2
N

〉
+Kβ2E

〈��̇ · �̇′�2
N

〉
�

Now, 〈
� · �′ �̇ · �̇′

N

〉
0

=
〈��̇ · �̇′�2
N

〉
0
�〈

� · �′ � · b
N

〉
0

=
〈��̇ · b�2
N

〉
0

and, by �SN−1� the expectation of both these quantities are bounded by KL1.
The result follows, since E
� · �′�0 = �N− 1�qN−1. ✷

We can now handle the last term of (5.9). Using crude bounds as in the
proof of Theorem 4.1, we get, using (5.10),

E
f̄� ≤KE
f̄�0 =K exp�−δNt�E
〈
exp t�� · �′ − �N− 1�qN−1�〉0

≤K exp �δNt� exp�N− 1�t2L1�

Using (5.11), we see that

exp �δNt� ≤K exp
t2L1

2
(5.13)

and thus

E
f̄� ≤K exp
t2L1

2
exp�N− 1�t2L1�(5.14)

We now turn to the study of the most dangerous term of (5.9), that is,
E
�σNσ ′

N − qN�f̄�.
The fact that qN = E
σNσ ′

N� is used through the observation that

E
〈�σNσ ′

N − qN�f̄〉 = E〈�σNσ ′
N − qN�f̂〉�(5.15)
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where f̂ = f̄− exp�−δNt� so that

�f̂� ≤ exp�−δNt�� exp t�� · �′ − �N− 1�qN−1� − 1�

≤K exp
t2L1

2
� exp t�� · �′ − �N− 1�qN−1� − 1��

(5.16)

We use Theorem 3.2 and Proposition 3.4 in the case n = 2 with I = �1�2�
and I = �, respectively, to get

E
σNσ ′
Nf̂� = E th2X
f̂�0 + β2E

〈
f̂
�̇ · �̇′

N

〉
0

+β2E�1 − 2 th2X�
〈
f̂

(
�̇ · b
N

+ �̇′ · b
N

)〉
0

+S2�

(5.17)

E
f̂� =E
f̂�0 + β2E th4X

〈
f̂
�̇ · �̇′

N

〉
0

+β2E�2 th2X− 3 th4X�
〈
f̂

(
�̇ · b
N

+ �̇′ · b
N

)〉
0

+S3�

(5.18)

where S2� S3 satisfy (using ��̇ · b� ≤ 2N� ��̇ · �̇′� ≤ 2N)

�S2�� �S3� ≤ Kβ
4

N
E

〈
�f̂�

(∑
l≤4

��̇l · b� + ∑
l<l′

��̇l · �̇l′ �
)〉

0

where �1 = ���2 = �′. Thus

E
〈�σNσ ′

N − qN�f̄〉 = E�th2X− qN�
f̂�0 +S4�

where

�S4� ≤Kβ2
〈
�f̂�

(∑
l≤4

��̇ · b� + ∑
l<l′

��̇l · �̇l′ �
)〉

0
�

We now use (5.16), (5.2), (5.3), (SN−1) and Lemma 4.2 to get

�S4� ≤Kβ2t
√
L0L1 exp

t2L1

2
exp t2�N− 1�L1�(5.19)

We consider the function

ϕ�x� = E th2�βg√
x+ h��

where g is N(0,1) so that

E�th2X− qN�
f̂�0 = E
((
ϕ

(�b�2
N

)
− qN

)

f̂�0

)
�(5.20)

We write

�b�2
N

= 
� · �′�0
N

= 
� · �′�0 − �N− 1�qN−1

N
+ N− 1

N
qN−1
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so that ∣∣∣∣ϕ(�b�2
N

)
− ϕ

(
N− 1
N

qN−1

)∣∣∣∣ ≤ 1
N

sup �ϕ′�∣∣
� · �′�0 − �N− 1�qN
∣∣�(5.21)

We observe (integration by parts) that

ϕ′�x� = β2E
(

1

ch2�βg√
x+ h� − 3 th2�βg√

x+ h�
ch2�βg√

x+ h�

)
(5.22)

so that �ϕ′�x�� ≤ 4β2. Thus, from (5.20),

E��th2X− qN�
f̂�0� ≤
∣∣∣∣ϕ(N− 1

N
qN−1

)
− qN

∣∣∣∣E
�f̂��0

+ 4β2E��
� · �′� − �N− 1�qN�
�f̂��0�
(5.23)

To control the second term, we use (5.16), (5.10) and Lemma 4.2, so that
this second term can be bounded by

