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STRONG APPROXIMATION OF QUANTILE PROCESSES BY
ITERATED KIEFER PROCESSES
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Université Paris VI

The notion of a kth iterated Kiefer process � �ν� t�k� for k ∈ � and
ν� t ∈ � is introduced. We show that the uniform quantile process βn�t�
may be approximated on [0, 1] by n−1/2� �n� t�k�, at an optimal uniform
almost sure rate of O�n−1/2+1/2k+1+o�1�� for each k ∈ �. Our arguments are
based in part on a new functional limit law, of independent interest, for the
increments of the empirical process. Applications include an extended ver-
sion of the uniform Bahadur–Kiefer representation, together with strong
limit theorems for nonparametric functional estimators.

1. Introduction and statement of main results. The invariance prin-
ciple approach to asymptotic statistics, initiated by Doob (1949) and Donsker
(1952), makes use of Brownian bridge approximations to the sample-based
empirical and quantile processes. The original weak laws were followed by a
series of strong invariance principles, where the original and approximating
processes are defined on the same probability space [refer to Billingsley (1968),
Csörgő and Révész (1981), Csörgő (1983), Shorack and Wellner (1986), Csörgő
and Horváth (1993)]. The main stream of investigations has been concerned
with Gaussian approximants, in which case, the results presently available
come close to the best achievable rates of convergence.

This paper is motivated by the fact that the optimal rates of Gaussian
approximation for quantile processes are, at times, not sharp enough to allow
direct applications [see Deheuvels (1997, 1998) and Section 5]. Our purpose
is to show that a choice of approximants within the general class of iterated
Gaussian processes allows us to overcome this difficulty.

There has been much recent interest for kth iterated Gaussian process
Z1 ◦ · · · ◦Zk, where Z1� � � � �Zk are Gaussian processes, and, in particular, for
iterated Brownian motions W1 ◦W2, where W1 and W2 are Wiener processes
[see Burdzy (1993), Csáki, Csörgő, Földes and Révész (1989, 1995), Csáki,
Földes and Révész (1997), Deheuvels and Mason (1992a), Hu, Pierre-Loti-
Viaud and Shi (1995), Khoshnevisan and Lewis (1996) and the references
therein]. Here, we set 	f ◦ g
�t� = f�g�t��. Below, we introduce a new family
of iterated Gaussian processes allowing to derive the appropriate invariance
principles. First, we introduce some definitions and notation.
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Let αn�t� denote a uniform empirical process [see Section 3.1 in Shorack
and Wellner (1986) and (2.1) later]. A Kiefer process � �n� t� is a Gaussian
process such that [see, e.g., Kiefer (1972), Section 4.2 in Csörgő and Révész
(1981), and (1.8) below], for all m�n ∈ � and s� t ∈ �0� 1
,

Ɛ�� �n� t�� = Ɛ
(
n1/2αn�t�

) = 0�

Ɛ�� �m�s�� �n� t�� = Ɛ
(
m1/2αm�s�n1/2αn�t�

) = �m ∧ n��s ∧ t− st��(1.1)

The equalities (1.1) between means and covariances of n1/2αn�t� and � �n� t�
show that the Kiefer process � �n� t� is the most natural Gaussian approx-
imant to n1/2αn�t�, considered as a function of �n� t�. Kiefer (1972) was first
to give an explicit construction of αn�t� and a Kiefer process �0�n� t� on the
same probability space, with∥∥αn − n−1/2�0�n� I�

∥∥ = O(n−1/6�log n�2/3)→ 0 a.s. as n→∞�(1.2)

where we set �f� = sup0≤t≤1 �f�t��, and denote identity by I�t� = t. The best
known refinement of (1.2) is due to Komlós, Major and Tusnády (1975) who
constructed a probability space ���� ��� carrying αn and a Kiefer process
K1�n� I� with∥∥αn − n−1/2K1�n� I�

∥∥ = O(n−1/2 log2 n) a.s. as n→∞�(1.3)

There is no alternative construction of K1�n� I� reducing the rate O�n−1/2·
log2 n� in (1.3) to o�n−1/2 log n� [see Section 4.4 in Csörgő and Révész (1981)],
and the optimal a.s. uniform approximation rate of αn by n−1/2� �n� I� is (leav-
ing out small order terms) O�n−1/2+o�1��.

For n ≥ 0 and t ∈ �0�1
, denote by βn�t� a uniform quantile process [see
Section 4.5 in Csörgő and Révész (1981) and (2.1)]. The uniform Bahadur–
Kiefer representation [Bahadur (1966), Kiefer (1970) and Deheuvels and
Mason (1990)] asserts that

lim sup
n→∞

n1/4�log n�−1/2�log2 n�−1/4�αn + βn� = 2−1/4 a.s.,(1.4)

where we set log2 u = log+ log+ u with log+ u = log�u ∨ e�. By combining
(1.3) with (1.4), Csörgő and Révész (1975) showed that the Kiefer process
K2�n� I� = −K1�n� I� fulfills

lim sup
n→∞

n1/4�log n�−1/2�log2 n�−1/4
∥∥βn − n−1/2K2�n� I�

∥∥ = 2−1/4 a.s.(1.5)

The optimality of the rate in (1.5) was discussed by Deheuvels (1997, 1998),
who showed that, for any probability space carrying βn and a Kiefer pro-
cess � �n� I�,

lim sup
n→∞

n1/4�log n�−1/2�log2 n�−1/4
∥∥βn − n−1/2� �n� I�∥∥ > 0 a.s.(1.6)

As follows from (1.5) and (1.6), the optimal a.s. uniform rate of approximation
of βn by a normalized Kiefer process n−1/2� �n� I� is (leaving out small order
terms) O�n−1/4+o�1��.



KIEFER APPROXIMATION OF QUANTILE PROCESSES 911

Komlós, Major and Tusnády (1975) and Csörgő and Révész (1978) showed
that a replacement of n−1/2Kr�n� t�� r = 1�2, by judiciously chosen Brownian
bridges allows improving upon (1.3)–(1.5). They proved the existence, on suit-
able probability spaces, of αn, βn, and of sequences of Brownian bridges
	B′n� n ≥ 1
 and 	B′′n� n ≥ 1
, such that

�αn −B′n� = O�n−1/2 log n� and �βn −B′′n� = O�n−1/2 log n� a.s

as n→∞�
(1.7)

The rates in (1.7) are sharp in that one may not replace O�n−1/2 log n� by
o�n−1/2 log n� [see Section 4.4 in Csörgő and Révész (1981)]. However, the
dependence with respect to n ofB′n andB

′′
n in (1.7) being implicit, this approach

is not appropriate for the description of the a.s. limiting behavior of most
statistics of interest based upon αn and βn.

The Kiefer process approximations (1.3) and (1.5) provide the essential tools
for deriving such strong laws [see, e.g., Csörgő (1983)]. Unfortunately, the
gap between the optimal approximation rates O�n−1/2+o�1�� and O�n−1/4+o�1��,
achieved for αn and βn, respectively, does not allow handling a series of
interesting statistics based upon βn. This motivates the need to approximate
βn at uniform almost sure rates in between O�n−1/2+o�1�� and O�n−1/4+o�1��.
Since this may not be achieved by Gaussian processes, new approximants are
needed, which should be both explicitly dependent upon �n� t�, and closely
related to Kiefer processes. This leads us to introduce below the class of
iterated Kiefer processes.

Given a pair 	W′�t�� t ≥ 0
 and 	W′′�t�� t ≥ 0
 of independent Wiener
processes, a two-sided Wiener process 	W′�t�� t ∈ �
 is defined byW�t� =W′�t�
for t ≥ 0 and W�t� = W′′�−t� for t < 0, and a two-sided Brownian bridge
	B�t�� t ∈ �
 is defined by B�t� =W�t� − tW�1� for t ∈ �
. A Wiener sheet is
a two-parameter centered Gaussian process 	W�s� t�� s ≥ 0� t ≥ 0
 with [see,
e.g., Section 1.11 in Csörgő and Révész (1981)]

Ɛ
(
W�s1� t1�W�s2� t2�

) = �s1 ∧ s2��t1 ∧ t2� for s1� s2� t1� t2 ≥ 0�

If 	W′�s� t�� s ≥ 0� t ≥ 0
 and 	W′′�s� t�� s ≥ 0� t ≥ 0
 are independent Wiener
sheets, a two-sided Wiener sheet 	W�s� t�� s ≥ 0� t ∈ �
 is defined byW�s� t� =
W′�s� t� for s ≥ 0, t ≥ 0 and W�s� t� =W′′�s�−t� for s ≥ 0� t < 0. A two-sided
Kiefer process is defined by � �ν� t� =W�ν� t�−tW�ν�1� for x ≥ 0� t ∈ �. From
now on, the Brownian bridges, Wiener and Kiefer processes we consider will
always be assumed to be two-sided. For each ν > 0, ν−1/2� �ν� I� is a Brownian
bridge, and, for each n ∈ �, we may write

� �n� t� =
n∑
i=1
Bi�t� =

n∑
i=1

{
Wi�t� − tWi�1�

}
for t ∈ ��(1.8)

where 	Bn� n ≥ 1
 (resp. 	Wn� n ≥ 1
) are independent and identically
distributed (i.i.d.) Brownian bridges (resp. Wiener processes). Here and else-
where, we set

∑
��·� = 0.
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Letting 	� �ν� t�� ν ≥ 0� t ∈ �
 denote a (two-sided) Kiefer process, we define
by induction on k ∈ � the kth iterated Kiefer process pertaining to � �ν� t� by
setting, for ν ≥ 0, t ∈ �,

� �ν� t�0� = 0� � �ν� t�1� =� �ν� t��
� �ν� t�k� =�

(
ν� t+ ν−1� �ν� t�k− 1�) for k ≥ 1,

(1.9)

where, for ν = 0, we use the conventions 0−1 = ∞ and ∞× 0 = 0. In most
of the applications considered later, the index ν ≥ 0 is integer and replaced
by n ∈ �. Below, we work on the probability space ���� ��� of (1.3)–(1.5),
and consider the kth iterated Kiefer processes K�n� I�k�, k ∈ �, pertaining to
K�n� I� �= −K1�n� I�. We get namely,

K�n� I�0� = 0� K�n� I�1� =K�n� I� =K2�n� I� = −K1�n� I��
K�n� I�2� =K�n� I+ n−1K�n� I���
K�n� I�3� =K�n� I+ n−1K�n� I+ n−1K�n� I����

(1.10)

and, in general, for each k ∈ �∗ = �− 	0
,
K�n� I�k� =K�n� I+ n−1K�n� I�k− 1���(1.11)

Our first theorem gives the exact rate of uniform approximation of βn by
n−1/2K�n� I�k�.

Theorem 1.1. On ���� ���, for each k ∈ �, we have

lim sup
n→∞

n�1/2�−�1/2�
k+1�log n�−1+�1/2�k�log2 n�−�1/2�

k+1

× ∥∥βn − n−1/2K�n� I�k�∥∥ = Ck �= 2−1+�2k+1�2
−�k+1�

a�s�
(1.12)

Remark 1.1. (i) Since C0 = 2−1/2 and, by (1.10), K�n� I�0� = 0, (1.12) for
k = 0 is in agreement with the Chung (1949) law of the iterated logarithm,
which asserts that

lim sup
n→∞

�log2 n�−1/2�βn� = lim sup
n→∞

�log2 n�−1/2�αn� = 2−1/2 a�s�(1.13)

(ii) Since C1 = 2−1/4 and K�n� I�1� = K�n� I�, (1.12) reduces for k = 1
to (1.5), namely,

lim sup
n→∞

n1/4�log n�−1/2�log2 n�−1/4
∥∥βn − n−1/2K�n� I�∥∥ = 2−1/4 a�s�

(iii) Since C2 = 2−3/8 and K�n� I�1� = K�n� I + n−1K�n� I��, (1.12) yields
for k = 2,

lim sup
n→∞

n3/8�log n�−3/4�log2 n�−1/8

× ∥∥βn − n−1/2K�n� I+ n−1K�n� I��∥∥ = 2−3/8 a�s�
(1.14)



KIEFER APPROXIMATION OF QUANTILE PROCESSES 913

(iv) It is readily checked that the constants 	Ck� k ≥ 0
 in (1.12) fulfill

�i� 1/2 ≤ Ck ≤ 2−1/4 ∀k ∈ �� �ii� Ck→ 1/2 as k→∞�
Moreover, the sequence Ck is decreasing on �∗ (but not on �).

