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THE BERRY–ESSÉEN BOUND FOR STUDENTIZED STATISTICS
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and University of Science and Technology of China
We derive Berry–Esséen bounds for a class of Studentized statistics.

The results are applied to Studentized U-statistics, Studentized L-stat-
istics and Studentized functions of the sample mean to give the Berry–
Esséen bounds under conditions weaker than those obtained by alternative
methods.

1. Introduction. Suppose we are interested in the distribution Fn of
some statistic Tn = T�X1� � � � �Xn�, where X1� � � � �Xn are n independent
identically distributed (i.i.d.) real random variables. Typically, one can “lin-
earize” the statistic Tn and prove that the linearized statistic is equivalent to
Tn as n→ ∞ in the sense that the difference between the two goes to zero in
probability. As a result, Fn can often be approximated by a normal distribu-
tion through the use of the central limit theorem. It is then of both theoretical
and practical interest to examine the error in the normal approximation.

The rate of convergence to normality has been intensively studied in var-
ious situations. The classical Berry–Esséen bound for sample means is con-
tained, for instance, in Feller [(1971), page 543]. Bounds for other statistics
are also available. For instance, Bhattacharya and Rao (1976) gave a bound
for functions of multivariate sample means. For U-statistics, Berry–Esséen
bounds were established under different sets of conditions and in increasing
generality by Bickel (1974), Chan and Wierman (1977), Callaert and Janssen
(1978), Helmers and van Zwet (1982) and Ghosh (1985) among others. Berry–
Esséen bounds for L-statistics were given by Bjerve (1977), Helmers (1977),
and Helmers, Janssen and Serfling (1990). Results for R-statistics were pro-
vided by Hajek (1968).

It should be pointed out that each of the methods for deriving Berry–Esséen
bounds for U-, L- and R-statistics was tailored to the individual structures of
these statistics. A general unifying method was proposed by van Zwet (1984),
who proved a Berry–Esséen bound theorem for a broad class of statistics,
namely symmetric functions of n i.i.d. random variables. Friedrich (1989)
removed the symmetry assumption and relaxed the moment conditions. For
other extensions to multivariate symmetric statistics and multivariate sam-
pling statistics, we refer to Götze (1991) and Bolthausen and Götze (1993).

The main purpose of the present paper is to establish Berry–Esséen bounds
of O�n−1/2� for a general class of Studentized statistics under natural and
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“minimal” or near “minimal” conditions. Berry–Esséen bounds for certain
Studentized statistics such as the Studentized U-statistics, Studentized L-
statistics and Student’s t-statistics have been obtained by various authors.
However, moment conditions imposed in these papers are typically stronger
than those for their Standardized counterparts. (See Section 3 for literature
reviews.) One notable exception is the case of the sample mean, where the
third moment assumption is sufficient for both the standardized mean and
Student’s t-statistic; see Bentkus and Götze (1996). This begs the question
whether Berry–Esséen bounds of O�n−1/2� are also available for other Stu-
dentized statistics under the same moment conditions as those for their stan-
dardized counterparts. In the present paper we address the issue and show
that it is often the case. To do that, we first derive Berry–Esséen bounds of
O�n−1/2� for a class of Studentized statistics under weak moment conditions
(cf., Theorems 2.1 and 2.2), and then apply these to three special examples:
Studentized U-statistics, Studentized L-statistics and Studentized functions
of sample means.

We point out that the existing results on Berry–Esséen bounds for general
statistics by van Zwet (1984) and Friedrich (1989) are not sufficient for our
purpose in the present paper. To appreciate why, let us take the simple case
of Student’s t-statistics for example. The general result of van Zwet (1984)
yields a bound of O�n−1/2� provided E�X1�4 < ∞. Friedrich (1989) improved
this result by requiring only E�X1�10/3 <∞. Bentkus, Götze and Zitikis (1994)
obtained a lower estimate showing that the result of Friedrich (1989) is final,
and therefore offers the best possible result that can be derived from general
results. On the other hand, it is well known that the optimal moment condi-
tion for Student’s t-statistics is E�X1�3 < ∞; see Bentkus and Götze (1996).
The reason why the results of van Zwet (1984) and Friedrich (1989) do not
always lead to the best result in certain special cases is that the class of statis-
tics under study is too wide. To get better results, it is necessary to focus on
narrower classes of statistics. In this paper, we investigate one such class of
studentized statistics [cf. (2.1) and (2.2)], where each term can be examined
carefully so that the Berry–Esséen theorem will be valid under natural and
“minimal” or near “minimal” conditions.