Kβ2L1tN exp
L1t

2

2
exp�N− 1�t2L1�

To control the first term, since qN = E
σNσ ′
N�, using Theorem 3.2 and (5.3)

to control the remainder, we see that

�qN −E th2X� ≤ KL0β
2

N

and thus, using Taylor’s formula to estimate E th2X, we have∣∣∣∣qN − ϕ
(
N− 1
N

qN−1

)∣∣∣∣ ≤ 1
N2

sup �ϕ′′�E(
� · �′�0 − �N− 1�qN−1
)2

≤ Kβ
2L1

N

using (5.10). Distinguishing the cases t2L1N ≥ 1 and t2L1N ≤ 1, the reader
should have no problem showing, using (5.10) again, that we have

E
�f̂��0 ≤Kt
√
L1N exp

t2L1

2
exp t2L1�N− 1��

Combining all these estimates and using that ch t ≤ exp t2/2, we have now
shown from (5.23) that

UN�β� t� ≤Kβ2L1tN

(
1 + 1
L1

+
√
L1

N

√
L0

L1

)

× exp
( t2L1

2
+ t

2

2

)
exp t2L1�N− 1��

(5.24)

It is now easy (based upon the fact that �
� · �′� −NqN� ≤ 2N�E�
� · �′� −
NqN� = 0) to show that to prove �SN�, it suffices to assume that N ≥ L1/K
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(a more delicate phenomenon of the same nature is handled in the proof of
Proposition 4.7). Thus in (5.24) the term

√
L1/N can be removed. Then �SN�

follows from (5.24) if β is small enough. ✷

The proof of Theorem 1.6 requires only obvious changes from the proof of
Theorem 1.5. The proof of Theorem 1.7 is more delicate. The main feature is
again the use of a priori estimates to show that one has only the small values
of t to control. How to do this was detailed at length in Proposition 4.7, so we
will not give details. One has to replace (5.21) by∣∣∣∣ϕ(�b�2

N

)
−ϕ

(
N−1
N
qN−1

)
− 1
N
ϕ′
(
N−1
N
qN

)
�
� · �′�0−�N−1�qN−1�

∣∣∣∣
≤ 1
N2

sup �ϕ′′�∣∣
� · �′�0 − �N−1�qN−1

∣∣2(5.25)

and the crucial point is that ϕ′(��N − 1�/N�qN
)
< 1. The details are left to

the reader.

6. Convergence of moments. In this section, we consider replicas
�1� � � � ��p. We will consider ordered quadruples I = �i1� i2� i3� i4� of distinct
indices. These quadruples will be of three different types. It is linguistically
convenient to use color names to distinguish these types. The quadruple will
come in one of three colors white, black, red. If I is red, we set

fI = fI��I� � � � ��p� = �i1 · �i2 −NqN�β��
where qN�β�qN = E
�1 · �2�. If I is black, we set

fI = fI��1� � � � ��p� = ��i1 − �i2� · �i3
and if I is white we set

fI = fI��1� � � � ��p� = ��i1 − �i2� · ��i3 − �i4��
For a collection � of colored quadruples, we set f� = EI∈�fI.

Theorem 6.1. There exists β0 with the following property. If β ≤ β0 given
any p and any collection � of colored quadruples of �1� � � � � p�, there is a
function �� �β�h� such that

lim
N→∞

E
f� �N−card� /2 = �� �β�h��(6.1)

Proof. Since ��i1 − �i2� · �i3 = ��i1 · �i3 −NqN� − ��i2 · �i3 −NqN�, it
would suffice to consider the case where there are no black quadruples (and
similarly no white quadruples). But this is not the way the proof works.

The proof will go by induction upon card � = r. The result is obvious if
card� = 0 or 1, since f� = 1 for � = � and E
f� � = 0 if card� = 1.

Let us assume that the result has been proved for all p and all � with
card � ≤ r; we will prove it for all p when card � = r+1. As a first step, we



1058 M. TALAGRAND

assume that� contains at least a white quadruple. Without loss of generality,
we can assume that this is �1�2�3�4�, and we write � ′ the collection of the
other colored quadruples. Thus, writing as usual �̃ = �1 − �2, we have

f� = �̃ · ��3 − �4�f� ′

and, by symmetry,

E
f� � =NE〈
σ̃N�σ3N − σ4N�f� ′

〉
�(6.2)

For I ∈ � ′, we write

fI =MI + f′
I��1� � � � ��p��

where MI contains the contribution of the last �=N th� coordinate, and
f′
I��1� � � � ��p� the contributions of the N − 1 first coordinates. For example,

if I is red,

MI = σi1Nσi2N − qN�
f′
I��1� � � � ��p� = ∑

i≤N−1

σ
i1
i σ

i2
i − �N− 1�qN = �i1 · �i2 − �N− 1�qN�

The “ ′ ” is to indicate that f′
I��1� � � � ��p� need not be the function fI��1� � � � �

�p� that is obtained from fI by replacing N by N− 1. This is the case if I is
either white or black; but when I is red, fI��1� � � � ��p� = �i1 ·�i2 −�N−1�qN−1
(where of course qN−1 = qN−1�β′�) so that

f′
I��1� � � � ��p� = fI��1� � � � ��p� + �N− 1��qN−1 − qN��(6.3)

We write

f� ′ = ∏
I∈� ′

�MI + f′
I��1� � � � ��p��

and we expand this as

f′
� ′ ��1� � � � ��p� ∑

I∈� ′
MI

∏
J �=I
f′
J��1� � � � ��p� +S�

where S consists of the products that contain at least two termsMI and where
f′
� ′ ��1� � � � ��p� = EI∈� ′f′

I��1� � � � ��p�. Thus we have

E
f� � =NE〈
σ̃N�σ3N − σ4N�f′

� ′ ��1� � � � ��p�〉
+N ∑

I∈� ′

〈
σ̃N�σ3N − σ4N�MI

∏
J �=I�J∈� ′

f′
J��1� � � ��p�

〉
+N
σ̃N�σ3N − σ4N�S��

(6.4)

To compute each of these terms, we use Theorem 3.2. What makes life easy
is that now the remainder terms are at most K�r�Nr/2. This follows from
Theorem 5.1 and from the fact that �N − 1��qN−1 − qN� is of order 1. Using
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Proposition 3.6 we see that up to error K�r�Nr/2, the first term on the right
of (6.4) is

E
β2

ch4X

〈
f′
� ��1� � � � ��p��0

and, up to the same error, this is

E
β2

ch4Y
E
〈
f′
� ��1� � � � ��p��0(6.5)

for Y = gβ√
qN−1 + h.

As for the second term to the right of (6.4), it is a sum of terms

N

〈∏
i∈L
σiN

∏
J �=I
f′
J��1� � � � ��p�

〉
�(6.6)

When we apply Proposition 3.4 to this term, only the contribution of the
terms I is not of order almost Nr/2, and this contribution is

NE thn X
〈 ∏
J �=I
f′
J��1� � � � ��p�

〉
0

�NE thn YE
〈 ∏
J �=I
f′
J��1� � � � ��p�

〉
0
�

(6.7)

where � indicates an error at most K�r�Nr/2. We would like to apply the
induction hypothesis to the last term of (6.7) (which involves r−1 quadruples
only) but the obstacle is that we have f′

J rather than fJ. We simply use (6.3)
and the fact that �N−1��qN−qN−1� is of order 1 to see that replacing f′

J by fJ
involves again error at mostK�r�Nr/2, so that this induction hypothesis shows
convergence of the terms (6.7). We do not make a larger error in replacing f′

�
by f� in (6.5). (For this reason, in the remainder of the proof, we will no longer
distinguish between f� and f′

� .)
In summary, if, given � , we write θN�β� = E
f� �, we have shown the

existence of a function � �β� such that

lim
N→∞

N−card� /2�θN�β� − aN�β�θN−1�β′�� = � �β�(6.8)

uniformly in β ≤ β0, where

aN�β� = E β2

ch4�βg√
qN−1 + h� �

Now, using either iteration or the method of (3.60), (3.61), we get convergence
of qN−1�β′� toward the root of the equation q = E th2�βg√

q + h�, and thus
aN�β� converges toward

a�β� = E β2

ch4�βg√
q+ h� < 1�(6.9)
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Providing the convergence of θN�β� toward � �β�/�1 − a�β�� is then an easy
exercise (using iteration).

We have finished the proof of the induction step when � contains at least
a white quadruple. We now consider the case when there is at least a black
quadruple. The difference with the previous case is that in (6.3) we now have
σ̃Nσ

3
N rather than σ̃N�σ3N − σ4N�, so that we must use Proposition 3.5 rather

than Proposition 3.6. We rewrite (3.55) as

β2E

〈
1

ch2X
− 3

th2X

ch2X

〉〈
f̄
�̃ · �3

N

〉
0

+ 3β2E
th2X

ch2X

〈
f̄
�̃ · �̇3

N

〉
0

+E th2X

ch2X

〈
f̄
∑
l≥4

�̃ · �̇l
N

〉
0
�

The key observation is that the last two terms correspond to functions of the
type f�1