Our next result establishes an optimal property of the rates achieved
via (1.12).

Theorem 1.2. Let βn and a Kiefer process � �n� I� be defined on the same
probability space. For each k ∈ �, assume that kth iterated Kiefer process
� �n� I�k� pertaining to � �n� I� fulfills the following property. There exists an
infinite set of indices S ⊆ � and a positive sequence 	θk� k ∈ S
� such that
θk→ 1/2 as k→∞ and, for each k ∈ S�

lim sup
n→∞

nθk
∥∥βn − n−1/2� �n� I�k�∥∥ = 0 a.s.(1.15)

Then, we have, for each k ∈ �,

lim sup
n→∞

n�1/2�−�1/2�
k+1�log n�−1+�1/2�k�log2 n�−�1/2�

k+1

× ∥∥βn − n−1/2� �n� I�k�∥∥ = Ck a.s.
(1.16)

Remark 1.2. Theorem 1.2 shows that the rates in (1.12) are optimal when
the kth iterated Kiefer processes are all pertaining to the same initial Kiefer
process. It leaves open the problem of whether there exists or not an isolated
value of k ∈ � such that

lim sup
n→∞

n�1/2�−�1/2�
k+1�log n�−1+�1/2�k�log2 n�−�1/2�

k+1

× ∥∥βn − n−1/2� �n� I�k�∥∥ = 0 a.s.,
(1.17)

for a suitable kth iterated Kiefer process � �n� I�k�. We conjecture that (1.17)
is impossible for any choice of� �n� I� and k ∈ �. For k = 0, this result follows
obviously from (1.13), whereas for k = 1, it is a consequence of (1.6). On the
other hand, to settle this conjecture for an arbitrary k ≥ 2 appears to be a
major problem.

The proofs of Theorems 1.1 and 1.2 are given in the forthcoming Sections 2
and 4. It is relatively easy (see, e.g., Proposition 2.2 in the sequel) to establish
that, for each k ∈ �,∥∥βn − n−1/2K�n� I�k�∥∥ = O(n−�1/2�+�1/2�k+1�log n�1−�1/2�k�log2 n��1/2�k+1) a.s.

and the main difficulty is to derive the exact limiting constant Ck in (1.12).
This will be achieved in Section 4 by an application of a new functional limit
law for empirical process increments. The latter greatly extends Theorem 3.1
of Deheuvels and Mason (1992a, b), and is of interest by and of itself. The cor-
responding statements and proofs are postponed until Section 3. Some further
results, together with examples of applications of our theorems are presented
in Section 5.
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2. Preliminary results.

2.1. Some basic notation and useful facts. We inherit the notation of
Section 1 and assume that ���� ��� carries the Kiefer process K�ν� t� =
K2�ν� t� = −K1�ν� t� in (1.3)–(1.5), together with a sequence 	Un� n ≥ 1
 of
i.i.d. uniform (0,1) random variables (r.v.’s). For each n ≥ 1, we set �n�t� =
n−1#	Ui ≤ t� 1 ≤ i ≤ n
 for t ∈ �, with #A denoting cardinality of A, and
�n�t� = inf	s ≥ 0� �n�s� ≥ t
 for t ∈ �0�1
. The uniform empirical and quantile
processes in (1.1)–(1.5) are given by

αn�t� = n1/2��n�t� − t� and βn�t� = n1/2��n�t� − t�
for n ∈ �∗ and t ∈ �0�1
�

αn�t� = βn�t� = 0 for either n �∈ �∗ or t �∈ �0�1
�
(2.1)

The refinement of (1.3) in Fact 1 below is due to Komlós, Major and Tusnády
(1975) [see Laurent-Bonvalot and Castelle (1998) and page 150 in Csörgő and
Horváth (1993)]. Let, via (1.8),

K1�n� t� = −K�n� t� =W1�n� t� − tW1�n�1��(2.2)

where W1�s� t� denotes a Brownian sheet.

Fact 1. There exist constants 	1�	2�	3 > 0 and n0 < ∞ such that, for
n ≥ n0 and x ∈ �,

�
(∥∥n1/2αn +K�n� I�∥∥ ≥ �	1 log n+ x� log n

)
≤ 	2 exp�−	3x��(2.3)

Let 	4 = 	1 + 2/	3. By letting x = �2/	3� log n in (2.3), we obtain readily that

∑
n≥n0

�
(∥∥n1/2αn +K�n� I�∥∥ ≥ 	4 log

2 n
)
≤ 	2

∑
n≥n0

1
n2
<∞�

By the Borel–Cantelli lemma, there exists therefore an n1 <∞ a.s., such that∥∥αn + n−1/2K�n� I�∥∥ < 	4n
−1/2 log2 n for n ≥ n1�(2.4)

The empirical distribution and quantile functions �n and �nare related
through the basic identity ��n��n� − I� = n−1 a.s. A convenient version of
this formula in terms of αn and βn is stated in Fact 2 below. We refer to (1.6)
in Shorack (1982) for details.

Fact 2. We have, almost surely, for each n ≥ 1,∥∥βn + αn(I+ n−1/2βn)∥∥ = n−1/2�(2.5)

The derivation of (1.4) makes an instrumental use of (2.5) [see, e.g., Kiefer
(1970) and Shorack (1982)]. It is natural to combine (1.4) and (2.5) to obtain
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approximations of βn based upon the kth iterated empirical process αn�k, which
we introduce below. Set

αn�0 = 0� αn�1 = αn�
αn�2 = αn

(
I− n−1/2αn

)
�

αn�3 = αn
(
I− n−1/2αn�I− n−1/2αn�

)
�

(2.6a)

and, in general, for each k ∈ �∗,

αn�k = αn
(
I− n−1/2αn�k−1

)
�(2.6b)

The uniform Bahadur–Kiefer representation (1.4) draws its usefulness from
its ability to replace the relatively complex process −βn by the more easy to
handle empirical process αn = αn�1 at the price of an error of O�n−1/4+o�1��. It
is logical to extend this principle to an arbitrary k ∈ �, by approximating −βn
by the kth iterated empirical process αn�k. This problem will be considered in
the forthcoming Section 5. Corollary 2.1 below gives a preliminary clue to its
solution by showing that, in the applications we have in mind, we may replace
n−1/2K�n� I�k� by −αn�k. The corresponding proof will rely on the next fact,
due to Stute (1982) [see, e.g., Deheuvels and Mason (1992b)].

Fact 3. Let 	hn� n ≥ 1
 be a sequence of positive constants such that

�i� hn ↓ 0� �ii� nhn ↑ ∞� �iii� nhn/ log n→∞�
�iv� �log�1/hn��/ log2 n→∞�

(2.7)

Then, we have, for each " > 0,

lim sup
n→∞

�2hn log�1/hn��−1/2 sup
�u�≤"hn

�αn�I+ u� − αn� = "1/2 a.s.(2.8)

Proposition 2.1. Assume that � �n� I� is a Kiefer process such that, for
some specified constants a > 0 and 	 > 0,

lim sup
n→∞

n1/2�log n�−1−a∥∥αn + n−1/2� �n� I�∥∥ ≤ 	 a.s.(2.9)

For k ∈ �, denote by � �n� I�k� the kth iterated Kiefer process based upon
� �n� I�1� =� �n� I�. Then, for each k ∈ �, we have

lim sup
n→∞

n1/2�log n�−1−a∥∥αn�k + n−1/2� �n� I�k�∥∥ ≤ 	 a.s.(2.10)

Proof. Fix any k ∈ � and ε > 0, and observe that hn = 	 �1 + ε�n−1·
�log n�1+a fulfills (2.7). Under the assumption that (2.10) holds, there exists
with probability 1 an n0 < ∞ such that, for all n ≥ n0, �n−1/2αn�k+
n−1� �n� I�k�� ≤ hn. Thus, by (2.8),

lim sup
n→∞

�2hn log�1/hn��−1/2
∥∥αn(I−n−1/2αn�k)−αn�I+n−1� �n� I�k��∥∥ ≤ 1 a.s.
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Observe that, as n→∞,

�2hn log�1/hn��1/2 = �1+ o�1��	2	 �1+ ε�
1/2n−1/2�log n�1+�a/2�

= o(n−1/2�log n�1+a)�
Since, by (2.6), αn�k+1 = αn�I−n−1/2αn�k�, this entails in turn that, a.s. for all
large n, ∥∥αn�k+1 − αn�I+ n−1� �n� I�k��∥∥ ≤ 	 �ε/2�n−1/2�log n�1+a�(2.11)

Next, we infer readily from (1.9) and (2.9), that, a.s. for all large n,∥∥αn�I+ n−1� �n� I�k�� − n−1/2� �n� I�k+ 1�∥∥
= ∥∥αn�I+ n−1� �n� I�k�� − n−1/2� �n� I+ n−1� �n� I�k��∥∥
≤ ∥∥αn − n−1/2� �n� I�∥∥ ≤ 	 �1+ �ε/2��n−1/2�log n�1+a�

(2.12)

It follows from (2.11), (2.12) and the triangle inequality that, a.s. for all large n,∥∥αn�k+1 − n−1/2� �n� I�k+ 1�∥∥ ≤ 	 �1+ ε�n−1/2�log n�1+a�
Since ε > 0 is arbitrary in this last inequality, we see that (2.10) holds when
k is replaced by k+ 1. Since (2.10) for k = 0 reduces to (2.9), the proof follows
by induction on k. ✷

Corollary 2.1. Let 	4 be as in (2.4). We have, for each k ∈ �,

lim sup
n→∞

n1/2�log n�−2∥∥αn�k + n−1/2K�n� I�k�∥∥ ≤ 	4 a.s.(2.13)

Proof. By choosing 	 = 	4, a = 1 and � �n� I� = K�n� I� = −K1�n� I� in
(2.9), we infer readily (2.13) from (2.4) and (2.10). ✷

2.2. Rough upper bounds. In this section, we establish some rough upper
bounds, which will be used in Section 4 to prove Theorem 1.1. Namely, we will
show that, for each k ∈ �, the left-hand side of (1.12) is less than or equal to
a constant Dk [see (2.17)]. The following facts and lemmas will be needed.

Lemma 2.1. Let 	γn�t�� 0 ≤ t ≤ 1
, n = 1�2� � � � be random processes on
���� ��� such that there exist constants a ∈ �0�1/2�� b� c ∈ �+ and d ≥ 0,
fulfilling

lim sup
n→∞

na�log n�−b�log2 n�−c�βn − γn� ≤ d a.s.(2.14)

Then,

lim sup
n→∞

n�2a+1�/4�log n�−�b+1�/2�log2 n�−c/2
∥∥βn − αn�I+ n−1/2γn�∥∥

= lim sup
n→∞

n�2a+1�/4�log n�−�b+1�/2�log2 n�−c/2

× ∥∥βn − n−1/2K�n� I+ n−1/2γn�∥∥ ≤ d1/2�2a+ 1�1/2 a.s.

(2.15)
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Proof. Fix ε > 0, and set, for n ≥ 1, hn = �d+ε�n−�2a+1�/2�log n�b�log2 n�c.
By (2.14) there exists an n2 < ∞ a.s. such that n−1/2�βn − γn� ≤ hn for all
n ≥ n2. Since �2a + 1�/2 ∈ �0�1�, it is readily checked that hn fulfills (2.7).
Moreover, as n→∞,

�d+ ε�1/2�2a+ 1�1/2�2hn log�1/hn��−1/2 ∼ n�2a+1�/4�log n�−�b+1�/2�log2 n�−c/2
= o�n1/2�log n�−2��

where we set un ∼ vn whenever un/vn → 1 as n → ∞. Thus, by (2.4) and
Facts 2 and 3,

lim sup
n→∞

n�2a+1�/4�log n�−�b+1�/2�log2 n�−c/2
∥∥βn − n−1/2K�n� I+ n−1/2γn�∥∥

= lim sup
n→∞

n�2a+1�/4�log n�−�b+1�/2�log2 n�−c/2

× ∥∥αn�I+ n−1/2βn� + n−1/2K�n� I+ n−1/2γn�∥∥
= lim sup

n→∞
n�2a+1�/4�log n�−�b+1�/2�log2 n�−c/2

× ∥∥αn�I+ n−1/2βn� − αn�I+ n−1/2γn�∥∥
≤ lim sup

n→∞
�d+ ε�1/2�2a+ 1�1/2�2hn log�1/hn��−1/2

× sup
�u�≤hn

�αn�I+ u� − αn� = �d+ ε�1/2�2a+ 1�1/2 a.s.

Since ε > 0 may be chosen arbitrarily small, we infer readily (2.15) from this
inequality. ✷

The next proposition provides a crucial step of the forthcoming proof of
Theorem 1.1. Introduce the following notation. For each l ∈ �, set

δl = 1− �1/2�l�(2.16)

and, for each l ∈ �∗, set

Dl = 23δl−2
l−1∏
i=1
δ
1/2l−i
i = 2−1/2

l
l−1∏
i=1

{
2− 1

2i−1

}1/2l−i
�(2.17)

the equality in (2.17) following from (2.16) and the observation that, for
each l ∈ �∗,

δl−1 =
l−1∑
i=1

1
2l−i

= 2δl − 1�(2.18)

Note for further use that

δ0 = 0� δ1 = 1/2� δ2 = 3/4� δ3 = 7/8�

D1 = 2−1/2� D2 = 2−1/4� D3 = 2−5/831/2�
(2.19)
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Proposition 2.2. For each l ∈ �, we have

lim sup
n→∞

n�1/2�−�1/2�
l+1�log n�−1+�1/2�l�log2 n�−�1/2�

l+1

× ∥∥βn − n−1/2K�n� I� l�∥∥ ≤ Dl+1 a.s.
(2.20)

Proof. In view of (1.9) and (1.10), it follows from (1.13), (2.19) and
K�n� I� 0� = 0, that (2.20) is an equality for l = 0. For l = 1, (2.20) is
also an equality, since, by (1.9) and (2.19), K�n� I� 1� = K1�n� I� = K�n� I�,
D2 = 2−1/4, and the statement reduces to (1.5).

For the other values of l, we proceed by induction, assuming that, for some
κ ∈ �, (2.20) holds with l = κ. We set γn = n−1/2K�n� I� κ�, a = aκ �= �1/2� −
�1/2�κ+1, b = bκ �= 1 − �1/2�κ, c = cκ �= �1/2�κ+1 and d = dκ �= Dκ+1 in
Lemma 2.2. By (1.9),

K�n� I+ n−1/2γn� =K�n� I+ n−1K�n� I� κ�� =K�n� I�κ+ 1��
and we may write, via (2.14) and (2.15),

lim sup
n→∞

n�2aκ+1�/4�log n�−�bκ+1�/2�log2 n�−cκ/2

× ∥∥βn − n−1/2K(n� I+ n−1K�n� I� κ�)∥∥ ≤ �2aκ + 1�1/2d1/2κ a.s.
(2.21)

By combining (2.21) with the equalities

aκ+1 =
1
2
− 1
2κ+2

= 1
4
�2aκ+1�=

1
4

(
2− 1

2κ

)
�

bκ+1 = 1− 1
2κ+1

= 1
2
�bκ+1�=

1
2

(
2+ 1

2κ

)
�

cκ+1 =
1

2κ+2
= 1
2
cκ=

1
2

(
1

2κ+1

)
�

Dκ+2 = 2−�1/2�
κ+2
κ+1∏
i=0

{
2− 1

2i

}�1/2�κ−i+2
=�2aκ+1�1/2D1/2

κ+1

= �2δκ+1Dκ+1�1/2=
{
2− 1

2κ

}1/2{
2−�1/2�

κ+1
κ−1∏
i=0

{
2− 1

2i

}�1/2�κ−i+1}1/2
�

(2.22)

we see that (2.20) holds for k = κ+ 1. The proof is complete by induction. ✷

Lemma 2.2. We have

�i� 1/2 < Dk < 2 ∀ k ∈ �∗� �ii� Dk ↑ 2 as k→∞�(2.23)

Proof. By (2.19) we have 1/2 < D1 = 2−1/2 < D2 = 2−1/4 < 2. Assuming
that, for some κ ∈ �, 1/2 < Dκ+1 < 2, we make use of (2.17) to write

Dκ+2 = �2aκ + 1�1/2D1/2
κ+1 =

(
1− 1

2κ+2

)1/2

�2Dκ+1�1/2 <
(
1− 1

2κ+2

)1/2

× 2 < 2�
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and likewise

Dκ+2 >
(
1− 1

2κ+2

)1/2

>

(
3
4

)1/2

>
1
2
�

With this implying that 1/2 < Dκ+2 < 2, the proof of (2.23) (i) follows by
induction. The fact that Dk ↑ follows from the observation that Dk+1/D

1/2
k =

�2− 1/2k�1/2 ↑ for k ≥ 1. Thus, we may write that for k ≥ 1,

Dk+1
Dk

>

(
Dk
Dk−1

)1/2

> · · · >
(
D2

D1

)1/2k

= {2−1/223}1/2k > 1�

whence Dk+1 > Dk. This, in turn, implies that Dk ↑ x. Since Dk+2 =
�2ak + 1�1/2D1/2

k+2, x must fulfill 1/2 ≤ x ≤ 2 and x = �2x�1/2. The only possi-
bility being x = 2, we conclude (2.23) (ii). ✷

Remark 2.1. It is easy to check from the expressions (1.12) and (2.19) of
the constants Ck and Dk+1 that Ck ≤ Dk+1 for all k ∈ �. This inequality holds
for k = 0�1�2, since C0 = D1 = 2−1/2, C1 = D2 = 2−1/4 and C2 = 2−3/8 < D3 =
3−5/831/2. For higher values of k, we may use an induction argument based
upon the fact that, for all k ≥ 2,

Dk+1/
√
Dk

Ck/
√
Ck−1

=
√
2δk

2�1/2�−δk
= {δk × 22δk

}1/2
> 1�

3. A functional limit law for empirical increments.

3.1. Statement of the result. The proof of Theorem 1.1 is based in part
upon a functional limit law for the increments of empirical processes which
has interest in itself. This result, stated in Theorem 3.1 below, provides a
largely extended version of Theorem 3.1 of Deheuvels and Mason (1992b).

First, we introduce some notation. For any −∞ < a ≤ 0 < b <∞, denote by
B�a� b
 (resp. AC�a� b
) the set of bounded (resp. absolutely continuous with
respect to the Lebesgue measure) functions on �a� b
. A set 
 endowed with
a topology � will be denoted by �
 �� �. The uniform topology, defined by
the sup-norm � · � on B�a� b
 is denoted by �. When f ∈ AC�a� b
, we set
ḟ = �d/dt�f for the Lebesgue derivative of f. For each f ∈ B�a� b
, set

�f�H =
{∫ b
a
ḟ2�s�ds

}1/2
if f ∈ AC�a� b
 and f�0� = 0�

�f�H = ∞ else�

(3.1)

Note for further use that, when a = −1, b = 1 or a = 0, b = 1, the inequality
�f� ≤ �f�H holds for all f ∈ B�a� b
. The Strassen set [Strassen (1964)] is the
unit ball, denoted below by 
 = K1 of the reproducing kernel Hilbert space
� = 	f ∈ B�a� b
� �f�H <∞
, of the restriction of a (two-sided) Wiener process
on �a� b
. An application of the Arzela–Ascoli theorem readily shows that


 = K1 = 	f ∈ AC�a� b
� �f�H ≤ 1
�(3.2)
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is compact in �B�a� b
���. In the sequel, k ≥ 1 will denote an arbitrary, but
fixed, integer. We will set g = �g1� � � � � gk� ∈ B�a� b
k when g1� � � � � gk ∈ B�a� b

and endow B�a� b
k with the uniform topology �k, conveniently defined by the
norm

�g�k = ��g1� � � � � gk��k = max
1≤j≤k

�gj��(3.3)

For each ε > 0 and A�B ⊆ B�a� b
k, A�B �= �, let
Aε = 	h ∈ B�a� b
k� ∃g ∈ A� �h− g�k < ε
�(3.4)

and set 0�A�B� = inf	ε > 0� A ⊆ Bε and B ⊆ Aε
 whenever such an ε > 0
exists, 0�A�B� = ∞ else, Moreover, for each ε > 0 and h ∈ B�a� b
k, set

�ε�h� =
{
g ∈ B�a� b
k� �g − h�k < ε

}
�(3.5)

The notation (3.4) and (3.5) will be used independently of k ≥ 1, and in par-
ticular for k = 1. Let 	hn� l� n ≥ 1
, for l = 1� � � � � k, denote k sequences of
positive constants fulfilling the assumptions (H1)–(H4).

(H1) For each l = 1� � � � � k, hn� l ↓ 0 and nhn� l ↑ ∞.
(H2) 0 < hn�k < · · · < hn�1 < 1.
(H3) (i) nhn�k/ log n→∞; (ii) 	log�1/hn�1�
/ log2 n→∞.
(H4) (i) For each l = 1� � � � � k, 	log�1/hn� l�
/ log�1/hn�k� → dl ∈ �0�1
.

(ii) 0 < d1 ≤ · · · ≤ dk = 1.
(iii) For each l = 1� � � � � k− 1, hn� l+1/hn� l→ 0.

From now on, we will limit overselves to either �a� b
 = �0�1
 or �a� b
 =
�−1�1
. For n ≥ 1, x ∈ �0�1
 and l = 1� � � � � k, we consider the functions of
t ∈ �a� b
, defined by

fn� l�x� t� = �2hn� l log�1/hn� l��−1/2�αn�x+ hn� lt� − αn�x���(3.6)

For any fixed interval J = �A�B
 ⊆ �0�1
 with A < B, let �n�k�J� ⊆ B�a� b
k
be defined by

�n�k=�n�k�J�=
{(
fn�1�x� t1�� � � � � fn�k�x� tk�

)� x ∈ J}� tl� � � � � tk ∈ �a� b
�(3.7)

In view of (3.2) and (H4)(ii), we set further

Kk =
{
�f1� � � � � fk� ∈ AC�a� b
k� ∀1 ≤m ≤ k�

m∑
l=1
dl�fl�2H ≤ dm

}
⊆ 
k�(3.8)

The main result of this section may now be stated as follows.

Theorem 3.1. Fix any J = �A�B
 ⊆ �0�1
 with A < B, and let �a� b
 =
�0�1
 or �a� b
 = �−1�1
. Then, under (H1)–(H2)–(H3)–(H4), we have

lim
n→∞0��n�k�J��Kk� = 0 a.s.(3.9)

Remark 3.1. (i) For k = 1, K1 = 
, and Theorem 2.1 reduces to
Theorem 3.1 in Deheuvels and Mason (1992b) [see also Berthet (1997)].
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(ii) It is readily verified that, for each k ∈ �∗, Kk is a compact subset of
�B�a� b
k��k�.

(iii) In Sections 3.2 and 3.3 below we give a detailed proof of Theorem 3.1
under the following restrictions. First, we replace the assumptions (H3) and
(H4) by (H3)′ and (H4)′.

(H3)′ (i) nhn�k/ log
3 n→∞; (ii) 	log�1/hn�1�
/ log2 h→∞.

(H4)′ (i) For each l = 1� � � � � k, 	log�1/hn� l�
/ log�1/hn�k� → dl ∈ �0�1
;
(ii) 0 < d1 < · · · < dk = 1.

The corresponding version of Theorem 3.1 will turn out to be largely suffi-
cient for the sake of proving Theorem 1.1. Second, we will consider only the
special cases where �a� b
 = �0�1
, J = �0�1
 and k = 2. It will become obvious
later on that the proof of the full version of Theorem 3.1 can be completed by a
routine but tedious book-keeping-type combination of the present arguments
with that of Deheuvels and Mason (1992b) and Deheuvels (1997). We will omit
therefore the corresponding lengthy technicalities.