(where card�1 = card� ) which contain at least one white quadruple
and for which convergence has already been proved. The argument is thus
identical to the previous case, except that one replaces aN by

bN = β2E
〈

1

ch2Y
− 3 th2Y

ch2Y

〉
�(6.10)

We now turn to the case where there are no black or white quadruples. Let
us say that a quadruple I of � is isolated if none of its indexes belong to
another quadruple of � . As a third stage in the proof of the induction step,
we assume that there is at least one isolated red quadruple in � . Without
loss of generality, we can assume that this is �1�2�3�4�, and we write

f� = ��1 · �2 −NqN�f� ′�

where no quadruple of � ′ contains 1, 2, 3, 4. Thus we have

E
��1 · �2 −NqN�f� ′ � =NE
�σ1Nσ2N − qN�f� ′ ��
We proceed as in (6.7) to get

E
f� � =NE〈�σ1Nσ2N − qN�f� ′ ��1� � � � ��p�〉
+N ∑

I∈� ′

〈
�σ1Nσ2N − qN�MI

∏
J �=I
fJ���

〉
+N
�σ1Nσ2N − qN�S��

We then evaluate the terms on the right, using Proposition 3.4. The last
term gives a lower order contribution for which convergence has already been
proved. The convergence of the contributions of the second term is proved
through the induction hypothesis. As for the first term, the contribution is

NE�th2X− qN�
f� ′ ��1� � � � ��p��0(6.11)
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plus other terms for which convergence has already been proved, since the cor-
responding function f� ′′ contains either a black or a white quadruple. Using
(5.25), the leading contribution to (6.11) is

ϕ′
(
N− 1
N

qN−1

)
E
� · �′ − �N− 1�qN−1�0
f� ′ ��1� � � � ��p��0�(6.12)

Now, since no quadruple of � ′ contains 1 or 2, we have the essential fact that〈
� · �′ − �N− 1�qN−1

〉
0

〈
f� ′ ��1� � � � ��p��0 = 〈

f� ��1� � � � ��p�〉0�
so that we can again use iteration to conclude.

Finally, we consider the general case. But in that case we observe that〈
� · �′ − �N− 1�qN−1

〉
0

〈
f� ′ ��1� � � � ��p�〉0 = 〈

f�1
��1� � � � ��p+4�〉0�

where �1 = � ′ ∪ I for I = �p+ 1� � � � � p+ 4� and fI = �p+1 ·�p+2 −q�N− 1�,
so that �1 has an isolated quadruple, and convergence has been proved in
this case.

Theorem 6.1 is proved. ✷

There is nothing to change in the proof to replace the condition β ≤ β0 by
the conditions of Theorems 1.6 or 1.7.

As we have mentioned, the global underlying algebraic structure behind
Theorem 6.1 is unclear to us; computations in simple cases can, however, be
carried out quite effectively. As an example, we mention the following. It is
left to the reader, following the procedure of Theorem 6.1.

Theorem 6.2. If k ≥ 0 and n ∈ �1�2�, we have

lim
n→∞E

(
N−kn〈���1 − �2���3 − �4��2k〉n) =

( ∏
l≤k

�2l− 1�
(

4b
1 − β2b

)k)n
�

where

b = E 1

ch4�βg√
q+ h� �

Of course this would also hold for any n. The values of n = 1�2, are enough
to show that for the typical disorder, the moments of N−1��1 − �2���3 − �4�
for Gibbs measure are approximately those of a Gaussian r.v. of variance
4b�1 − β2b�−1, a statement that can of course be formulated as a central
limit theorem.
Note added in Proof. The author must apologize for having overlooked that

in condition (1.11) one can equivalently replace the centering term 
� · �′�
by ϕN�0� and that the resulting condition ensures that the random variable
N−1
� ·�′� does not behave pathologically. Thus the work of the end of Section
3, starting with Lemma 3.9, is not needed. Moreover, our argument then shows
absence of replica symmetry breaking of each part of the low temperature
region except possibly on the line γ�β� = 1.
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After this final version of this paper was accepted, the author made further
progress on several fronts. He discovered a somewhat easier derivation of
Proposition 3.4. He also found how to prove directly (1.20), rather than proving
separately (1.17) and (1.18). This makes possible significantly shorter proofs
of the results presented here. The author also discovered that there is indeed
a simple structure behind Theorem 1.8. He proved the validity of (1.6) in a
region that probably coincides with the region (1.3). Some of these results are
already available from the author.

Finally, R. Latala recently proved that (1.4) has a unique solution for all
values of β�h�
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