3.2. Proof of Theorem 3.1. Inner bounds. The main result of this subsec-
tion, stated in the forthcoming Proposition 3.1, establishes the inner bound
half of Theorem 3.1. In view of Remark 3.1, we will assume from now on that
(H1), (H2) and (H3)′, (H4)′ hold. Moreover, we set �a� b
 = �0�1
 and k = 2.
We note that, in this case, we have 0 < d1 < d2 = 1, so that (3.8) may be
rewritten into

K2 =
{�f1� f2� ∈ AC�0�1
2� d1�f1�2H ≤ d1 and d1�f1�2H + d2�f2�2H ≤ d2

}
= {�f1� f2� ∈ AC�0�1
2� �f1�2H ≤ 1 and �f2�2H ≤ 1− d1�f1�2H

} ⊂ 
2�

with 
 = K1 being as in (3.2). Recalling (2.2) and (3.6), for n ≥ 1, x ∈ �0�1

and l = 1�2, we consider the functions of t ∈ �0�1
, defined by

Ln�l�x�t�=�2nhn�l log�1/hn�l��−1/2
{
W1�n�x+hn�lt�−W1�n�x�

}
�(3.10)

Lemma 3.1. Under (H3)′, we have

lim
n→∞

∥∥�fn�1� fn�2� − �Ln�1�Ln�2�∥∥2 = 0 a.s.(3.11)

Proof. By (2.2)–(2.4), there exists an n1 <∞ a.s., such that, for all n ≥ n1,∥∥αn − n−1/2K1�n� I�
∥∥ < 	4n

−1/2 log2 n�(3.12)

By (2.2), K1�n� t� = W1�n� t� − tW1�n�1� and 	W1�t�1�� t ≥ 0
 is a Wiener
process. Thus, by the law of the iterated logarithm, there exists an n2 < ∞
a.s. such that, for all n ≥ n2, �W1�n�1�� ≤ 2

√
n log2 n a.s. By (H3)′, it follows
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therefore that, for either l = 1 or l = 2,

�fn� l −Ln� l� ≤ �2hn� l log�1/hn� l��−1/2	2	4n
−1/2 log2 n+ 4hn� l

√
log2 n


= O
({

log3 n
nhn� l

}1/2)
+O

({
hn� l log2 n
log�1/hn� l�

}1/2)
= o�1�

a.s. as n→∞�
In view of (3.3), this suffices for (3.11). ✷

For any A ⊆ B�0�1
, A �= �, let
J�A� = inf

f∈A
�f�2H�(3.13)

The following fact is due to Schilder (1966) [see, e.g., Deuschel and Stroock
(1989), page 12].

Fact 4. For each λ > 0, set W	λ
�s� = �2λ�−1/2W�s� for s ∈ �0�1
, where
	W�t�� t ≥ 0
 is a Wiener process. Then, for each closed (resp. open) subset F
(resp. G) of (B�0�1
��),

lim sup
λ→∞

λ−1 log��W	λ
 ∈ F� ≤ −J�F��(3.14)

lim inf
λ→∞

λ−1 log��W	λ
 ∈ G� ≥ −J�G��(3.15)

Set A = B�0�1
 − A and ρA = 	ρf� f ∈ A
 for ρ ∈ � when A ⊆ B�0�1
.
The next fact is a version of Lemma 2.5 in Deheuvels (1997), given in view of
an application of (3.14), (3.15) to F = 	ρ
ε
 = 	�ρ
�ρε
 and G = �ε�f�, as
defined in (3.4), (3.5), for ρ > 0 and ε > 0.

Fact 5. For each ρ > 0, ε ∈ �0�1� and f ∈ 
 ⊆ B�0�1
 such that 0 < ε <
�f�H ≤ 1,

�i� J �	ρ
ε
� ≥ ρ2�1+ ε�2�
�ii� J ��ε�f�� ≤ ��f�H − ε�2 ≤ �f�2H�1− ε�2�

(3.16)

Denote by $u% ≤ u < $u% + 1 (resp. &u' − 1 < u ≤ &u') the lower (resp. upper)
integer part of u. Let 0 < ε < 1/2 and δ > 0 denote two constants to be
specified later on, and set θ = 1−�1− ε�3. For each n ≥ 1, set xi = �i+ δ�hn�1
for i ≤ mn �= −1 + $�1/hn�1� − δ%. Next, for each i ≤ mn and j ≤ Mn �=
$δhn�1/hn�2%, set xi�j = �i + δ�hn�1 − jhn�2. Note for further use that, for all
large n and 1 ≤ i ≤mn, 1 ≤ j ≤Mn, we have

0 ≤ xi − δhn�1 ≤ xi�j < xi� j + hn�2 ≤ xi < xi + hn�1 ≤ 1�(3.17)

It follows from (H4)′(i) and these definitions that, ultimately as n→∞,

hn�1 = hd1+o�1�n�2 � mn = h−d1+o�1�n�2 ≥ h−d1+θ/2n�2 �

Mn = hd1−1+o�1�n�2 ≥ h−d1−1+θ/2n�2 �
(3.18)
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For each eventE, we setE = �−E for the complement ofE. For any �f1� f2� ∈
AC�0�1
2, n ≥ 1 and i = 0� � � � �mn, consider the events

Ei�n = Ei�n�f1� f2� ε� δ�

= {Ln�1�xi� I� ∈ �ε�f1�
} ∩ {Mn⋃

j=1

{
Ln�2�xi�j� I� ∈ �ε�f2�

}}
�

En = En�f1� f2� ε� δ� =
mn⋃
i=1
Ei�n�f1� f2� ε� δ��

(3.19)

Lemma 3.2. Let �f1� f2� ∈ K2 be such that �f1�2H < 1 and d1�f1�2H +
d2�f2�2H < 1. Then, for each δ > 0 and 0 < ε < �1/32�min	1−d1�f1�2H−d2�f2�2H�
d1�1− �f1�2H�
, we have

�
(
En�f1� f2� ε� δ� i.o.

) = 0(3.20)

Proof. Fix any �f1� f2� ∈ K2 with �f1�2H < 1 and d1�f1�2H + d2�f2�2H < 1.
Select an arbitrary ε ∈ �0� �1/32�min	1 − d1�f1�2H − d2�f2�2H�d1�1 − �f1�2H�

,
and set θ = 1− �1− ε�3. It follows form (3.17) that, for all large n, 1 ≤ i ≤mn
and 1 ≤ j ≤Mn,

�xi� xi + hn�1� ∩ �xi�j� xi� j + hn�2�
= (�i+ δ�hn�1� �i+ 1+ δ�hn�1

)
∩ (�i+ δ�hn�1 − jhn�2� �i+ δ�hn�1 − �j− 1�hn�2

) = ��
In view of (3.10) and (3.19), it follows from the scale invariance properties, and
independence of Wiener process increments for nonoverlapping intervals, that

��En� = �

(mn⋂
i=1
Ei�n

)
=	1−��E1�n�
mn≤exp�−mn��E1�n���

mn��E1�n� =mn�
(
Ln�1�0�I�∈�ε�f1�

)
×
(
1−{1−��Ln�2�0�I�∈�ε�f2��

}Mn

)
=�mnP1�n×P2�n�

(3.21)

Now, letting G = �ε�f1� in (3.15), we readily infer from (3.10), (3.16), (3.18)
and (3.21) that, for all large n,

mnP1� n =mn�
(
Ln�1�0� I� ∈ �ε�f1�

) =mn�(W	log�1/hn�1�
 ∈ �ε�f1�
)

≥ mn exp
(−�1− ε�J��ε�f1�� log�1/hn�1�

)
≥ mnh�1−ε�

3�f1�2H
n�1 = h�1−ε�3d1�f1�

2
H−d1+o�1�

n�2 ≥ h�1−ε�3d1�f1�
2
H−d1+θ/2

n�2 �

(3.22)

Likewise, by combining (3.15) with the inequalities 1 − �1 − u�M ≥ 1 − e−Mu ≥
1
2 min	Mu�1
 for 0 < u < 1 andM ≥ 0, we obtain readily from (3.18) and (3.21)
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that, for all large n,

P2� n ≥ 1− exp
(
−Mn�

(
W	log�1/hn�2�
 ∈ �ε�f2�

))
≥ 1− exp

(
−Mnh

�1−ε�3�f2�2H
n�2

)
≥ 1

2 min
{
Mnh

�1−ε�3d2�f2�2H
n�2 �1

}
≥ 1

2 min
{
h
�1−ε�3d2�f2�2H+d1−1+θ/2
n�2 �1

}
�

(3.23)

where we have used the fact that d2 = 1. By combining (3.21), (3.22) and
(3.23), and recalling that θ = 1− �1− ε�3, we obtain that, for all large n,

mn��E1� n� ≥
1
2
min

{
h
�1−ε�3	d1�f1�2H+d2�f2�2H
−1+θ
n�2 � h

�1−ε�3d1�f1�2H−d1+θ
n�2

}

≥ h
θ
n�2

2
min

{
h
�1−ε�3	d1�f1�2H+d2�f2�2H−1

n�2 � h

�1−ε�3d1	�f1�2H−1

n�2

}

≥ h
θ−2ρ
n�2

2
�

(3.24)

where we set ρ = �1/4�min	1 − d1�f1�2H − d2�f2�2H�d1�1 − �f1�2H�
 ∈ �0�1/4�,
and make use of the rough inequality �1 − ε�3 ≥ 1/4, implied by the lemma’s
assumption that 0 < ε < ρ/8 < 1/32. Since θ = 1−�1− ε�3 ≤ 3ε, the fact that
0 < ε < ρ/8 entails further that ρ > 8ε > 3ε > θ. This, when combined with
(2.24), implies that, for all large n,

mn��E1� n� ≥
h
θ−ρ
n�2

2
× h−ρn�2 ≥ h−ρn�2�

Since (H3)′(ii) implies that, ultimately in n → ∞, h−ρn�2 ≥ 2 log n, we infer
from (3.21) and the above inequalities that, for all n sufficiently large,

��En� ≤ exp
(−mn��E1� n�

) ≤ exp
(−h−ρn�2) ≤ n−2�

which is summable, so that the proof of (3.20) is completed by the Borel–
Cantelli lemma. ✷

Lemma 3.3. For each δ > 0, we have

lim sup
n→∞

{
max
1≤i≤mn

max
1≤j≤Mn

∥∥Ln�1�xi�j� I� −Ln�1�xi� I�∥∥
}
≤ 4δ1/2 a.s.(3.25)

Proof. By (H4)′ [or (H4)(iii)], hn�2/hn�1 → 0 as n → ∞. We have, there-
fore, for all large n and uniformly over all 1 ≤ i ≤ mn and 1 ≤ j ≤ Mn =
$δhn�1/hn�2%,

�xi − xi�j� = jhn�2 ≤Mnhn�2 ≤ �δhn�1/hn�2�hn�2 ≤ δhn�1�(3.26)
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Recall the definition (3.6) of fn�1�x� t�. By combining (3.26) with (3.11) and the
triangle inequality, we next observe, via (2.7) and (2.8), that

lim sup
n→∞

{
max
1≤i≤mn

max
1≤j≤Mn

∥∥Ln�1�xi�j� I� −Ln�1�xi� I�∥∥
}

= lim sup
n→∞

{
max
1≤i≤mn

max
1≤j≤Mn

∥∥fn�1�xi�j� I� − fn�1�xi� I�∥∥
}

≤ 4 lim sup
n→∞

�2hn�1 log�1/hn�1��−1/2 sup
�u�≤δhn�1

�αn�I+ u� − αn� = 4δ1/2 a.s.�

which is (3.25). ✷

Proposition 3.1. For any ε > 0, we have almost surely for all n sufficiently
large,

K2 ⊂ � ε
n�2�(3.27)

Proof. K2 being a compact subset of �B�0�1
2���, for each ε > 0, there
exists a finite sequence

{
gµ =

(
g
�µ�
1 � g

�µ�
2

)� 1 ≤ µ ≤�
} ⊂ K2 such that

K2 ⊆
�⋃
µ=1

�ε/4�gµ��(3.28)

Since, for each 1 ≤ µ ≤ � , there exists an fµ =
(
f
�µ�
1 � f

�µ�
2

) ∈ �ε/4�gµ� with
�f�µ�1 �2H < 1 and d1�f�µ�1 �2H+d2�f�µ�2 �2H < 1, it follows from (3.28) and the triangle
inequality that

K2 ⊆
�⋃
µ=1

�ε/2�fµ��(3.29)

By (3.29) and the triangle inequality, the proof of (3.27) boils down to showing
that, for each specified µ = 1� � � � �� and �f1� f2� �= fµ = �f�µ�1 � f

�µ�
2 �, the

following property holds. With probability 1 for all n sufficiently large, there
exists an x�n� ∈ �0�1
 such that∥∥�fn�1�x�n�� I�� fn�2�x�n�� I�� − �f1� f2�∥∥2 < ε/2�(3.30)

Where we set

ε = min
{
ε�

1
32

min
{
1− d1�f1�2H − d2�f2�2H�d1�1− �f1�2H�

}}
�

By (3.11), (3.30) will hold if our choice of x�n� ∈ �0�1
 is such that, a.s. for all
large n, ∥∥(Ln�1�x�n�� I��Ln�2�x�n�� I�)− �f1� f2�∥∥2 < ε/4�(3.31)
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To establish (3.31), we choose δ = �1/4096�ε2, so that 4δ1/2 = ε/16 < ε/8. In
view of (3.25), this implies that, with probability 1 for all large n, 1 ≤ i ≤mn
and 1 ≤ j ≤Mn, ∥∥Ln�1�xi�j� I� −Ln�1�xi� I�∥∥ ≤ ε/8�(3.32)

Next, in view of (3.3), we observe that (3.19) and (3.20) imply the existence,
a.s. for all large n, of indices 1 ≤ i ≤ mn and 1 ≤ j ≤Mn (depending upon n)
such that ∥∥(Ln�1�xi� I��Ln�2�xi�j� I�)− �f1� f2�∥∥2 < ε/8�(3.33)

The conclusion (3.31) is achieved by setting x�n� = xi�j as above and by
combining (3.32), (3.33) with the triangle inequality. ✷

3.3. Proof of Theorem 3.1. Outer bounds. We now turn to the second half
of the proof of Theorem 3.1. The following additional notation will be used.
Let γ > 0 and δ > 0 be constants which will be precised later on. Consider the
sequence of indices νm = $�1+γ�m%, for m ∈ �, and denote by m0 the smallest
index such that 1 ≤ νm−1 < νm for all m ≥m0. It will be convenient to set, for
m ≥ 1, i ≤ Tm �= 1+ &1/�2δhνm�1�' and j ≤ Qm �= &hνm�1/hνm�2',

yi = �i+ 1�δhνm�1 and yi�j = �i− 1�δhνm�1 + jδhνm�2�(3.34)

It is noteworthy that, for all large m and 1 ≤ i ≤ Tm, 1 ≤ j ≤ Qm,
0 ≤ yi − 2δhνm�1 ≤ yi�j ≤ yi�j + hνm�2 ≤ yi − δhνm�1 + �δ+ 1�hνm�2

< yi < yi + hνm�1 ≤ �1/2� + �3δ+ 1�hνm�1 < 1
(3.35)

and

1/2 < yTm�Qm < yTm < �1/2� + 3δhνm�1 < 1�(3.36)

Moreover, it follows readily from (H4)′ and these definitions that, ultimately
as m→∞,

Tm ≤ 2+ 	1/�2δhνm�1�
 ≤ 1/�δhνm�1��
Qm ≤ 1+ 	hνm�1/hνm�2
 ≤ 2hνm�1/hνm�2�

(3.37)

Recall from (H1) that, for l = 1�2 and νm−1 < n ≤ νm, we have hνm� l ≤ hn� l.
For each x ∈ �0�1/2
, m ≥ m0 and νm−1 < n ≤ νm, set zn�1�x� = yI and
zn�2�x� = yI�J where I = I�x�n� and J = J�x�n� are such that 1 ≤ I ≤ Tm,
1 ≤ J ≤ Qm and

�x− zn�2�x�� = �x− yI�J� = min
1≤i≤Tm

min
1≤j≤Qm

�x− yi�j�

≤ δhνm�2 ≤ 2δhn�2�
(3.38)

Note for further use that

�x− zn�1�x�� = �x− xI� ≤ 2δhνm�1 ≤ 2δhn�1�(3.39)



KIEFER APPROXIMATION OF QUANTILE PROCESSES 927

Lemma 3.4. For each 0 < γ < 1 and l = 1�2, we have

lim sup
n→∞

{
sup

0≤x≤1/2
sup

1−γ≤θ≤1
�Ln� l�x� I� −Ln� l�zn� l�x�� θI��

}

< 4�δ1/2 + γ1/2� a.s.

(3.40)

Proof. Recall (3.6). By combining (2.8) with (3.38) and (3.39) and the tri-
angle inequality, we see that, uniformly over x ∈ �0�1/2
, for l = 1�2,

sup
1−γ≤θ≤1

�fn� l�x� θI� − fn� l�zn� l�x�� θI�� ≤ �fn� l�x� I� − fn� l�zn� l�x�� I��

≤ 2 sup
�u�≤2δhn� l

�2hn� l log�1/hn� l��−1/2�αn�I+ u� − αn�

→ 23/2δ1/2 a.s. as n→∞
and

sup
1−γ≤θ≤1

�fn� l�x� I� − fn� l�x� θI��

≤ sup
�u�≤γhn� l

�2hn� l log�1/hn� l��−1/2�αn�I+ u� − αn� → γ1/2 a.s. as n→∞�

By combining these statements with (3.3) and (3.11), we obtain readily that,
for l = 1�2,

lim sup
n→∞

{
sup

0≤x≤1/2
sup

1−γ≤θ≤1

∥∥Ln� l�x� I� −Ln� l�zn� l�x�� θI�∥∥
}

= lim sup
n→∞

{
sup

0≤x≤1/2
sup

1−γ≤θ≤1

∥∥fn� l�x� I� − fn� l�zn� l�x�� θI�∥∥
}

≤ lim sup
n→∞

{
sup

0≤x≤1/2
sup

1−γ≤θ≤1

∥∥fn� l�x� I� − fn� l�x� θI�∥∥
}

+ lim sup
n→∞

{
sup

0≤x≤1/2
sup

1−γ≤θ≤1

∥∥fn� l�x� θI� − fn� l�zn� l�x�� θI�∥∥
}

≤ γ1/2 + 23/2δ1/2 a.s.�

which readily implies (3.40). ✷

In view of the definition (3.10), for each m ≥m0� νm−1 < n ≤ νm� x ∈ �0�1

and l = 1�2, introduce the functions of t ∈ �0�1
 defined by

Hn� l�x� t� = �2νmhνm� l log�1/hνm� l��−1/2
{
W1�n�x+ hνm� lt� −W1�n�x�

}
=
{
nhn� l log�1/hn� l�
νmhνm� l log�1/hνm� l�

}1/2
Ln�l�x� thνm� l/hn� l��

(3.41)
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Let λ1 > 0 and λ2 > 0 be constants which will be precised later. Recalling the
notation ρ� = 	ρf� f ∈ � 
 for � ∈ B�0�1
 and ρ ∈ �, introduce the events,
for ε > 0� m ≥m0� νm−1 < n ≤ νm� 1 ≤ i ≤ Tm and 1 ≤ j ≤ Qm,


 ′n� i�ε� =
{
Hn�1�yi� I� �∈ λ1
ε

}
� 
 ′′n� i� j�ε� =

{
Hn�2�yi�j� I� �∈ λ2
ε

}
�


 ′m� i�ε� =
{

νm⋃
n=νm−1+1


 ′n� i�ε�
}
∩
{
Qm⋃
j=1

{
νm⋃

n=νm−1+1

 ′′n� i� j�ε�

}}
�


 �ε� =
Tm⋃
i=1


m� i�ε��

(3.42)

We will make use of the following general inequality, in the spirit of Lemma 3.4
in Deheuvels and Mason (1992a, b). Let ηr�t�, for 1 ≤ r ≤ R and t ∈ �0�1
,
denote �B�0�1
���-valued random functions such that the following condition
holds:

(C) For each 1 ≤ r ≤ R� ηR − ηr and 	ηi� 1 ≤ i ≤ r
 are independent�

Lemma 3.5. Let A �= � be a Borel subset of �B�0�1
���. Then under (C),
for each ε > 0 such that ���ηR − ηr� ≤ ε� ≥ 1/2 for 1 ≤ r < R, we have

�

( R⋃
r=1
	ηr �∈ A2ε


)
≤ 2�

(
ηr �∈ Aε

)
�(3.43)

Proof. Set, for each r = 1� � � � �R and ε > 0, Er�ε� = 	ηr �∈ Aε
 and
E0�ε� = �. Observe that, for each r = 1� � � � �R, Er�2ε� ∩ 	�ηR − ηr� ≤ ε
 ⊆
ER�ε�. Since, for each r = 1� � � � �R, ���ηR − ηr� ≤ ε� ≥ 1/2, we may use (C)
to write

1
2�

(
R⋃
r=1
Er�2ε�

)
= 1

2

R∑
r=1

�

(
Er�2ε� ∩

r−1⋂
i=0
Ei�2ε�

)

≤
R∑
r=1

�

(
Er�2ε� ∩

r−1⋂
i=0
Ei�2ε�

)
���ηR − ηr� ≤ ε�

=
R∑
r=1

�

({
Er�2ε� ∩ 	�ηR − ηr� ≤ ε


} ∩ r−1⋂
i=0
Ei�2ε�

)

≤ �

(
R⋃
r=1

{
ER�ε� ∩Er�2ε� ∩

r−1⋂
i=0
Ei�2ε�

}) ≤ ��ER�ε���

which is (3.43). ✷

Lemma 3.6. For all m sufficiently large, we have, for all 1 ≤ i ≤ Tm and
1 ≤ j ≤ Qm,

�

( νm⋃
n=νm−1+1


 ′n� i�ε�
)
≤ �

(

 ′νm� i�ε/2�

)
(3.44)
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and

�

( νm⋃
n=νm−1+1


 ′′n� i� j�ε�
)
≤ �

(

 ′′νm� i� j�ε/2�

)
�(3.45)

Proof. Fix any 1 ≤ i ≤ Tm and 1 ≤ j ≤ Qm. We make use of Lemma 3.5
with the following choices of ε > 0, 	ηr� 1 ≤ r ≤ R
 and A. For either l = 1
or l = 2, and for 1 ≤ r ≤ R �= Rm = νm − νm−1, we set ηr = Hνm−1+r� l�yi� I�,
which, by (3.41), obviously fulfills (C). Moreover, for each ε > 0, we have,
uniformly over 1 ≤ r < R,

�
(�ηR − ηr� > ε) = �

(
�W� > ε

{2 log�1/hνm� l�
R− r

}1/2)

≤ 4 exp
(−ε2 log�1/hνm� l�)→ 0�

where we have used the inequality ���W� ≥ u� ≤ 4 exp�−u2/2� for u ≥ 0
[combine (1.1.1) and (1.5.1) in Csörgő and Révész (1981)]. We may therefore
apply (3.43), to obtain (3.44), (3.45), after setting A = λl
 and ε = �λlε�/2 for
l = 1�2. ✷

Lemma 3.7. For each ε > 0, we have, for all m sufficiently large,

��
m�ε�� ≤ min
{
h
�1+ε�d1λ21−d1
νm�2

� h
�1+ε�	d1λ21+d2λ22
−d2
νm�2

}
�(3.46)

Proof. We infer from (3.42) and the Bonferroni inequalities that

��
m�ε�� ≤ Tm��
m�1�ε�� = �m�1 ×�m�2

�=
{
Tm�

( νm⋃
n=νm−1+1


 ′n�1�ε�
)}
× �

(Qm⋃
j=1

{ νm⋃
n=νm−1+1


 ′′n�1� j�ε�
})
�

(3.47)

where we make use of the independence of Wiener process increments on
nonoverlapping intervals. Further, we may write, via (3.35), (3.41), (3.42)
and (3.44),

�m�1 ≤ Tm�
(

 ′νm�1�ε/2�

) = Tm�(Hνm�1�0� I� �∈ λ1
ε/2
)

= Tm�
(
W	log�1/hνm�1�
 ∈ 	λ1
ε/2


)
�

(3.48)

By (3.45) and another application of the Bonferroni inequalities, we get,
likewise,

�m�2 ≤ min
{
1�Qm�

( νm⋃
n=νm−1+1


 ′′n�1� j�ε�
)}

≤ min
{
1�Qm�

(

 ′′νm�1�1�ε/2�

)}
= min

{
1�Qm�

(
Hhνm�2

�0� I� �∈ λ2
ε/2
)}

= min
{
1�Qm�

(
W	log�1/hνm�2�
 ∈ 	λ2
ε/2


)}
�

(3.49)
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Recalling (3.18), (3.37) and d2 = 1, we set G = 	λ1
ε/2
 in (3.15) and use the
inequalities λ21�1 + ε/2�2 > λ21�1 + ε + ε2/8� > λ21�1 + ε� to obtain via (3.48)
that, for all large m,

Tm�
(
W	log�1/hνm�1�
 ∈ 	λ1
ε/2


)
≤ �1/δ� × h−1νm�1 × h

λ21�1+ε+ε2/8�
νm�1

≤ h�1+ε�d1λ
2
1−d1

νm�2
�

(3.50)

Likewise, by setting G = 	λ2
ε/2
 in (3.15), we obtain via (3.46) that, for all
large m,

Tm�
(
W	log�1/hνm�1�
 ∈ 	λ1
ε/2


)
Qm�

(
W	log�1/hνm�2�
 ∈ 	λ2
ε/2


)
≤ �1/δ� × h−1νm�2 × h

λ21�1+ε+ε2/8�
νm�1

× hλ
2
2�1+ε+ε2/8�
νm�2

= h�1+ε�	d1λ
2
1+d2λ22
−d2

νm�2
�

(3.51)

The conclusion (3.46) is a direct consequence of (3.47) and (3.48)–(3.51). ✷

Lemma 3.8. Let "1 > 0 and "2 > 0 be any two constants such that either
d1"

2
1 ≥ d1 or d1"2

1 +d2"2
2 ≥ d2. Fix any 0 < ε < 1, and select δ > 0 and γ > 0

such that 0 < max	δ� γ
 < �ε2/64�min	1� "2
1� "

2
2
�. Then, we have almost

surely for all large n,

fn� l�x� I� ∈ "l
ε for l = 1�2 and all x ∈ �0�1
�(3.52)

Proof. Note for further use that our assumptions imply that 4�δ1/2 +
γ1/2� ≤ �"lε�/2 for l = 1�2. Let for convenience ε = ε/2. Set λl = �1+ ε�−1/4"l
for l = 1�2 in Lemma 3.7. We infer readily from (3.46) that, for some m1 <∞,∑

m≥m1

��
m�ε�� ≤
∑
m≥m1

min
{
h
�1+ε�d1λ21−d1
νm�2

� h
�1+ε�	d1λ21+d2λ22
−d2
νm�2

}
�

Since, for each η > 0, �H3�′�ii� [or equivalently �H3��ii�] implies that, ulti-
mately for all large n, hn�2 ≤ �log n�−2/η, the fact that νm = $�1+ γ�m% readily
implies that

∑
m

h
η
νm�2

= O
(∑
m

1
m2

)
<∞�

In view of (3.41) and (3.42), the Borel–Cantelli lemma implies therefore that,
a.s. for all m sufficiently large, we have uniformly over x ∈ �0�1/2
, l = 1�2
and νm−1 < n ≤ νm,{

nhn� l log�1/hn� l�
νmhνm� l log�1/hνm� l�

}1/2
Ln� l�zn� l�x�� thνm� l/hn� l� ∈ λl
ε

= �1+ ε�−1/4"l
ε�
(3.53)

Now, it follows from (H1) that, for l = 1�2 and νm−1 < n ≤ νm,

hνm� l ≤ hn� l ≤
{
νm
n

}
hνm� l ≤

{
νm
νm−1

}
hνm� l ∼ �1+ γ�hνm� l as m→∞�
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This, in turn, implies that, for all large m, l = 1�2 and νm−1 < n ≤ νm,

1 ≤
{
νmhνm� l log�1/hνm� l�
nhn� l log�1/hn� l�

}1/2
≤ 1+ γ < �1+ ε�1/4(3.54)

and

1 ≥ hνm� l
hn� l

= 1+ o�1�
1+ γ > 1− γ�(3.55)

Here, we have used the fact, following from our assumptions, that 0 < γ < ε/8
and 0 < ε < 1, and hence, γ < ε/8 < �1+ε�1/4−1. By (3.53), (3.54), we see that,
a.s. for all m sufficiently large, we have, uniformly over x ∈ �0�1/2
� l = 1�2
and νm−1 < n ≤ νm,

Ln� l�zn� l�x�� Ihνm� l/hn� l� ∈ "l
ε = 	"l

"lε�
This, when combined with (3.40) and (3.55), shows in turn that, a.s. for all
large n, we have, uniformly over all x ∈ �0�1/2
,

Ln� l�x� I� ∈ 	"l

"lε+4�δ
1/2+γ1/2� ⊆ 	"l

"lε = "l
ε�

This, together with a similar argument on [1/2, 1], where we repeat the pre-
vious steps via the mapping x→ 1− x, completes the proof of (3.52). ✷

Proposition 3.2. For any ε > 0, we have almost surely for all n sufficiently
large,

�n�2 ⊆ Kε2�(3.56)

Proof. It follows from (3.52) in combination with the analytic fact that,
for each ε > 0, there exists a finite sequence 	�"1� r� "2� r�� 1 ≤ r ≤ R
 together
with an ε > 0, such that;

�i� "l > 0 for l = 1�2� d1"
2
1� r ≤ d1� d1"

2
1� r + d2"2

2� r ≤ d2�
�ii� min	d1 − d1"2

1� r� d2 − d1"2
1� r + d2"2

2� r
 = 0�

�iii�
R⋃
r=1
�"1� r


ε� "2� r

ε� ⊆ Kε2�

(3.57)

We omit the details. ✷

Proof of Theorem 3.1. The proof of (3.9) is obtained by combining (3.27)
and (3.57). ✷

4. Proofs of Theorems 2.1 and 2.2.

4.1. Proof of Theorem 2.1. This subsection, devoted to the proof of
Theorem 2.1, will make use of the notation and results of Sections 1–3. From
now on, k ≥ 1 will be arbitrary but fixed.
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Select an ε > 0 and, recalling (2.16)–(2.19), set for each l ∈ �∗, n ≥ 2 and
t ∈ �−1�1
,

an� l = �1+ ε�1/2
l

Dln
−1+�1/2�l�log n�1−�1/2�l−1�log2 n��1/2�

l

�(4.1)

φn� l�x� t� = −
(
2an� l log�1/an� l�

)−1/2
×{αn�x+ n−1/2βn�x� + tan� l� − αn�x+ n−1/2βn�x��}(4.2)

and, for each l ∈ �,

δl = 1− �1/2�l and 0l�k �=
δl
δk
�(4.3)

Set further, for n ≥ 2 and l ∈ �,

tn� l = tn� l�x� = −
{
n−1/2�αn� l−1�x� + βn�x��

an� l

}
�(4.4)

so that, via (2.6), (4.1) and (4.2),

φn� l�x� tn� l�x��
= −�2an� l log�1/an� l��−1/2

{
αn� l�x� − αn�x+ n−1/2βn�x��

}
�

(4.5)

Lemma 4.1. There exists an n0 < ∞ a.s., such that, for all n ≥ n0 and
1 ≤ l ≤ k,

�tn� l� ≤ �1+ ε/2�−1/2
l

< 1�(4.6)

Moreover, we have, for each l ∈ �,

lim
n→∞�tn� l+1 −φn� l�tn� l�� = 0 a.s.(4.7)

Proof. By combining (2.13) and (2.20) with (4.1)–(4.4), we obtain that, for
each l ∈ �∗,

lim sup
n→∞

�tn� l� = �1+ ε�−1/2
l

< �1+ ε/2�−1/2l < 1 a.s.�(4.8)

which yields readily (4.6). Next, we use the triangle inequality to write

�tn� l+1 −φn� l�tn� l�� ≤ �tn� l+1� ×
∣∣∣∣1−

{
an� l+1
n−1/2

× �2an� l log�1/an� l��−1/2
}∣∣∣∣

+
∥∥∥∥
{
an� l+1
n−1/2

× �2an� l log�1/an� l��−1/2
}
tn� l+1 −φn� l�tn� l�

∥∥∥∥
= � ′

n +� ′′
n�
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An application of (4.8) shows that �tn� l+1� = O�1� a.s. Since, by (2.22) and (4.1),
an� l+1
n−1/2

× �2an� l log�1/an� l��−1/2 =
{
Dl+1√
2δlDl

}
×
{

2δl log n
2 log�1/an� l�

}1/2

=
{

2δl log n
2 log�1/an� l�

}1/2
→ 1 as n→∞�

we have therefore � ′
n→ 0 a.s. Next, we infer from (2.5) that, almost surely,

� ′′
n = �2an� l log�1/an� l��−1/2�βn + αn�I+ n−1/2βn��
= O(�2nan� l log�1/an� l��−1/2)→ 0�

which completes the proof of (4.7). ✷

In view of (2.16) and (4.3), observe that, for l = 1� � � � � k,

1
2
≤ 0l�k =

δl
δk
= 1− �1/2�l

1− �1/2�k = lim
n→∞

log�1/an� l�
log�1/an�k�

≤ 1�(4.9)

Set

�k =
{
�φ1� � � � � φk� ∈ AC�−1�1
k� ∀ 1 ≤m ≤ k�

m∑
l=1
δl�φl�2H ≤ δm

}
�(4.10)

Lemma 4.2. We have

lim sup
n→∞

�tn�k+1� ≤ sup
�φ1� ���� φk�∈�k

�φk ◦ · · · ◦φ1� a.s.(4.11)

Proof. For each J = �A�B
 ⊆ �0�1
 with A < B, set
�n�k�J� =

{�φn�1�x� I�� � � � � φn�k�x� I��� x ∈ J}�(4.12)

It follows from (4.1), (4.3) and (4.9) that the sequences hn� l = an� l fulfill the
assumptions (H1), (H2) and (H3)′, (H4)′. We may therefore apply Theorem 3.1
in this case. By so doing, we obtain readily from (3.9) and (4.10) that, for each
specified J as in the theorem,

lim
n→∞0��n�k�J���k� = 0 a.s.(4.13)

It is easy to check from (4.10) that the functions of �k ⊆ 
k are uniformly
equicontinuous. This, when combined with (4.6), (4.7) and (4.13), readily
implies that

lim sup
n→∞

�tn�k+1� = lim sup
n→∞

{
sup
0≤x≤1

∣∣	φn�k�x� I� ◦ · · · ◦φn�1�x� I�
�tn�1�x��∣∣
}

≤ lim sup
n→∞

{
sup
0≤x≤1

(
sup

�φ1� ���� φk�∈�k

∣∣	φk ◦ · · · ◦φ1
�tn�1�x��
∣∣)}

≤ sup
�φ1� ���� φk�∈�k

�φk ◦ · · · ◦φ1� a.s.�

(4.14)

which, in turn, yields (4.11). ✷
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Proposition 4.1. For each k ∈ �∗, we have
sup

�φ1� ���� φk�∈�k
�φk ◦ · · · ◦φ1� = sup

�φ1� ���� φk�∈�k
	φk ◦ · · · ◦φ1
�1�

= �k �=
{
22�k−1��1−δk�−3δk

Dkδk

}1/2

=
{
22�k−1��1−δk�−3δk

δk

}1/2
×
{
23δk−2

k−1∏
l=1
δ
1/2k−l

l

}−1/2
�

(4.15)

the supremum �k being reached for functions φl = φ̃l� l = 1� � � � � k, of the form

φ̃l�t� =
{
λlt� for 0 ≤ t ≤ ∏l−1i=1 λi,
0� else,

(4.16)

with λ1 = 1 and 0 < λl ≤ 1 for 1 ≤ l ≤ k.

Proof. Set first k = 1. We first recall from (2.19) that δ1 = 1/2 and
D1 = 2−1/2. It follows that

�1 =
{

2−3/2

2−1/2 × �1/2�
}
= 1�

Since, via (3.2) and (4.10), �1 = 
, it is straightforward that the supremum

sup
φ∈


�φ� = 1 = �1

is reached for φ�t� = t for 0 ≤ t ≤ 1, φ�t� = 0 else. Thus, (4.15) and (4.16) hold
in this case.

Having proved the proposition for k = 1, we assume from now on that
k ≥ 2. We first note that for �φ1� � � � � φk� ∈ �k we have �φl� ≤ �φl�H ≤ 1 for
each l = 1� � � � � k. An easy induction shows therefore that 	φk ◦ · · · ◦ φ1
�t� is
defined for each t ∈ �−1�1
. Next, we use the fact that if f ∈ � and t1 ∈ �0�1

are such that �f� = �f�t1��, the function defined by

f̃�t� =
{ �t/t1�f�t1�� for 0 ≤ t ≤ t1,
0� else,

fulfills �f̃� = �f� = f̃�t1� = f�t1� and �f̃�H ≤ �f�H. Namely, by the Schwarz
inequality,

�f̃�2H =
f�t1�2
t1

= 1
t1

{∫ t1
0
ḟ�t�dt

}2
≤
{∫ t1

0
ḟ�t�2 dt

}
≤ �f�2H�

A repeated application of this property shows that, given any �φ1� � � � � φk� and
t1 ∈ �0�1
 such that �φ1 ◦ · · · ◦φk� = �	φ1 ◦ · · · ◦φk
�t1��, there exist functions
of the form, for l = 1� � � � � k,

φ̃l�t� =
{
λlt� for 0 ≤ t ≤ tl �= t1"l,
0� else,

with "l =
l−1∏
j=1
λj�(4.17)
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fulfilling �φ̃l�H ≤ �φl�H for l = 1� � � � � k and �φ̃k ◦ · · · ◦ φ̃1� = �φk ◦ · · · ◦ φ1�.
Moreover, if

φ̂1�t� =
{ �λ1t1�t� for 0 ≤ t ≤ 1,

0� else,
and φ̂l = φ̃l for 2 ≤ l ≤ k�

then it is easily cheched that �φ̂l�H ≤ �φ̃l�H for l = 1� � � � � k and �φ̂k◦· · ·◦φ̂1� =
�φ̃k ◦ · · · ◦ φ̃1�. In view of the definition (4.10) of �k, we may therefore restrict
ourselves to the functions φ̂l or φ̃l with t1 = 1. Since the supremum in (4.15)
is reached for a suitable choice of these functions, (4.16) is established. We
set, from now on, t1 = 1 in (4.17) and observe that

∣∣φ̃l∣∣2K = λl
l∏
j=1
λj for l = 1� � � � � k�

By all this, we are led to evaluate the numerical value of the supremum of

∥∥φ̃k ◦ · · · ◦ φ̃1

∥∥ = k∏
l=1
λl�

given that

��m�
m∑
l=1
δl�φ̃l�2H =

m∑
l=1

{
δlλl

l∏
j=1
λj

}
≤ δm

holds for m = 1� � � � � k. By the change of variables xl = λ1 · · ·λl for l =
1� � � � � k, our problem reduces to finding the supremum of xk > 0 when x1 > 0�
� � � � xk−1 > 0 vary in such a way that

��m�
m∑
l=1
δl

{
x2l
xl−1

}
≤ δm

holds for m = 1� � � � � k. Here, we set for convenience x0 = 1. Let us first
limit ourselves to ��k�, written as an equality. We consider the function of
x1� � � � � xk−1,

δkx
2
k = D�x1� � � � � xk−1� �= xk−1

(
δk −

k−1∑
l=1
δl

{
x2l
xl−1

})
�(4.18)

By setting x̂0 = 1 and letting x̂1� � � � � x̂k−1 denote the solutions of the set of
equations

∂

∂xl
D�x1� � � � � xk−1� = 0 for l = 1� � � � � k− 2�

we obtain the equalities

δl

{
x̂2l
x̂l−1

}
= 2δl−1

{
x̂2l−1
x̂l−2

}
for 1 ≤ l ≤ k− 1�(4.19)
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A recursive application of (4.19) shows that, for each 1 ≤ l ≤ k− 1,

δl

{
x̂2l
x̂l−1

}
= 2l−1δ1

{
x̂2l
x0

}
= 2l−2x̂21 for l = 1� � � � � k− 1�(4.20)

where we have used, via (2.19), the fact that δ1 = 1/2. This, in turn, implies
that

x̂k−1 =
k−1∏
l=1

{
x̂2l
x̂l−1

}1/2k−l
=
k−1∏
l=1

{
2l−2x̂21
δl

}1/2k−l
= x̂2δk−11 Vk�(4.21)

where
∏
��·� = 1, and we set for convenience, for each κ ∈ �∗,

Vκ =
κ−1∏
l=1

{
2l−2

δl

}1/2κ−l
= 2κ−1−3δκ−1

κ−1∏
l=1
δ
−1/2κ−l
l �(4.22)

In (4.21) and (4.22), we have used the routine equalities (recall that k ≥ 2�
k−1∑
l=1

l− 2
2k−l

= k− 4+ 1
2k−1

+ 1
2k−2

= k− 1− 3δk−1�(4.23)

k−1∑
l=1

1
2k−l

= 1− 1
2k−1

= δk−1�(4.24)

Since δk − δk−1 = 21−k − 2−k = 2−k = 1 − δk, it follows from (2.17) and (4.22)
that

DkVk =
{
23δk−2

k−1∏
l=1
δ
1/2k−l

l

}{
2k−1−3δk−1

k−1∏
l=1
δ
−1/2k−l
l

}
= 2k−3δk �(4.25)

By replacing in (4.18) x0 = 1� x1� � � � � xk−1 by their expressions x̂0 = 1�
x1� � � � � x̂k−1 in terms of x̂1 following from (4.20), (4.21), we obtain, via (4.3),
the equation

δkx
2
k = ψ�x̂1� �= D�x̂1� � � � � x̂k−1� = x̂k−1

(
δk − x̂21

k−1∑
l=1

2l−2
)

= Vkx̂2δk−11 �δk − 2k−2δk−1x̂
2
1��

(4.26)

The supremum x̂k of ψ�x̂1� in (4.26) is obviously reached when x̂1 fulfills,
via (2.6),

2k−2x̂21 =
δk

1+ δk−1
= 1

2
⇔ x̂1 = 2−�k−1�/2�(4.27)

This, in turn, yields δk − 2k−2δk−1x̂
2
1 = �2δk − δk−1�/2 = 1/2, whence, by

(4.25)–(4.27),

x̂k =
{
ψ�x̂1�
δk

}1/2
=
{
Vkx̂

2δk−1
1

2δk

}1/2
=
{
VkDk2−�k−1�δk−1

2Dkδk

}1/2

=
{
2−1+k−3δk−�k−1��2δk−1�

Dkδk

}1/2
=
{
22�k−1��1−δk�−3δk

Dkδk

}1/2
= �k�
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as given in (4.15). The proof of the equalities in (4.15) is completed by checking
that x̂1� � � � � x̂k fulfill ��m� for m = 1� � � � � k − 1. By combining (4.3), (4.20)
and (4.27), we get

m∑
l=1
δl

{
x̂2l
x̂l−1

}
=

m∑
l=1

2l−2x̂21 =
m∑
l=1

2l−2

2k−1
= 2m−kδm ≤ δm for m = 1� � � � � k�

which is sufficient for our needs. ✷

Lemma 4.3. We have

lim sup
n→∞

�tn�k+1� ≥
{
1− ε
1+ ε

}
sup

�φ1� ���� φk�∈�k
�φk ◦ · · · ◦φ1� a.s.(4.28)

Proof. The proof is inspired by arguments of Shorack (1982). Let φ̃l, l =
1� � � � � k be functions, of the form given in (4.16), and such that

sup
�φ1� ���� φk�∈�k

�φk ◦ · · · ◦φ1� = 	φ̃k ◦ · · · ◦ φ̃1
�1��(4.29)

Obviously, if 1A denotes the indicator function of A, for each t ∈ �−1�1
,{
φ̃k ◦ · · · ◦ φ̃1

}�t� = t1�0�1
 sup
�φ1� ���� φk�∈�k

�φk ◦ · · · ◦φ1��(4.30)

We obtain readily from (4.29) and (4.30), in combination with (3.9) and (4.13),
(4.14), that for each specified interval J = �A�B
 ⊆ �0�1
 with A < B,

lim sup
n→∞

�tn�k+1�

≥ lim sup
n→∞

{
sup
x∈J

∣∣	φn�k�x� I� ◦ · · · ◦φn�1�x� I�
�tn�1�x��∣∣
}

≥ lim sup
n→∞

{
inf
x∈J

(	φ̃k ◦ · · · ◦ φ̃1
�tn�1�x��
)}

≥
(
lim sup
n→∞

{
inf
x∈J

1�0�1
�tn�1�x��
})

sup
�φ1� ���� φk�∈�k

�φk ◦ · · · ◦φ1� a.s.

(4.31)

Thus, by (4.31), we need only show the existence of 0 ≤ Aε < Bε ≤ 1 such that
the event {

1− ε
1+ ε ≤ tn�1�x�� ∀x ∈ �Aε�Bε


}
(4.32)

holds a.s. i.o. in n. Now, the Finkelstein (1971) law of the iterated logarithm,
in combination with (1.4), shows that the sequence 	�2 log2 n�−1/2βn� n ≥ 1

is a.s. compact in �B�0�1
��� with limit set equal to

� �= 	f ∈ AC�0�1
� f�0� = f�1� = 0 and �f�H ≤ 1
�
Set f�t� = −min	t�1− t
1�0�1
 for t ∈ �0�1
. Since f ∈ � , we have therefore

lim sup
n→∞

��2 log2 n�−1/2βn − f� = 0 a.s.�
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so that the choices of Aε = �1 − 1
2ε�/2 and Bε = �1 + 1

2ε�/2 ensure that the
event {

�1− ε�/2 ≤ −�2 log2 n�−1/2βn�x� ≤ �1+ ε�/2�∀x ∈ �Aε�Bε

}

(4.33)

holds a.s. i.o. in n. By the definition (4.4) of tn�1, we infer from (2.19) and (4.1)
that

tn�1�x� = −
{

2
1+ ε

}
�2 log2 n�−1/2βn�x��

Thus, by (4.33), the event (4.32) holds a.s. i.o. in n, as sought. ✷

Proof of Theorem 1.1. By (2.13), (2.22), and the definition (4.4) of tn� k+1,

lim sup
n→∞

n�1/2�−�1/2�
k+1�log n�−1+�1/2�k�log2 n�−�1/2�

k+1�βn − n−1/2K�n� I�k��

= lim sup
n→∞

n�1/2�−�1/2�
k+1�log n�−1+�1/2�k�log2 n�−�1/2�

k+1�βn + αn�k�

= {Dk+1�1+ ε�1/2k+1} lim sup
n→∞

�tn�k+1�

= {�2δkDk�1/2�1+ ε�1/2k+1} lim sup
n→∞

�tn�k+1� a.s.

(4.34)

On the other hand, we get, by combining (4.11), (4.15) and (4.28),{
1− ε
1+ ε

}{
22�k−1��1−δk�−3δk

Dkδk

}1/2
≤ lim sup

n→∞
�tn�k+1�

≤
{
22�k−1��1−δk�−3δk

Dkδk

}1/2
a.s.

(4.35)

Recalling that δk = 1− 2−k, it is readily checked that

�2δkDk�1/2
{
22�k−1��1−δk�−3δk

Dkδk

}1/2
= 2	1+2�k−1��1−δk�−3δk
/2 = 2−1+�2k+1�2

−�k+1�
�

which, when combined with (4.34) and (4.35), and the fact that ε > 0 may be
rendered arbitrarily small, yields (1.12). ✷

4.2. Proof of Theorem 1.2. Let βn and a Kiefer process � �n� I� be defined
on the same probability space. An application of Lemma A1 of Berkes and
Philipp (1979) enables enlarging this space to carry also K�n� I� = −K1�n� I�
as in (1.3)–(1.5). Therefore, from now on, we may and do assume that βn,
� �n� I� and K�n� I� are jointly defined on the probability space ���� ��� of
Sections 1–3. The following Proposition gives a key argument for the proof of
Theorem 1.2.

Proposition 4.2. Assume that k ∈ �, a ∈ �0�1/2�� b� c ∈ �+ and d ≥ 0 are
such that

lim sup
n→∞

na�log n�−b�log2 n�−c�βn − n−1/2� �n� I�k�� ≤ d a.s.(4.36)
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Then, for each ε > 0, we have

lim sup
n→∞

n−�ε/2�−�1−δk+1∨�1−2a�/2��K�n� I� −� �n� I�� = 0 a.s.(4.37)

Proof. We set γn = n−1/2� �n� I�k� in Lemma 2.1, to obtain, via (2.15),
that

lim sup
n→∞

n�2a+1�/4�log n�−�b+1�/2�log2 n�−c/2

× �βn − n−1/2K�n� I+ n−1/2� �n� I�k���
≤ d1/2�2a+ 1�1/2 a.s.

(4.38)

On the other hand, it follows from (1.12) that

lim sup
n→∞

n−�1/2�+δk+2�log n�−δk+1�log2 n�1−δk+2

×∥∥βn − n−1/2K�n� I+ n−1/2K�n� I�k��∥∥ = Ck+1 a.s.
(4.39)

and

lim sup
n→∞

n−�1/2�+δk+1�log n�−δk�log2 n�1−δk+1

×∥∥βn − n−1/2K�n� I�k�∥∥ = Ck a.s.
(4.40)

SinceK�n� I� and� �n� I� are identically distributed, we have, by (4.39), (4.40),
lim sup
n→∞

n−�1/2�+δk+1�log n�−δk�log2 n�1−δk+1

×∥∥n−1/2� �n� I�k� − n−1/2� �n� I+ n−1/2� �n� I�k��∥∥
= lim sup

n→∞
n−�1/2�+δk+1�log n�−δk�log2 n�1−δk+1

×∥∥n−1/2K�n� I�k� − n−1/2K�n� I+ n−1/2K�n� I�k��∥∥ = Ck a.s.

(4.41)

The triangle inequality in combination with (4.36), (4.38) and (4.41) shows
readily that

lim sup
n→∞

n−A�log n�−B�log2 n�−C�K�n� I� −� �n� I��

= lim sup
n→∞

n−A�log n�−B�log2 n�−C

×�K�n� I+n−1/2� �n� I�k��−� �n� I+n−1/2� �n� I�k���≤D a.s.�

(4.42)

where A = max	1− δk+1� �1− 2a�/2
; B = max	δk� b
, C = max	1− δk+1� c

and D = d+Ck. This obviously implies (4.37). ✷

Proof of Theorem 1.2. Select an arbitrary ε > 0. By setting a = θk and
b = c = d = 0 in Proposition 4.1, we may rewrite (4.37) into

lim sup
n→∞

n−�ε/2�−�1−δk+1∨�1−2θk�/2��K�n� I� −� �n� I�� = 0 a.s.(4.43)
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Since our assumptions imply that 1− δk+1 ∨ �1− 2θk�/2→ 0 as k→∞, with
k ∈ S� we infer from (4.43) that, for any specified ε > 0, we have

lim sup
n→∞

n−ε�K�n� I� −� �n� I�� = 0 a.s.(4.44)

By applying (4.40) for each value of k ∈ �, (1.12) and (4.44) readily im-
ply (1.16). ✷

5. Applications and examples.

5.1. Extended Bahadur–Kiefer-type representations. Let αn�k be the kth
iterated empirical process in (2.6). The following theorem gives an extended
form of the uniform Bahadur–Kiefer representation (1.4), obtained for k = 1.

Theorem 5.1. For each k� l ∈ � with l ≥ k+ 1, we have

lim sup
n→∞

n�1/2�−�1/2�
k+1�log n�−1+�1/2�k�log2 n�−�1/2�

k+1�βn + αn�k�

= lim sup
n→∞

n�1/2�−�1/2�
k+1�log n�−1+�1/2�k�log2 n�−�1/2�

k+1�αn�k − αn� l�

= Ck = 2−1+�2k+1�2
−�k+1�

a.s.

(5.1)

Moreover (5.1) holds with the formal replacement of αn�k by −n−1/2K�n� I�k�.

For the proof, combine (1.12) and (2.13).

Example 5.1. By setting k = 2 in (5.1), we obtain the following version
of (1.14) [see (3.3), page 100 in Stute (1982)]:

lim sup
n→∞

n3/8�log n�−3/4�log2 n�−1/8�βn + αn�I− n−1/2αn�� = 2−3/8 a.s.(5.2)

5.2. Strong limit theorems for quantile density estimators. Let 	Xn� n ≥ 1

be i.i.d. r.v.’s with distribution function F�x� = ��X1 ≤ x�, and endpoints
x0 = inf	x� F�x� > 0
 < x1 = sup	x� F�x� < 1
. Let Q�t� = inf	x� F�x� ≥ t

for 0 < t < 1 be the corresponding quantile function, and make the following
assumptions.

(Q1) F is twice continuously differentiable on �x0� x1�, with derivatives f
and f′.

(Q2) f�x� > 0 on �x0� x1�.
(Q3) For some γ <∞, we have

sup
0<t<1

t�1− t� �f′�Q�t���/f2�Q�t�� ≤ γ�(5.3)

(Q4) For some I <∞, we have

sup
0<t<1

	t�1− t�
2�/f2�Q�t�� ≤ I�(5.4)
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For each n ≥ 1, denote byX1� n < · · · < Xn�n the order statistics ofX1� � � � �Xn
[a.s. distinct by (Q1)]. SetQn�t� =X&nt'� n for 0 < t ≤ 1 and define the quantile
process by

ρn�t� = n1/2f�Q�t���Qn�t� −Q�t�� for n ≥ 1 and 0 < t < 1�(5.5)

Fact 6 below follows from Theorem 3.1 of Csörgő, Csörgő, Horváth and Révész
(1984). Let Un = F�Xn� for n ≥ 1 and assume, without loss of generality, that
	Xn� n ≥ 1
 is defined on ���� ���.

Fact 6. Under (Q1)–(Q3), for each ε > 0, we have

sup
1/�n+1�≤t≤n/�n+1�

�ρn�t� − βn�t�� = O
(
n−1/2�log n��1+ε��γ−1�) a.s.(5.6)

An easy corollary of Theorem 1.1 and Fact 6 is as follows.

Corollary 5.1. On ���� ���, for each k ∈ �, we have

lim sup
n→∞

n�1/2�−�1/2�
k+1�log n�−1+�1/2�k�log2 n�−�1/2�

k+1

× sup
1/�n+1�≤t≤n/�n+1�

∣∣ρn�t� − n−1/2K�n� I�k�∣∣ = Ck a.s.
(5.7)

Proof. In view of (5.5) and (5.6), we need only show that, for Jn =
�0�1/�n+ 1�
 or Jn = �n/�n+ 1��1
 we have

lim
n→∞n

�1/2�−�1/2�k+1�log n�−1+�1/2�k�log2 n�−�1/2�
k+1

× sup
t∈Jn

�βn�t� − n−1/2K�n� I�k�� = 0�

This can be achieved by routine arguments which we omit. ✷

For constants 0 < a < 1 and 0 < b < 1, set hn = n−a, εn = n−b, and consider
the naive estimator of the quantile density function q�t� = 1/f�Q�t�� defined
by

qn�t� =
Qn�t+ hn� −Qn�t− hn�

2hn
for εn < t < 1− εn�

The next fact is due to Csörgő and Révész (1984).

Fact 7. Under (Q1)–(Q4), whenever a� b� d > 0 fulfill the inequalities 3b+
d < a < 1/2 and 2d+ 4b+ a < 1, we have

lim
n→∞n

d sup
εn≤t≤1−εn

�qn�t� − q�t�� = 0 a.s.(5.8)
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A crucial step in the proof of (5.8) is a Kiefer process approximation (1.6) of
βn at an a.s. uniform rate of O�n−1/4+o�1��. This leads to the condition a < 1/2,
imposed in the statement of Fact 7. The replacement of (1.6) by the kth iterated
Kiefer process approximation (1.12) allows an a.s. uniform rate of O�n−1/2+ε�,
where ε > 0 can be chosen as small as desired for a suitably large k. Similar
methods as that used by Csörgő and Révész (1984) then allow treating the
case of 0 < a < 1. Because this example is being given only to illustrate the
applications of our theorems, the details will be given elsewhere.

5.3. Limit theorems for kernel density estimators. Our last example is an
application of Theorem 3.1 in the setting of kernel estimation of the density f
[refer to Devroye and Györfi (1985), Bosq and Lecoutre (1987), Scott (1992) and
the references therein]. When two different derivatives of f are estimated, the
optimal bandwidths and kernels are typically different [see, e.g., Section 6.2
in Scott (1992)]. Theorem 5.1 below gives a description of the joint limiting
behavior of the corresponding estimators.

Let X1�X2� � � � be i.i.d. r.v.’s with distribution function F�x� = ��X1 ≤ x�
and density f�x� = f�0��x� = F′�x� continuous and positive on �A�B
 �∞ <
A < B <∞�. For l = 1�2 and pl ∈ �, denote byHl�·� a pl times differentiable
function such that, for l = 1�2:

(K1) H�pl�
l �·� is of bounded variation on �.

(K2) For some 0 <Ml <∞, H�pl�
l �u� = 0 for all �u� ≥Ml.

(K3)
∫∞
−∞Hl�u�du = 1.

For l = 1�2, let 	λn� l� n ≥ 1
 be positive constants fulfilling the conditions:

(L1) (i) λn� l ↓ 0; (ii) nλn� l ↑.
(L2) (i) nλn� l/ log n→∞; (ii) 	log�1/λn� l�
/ log2 n→∞.
(L3) (i) 	log�1/λn�1�
/ log�1/λn�2� → d ∈ �0�1
; (ii) λn�2/λn�1 → 0.

For l = 1�2, introduce the estimator of the plth derivative f�pl� of f given
by

f
�pl�
n� l �x� =

1

nλ
pl+1
n� l

n∑
i=1
K
�pl�
l

(
x−Xi
λn� l

)
for x ∈ ��(5.9)

Consider the functions of x ∈ �A�B
 defined by

Yn� l�x� =
{
f
�pl�
n� l �x� − Ɛ

(
f
�pl�
n� l �x�

)
√
f�x�

}

×
{
2 log+�1/λn� l�
nλ

2pl+1
n� l

∫ ∞
−∞
H�pl��u�2 du

}−1/2(5.10)

and introduce the random subset of � defined (for all large n) by

�n = 	�Yn�1�x��Yn�2�x��� A ≤ x ≤ B
�(5.11)
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Corollary 5.2. We have, almost surely,

�n→ �∞�d� �=
{�y1� y2� ∈ �2� y21 ≤ 1� dy21 + y22 ≤ 1

}
�(5.12)

with convergence under the Hausdorff set-metric generated by the usual dis-
tance in �2.

The result follows by repeating the arguments of Section 4.2. in Deheuvels
and Mason (1992b) in the setting of Theorem 3.1. We omit details.

Remark 5.1. (i) The arguments of Section 4.2 in Deheuvels and Mason
(1992b) show that, for l = 1�2,

	Yn� l�x�� A ≤ x ≤ B
 → �−1�1
 a.s.�

with convergence under the Hausdorff set-metric generated by the usual dis-
tance in �.

(ii) For an arbitrary 0 ≤ d ≤ 1, we have, with the notation given in (5.12),

�∞�0� = 	�y1� y2�� y21 + y22 ≤ 1
 ⊆ �∞�d� ⊆ �∞�1� = �−1�1
2�
(iii) (5.12) holds independently of the existence of the derivatives f�pl� of f.

Acknowledgment. We thank the referee for a careful reading of our
manuscript and for insightful comments leading, in particular, to a simpli-
fied proof of Lemma 2.2.

REFERENCES

Bahadur, R. (1996). A note on quantiles in large samples. Ann. Math. Statist. 37 577–580.
Berkes, I. and Philipp, W. (1979). Approximation theorems for independent and weakly depen-

dent random vectors. Ann. Probab. 7 29–54.
Berthet, P. (1997). On the rate of clustering to the Strassen set for increments of the uniform

empirical process. J. Theoret. Probab. 10 557–579.
Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.
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Csáki, E., Földes, A. and Révész, P. (1997). Strassen theorems for a class of iterated processes.

Trans. Amer. Math. Soc. 349 1153–1167.
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Csörgő, M. and Révész, P. (1978). Strong approximations of the quantile process. Ann. Statist.
6 882–894.
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