Section 2 will describe the main results of the paper. Applications of these
results to several special cases are presented in Section 3. The proofs of the
main results of Section 2 are given in Section 4. Finally, some technical details
needed in the proofs of the main theorems are relegated to the Appendix.

Throughout this paper, we denote by A�A1�A2� � � � absolute positive con-
tants, which may be different at each occurrence. If a constant depends on
a parameter, say u, then we write A�u�. Furthermore, we denote the stan-
dard normal distribution function by ��x�. Finally, we introduce the following
notation for simplicity of presentation:

∑
i<j

≡ ∑
1≤i<j≤n

�
∑

i<j<k

≡ ∑
1≤i<j<k≤n

�
∑
i
=j

≡
n∑

i� j=1
i
=j

�
∑

i
=j 
=k
≡

n∑
i� j� k=1

i
=j� j 
=k� k
=i

�
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2. Main results. Let X�X1� � � � �Xn be a sequence of i.i.d. real random
variables. Let α�x�� β�x�y�� γ�x�y� z� and η�x�y� be some real-valued Borel
measurable functions of x�y and z. Furthermore, let Vin ≡ Vin�X1� � � � �Xn�,
i = 1�2, be real-valued functions of �X1� � � � �Xn�. Define the statistic

T = n−1/2
n∑
j=1

α�Xj� +D1n
∑
i
=j
β�Xi�Xj� +V1n(2.1)

and a normalizing statistic

S2 = 1+D2n
∑

i
=j 
=k
γ�Xi�Xj�Xk� +V2n�(2.2)

where D1n and D2n are two sequences of real numbers depending only on n.
Note that many statistics of interest can be written as special cases of T/S.
Our interest here lies in the distribution function of the Studentized statistic
T/S, namely, P �T/S ≤ x�. Under appropriate conditions, the dominant term
in T/S is n−1/2∑n

j=1 α�Xj�, and it has an asymptotic normal distribution by
the central limit theorem. In this paper, we study the rate of convergence
to normality of T/S. In the first theorem we give a Berry–Esséen bound for
the convergence rate of the distribution function P �T/S ≤ x� to ��x� under
rather natural conditions.

Theorem 2.1. Assume that:

(a) Eα�X1� = 0, Eα2�X1� = 1; E�β�X1�X2��Xi� = 0, i = 1�2; Eγ�X1�X2�
X3� = 0�

(b) The sequencesD1n andD2n (depending only on n) satisfy �D1n� ≤ An−3/2

and �D2n� ≤ An−3�
(c) P

(�Vjn� ≥ C0n
−1/2

) ≤ Cjn−1/2� j = 1�2�

Then, for all n ≥ 3, we have

sup
x

�P�T/S ≤ x� −��x�� ≤ �A1�C0 +C1 +C2� +A2� �n−1/2�

where ρ = E�α�X1��3� λs = E�β�X1�X2��s� θs = E�γ�X1�X2�X3��s and
� = ρ+ λ5/3 + θ3/2 + ��ρ+ θ3/2�λ3/2�2/3�

Here and below, we denote by C0�C1�C2� � � � positive constants depending on
the distribution of X but not on n or other quantities.

In some applications, it is often easier to use the next theorem, which is a
simplified version of Theorem 2.1 above. To describe the theorem, define

T̃ = n−1/2
n∑
j=1

α�Xj� + D̃1n
∑
i<j

β�Xi�Xj� +V1n�(2.3)

S̃2 = 1+ D̃2n
∑
i<j

η�Xi�Xj� +V2n�(2.4)
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We have the following theorem.

Theorem 2.2. Assume that:

(a) β�x�y� and η�x�y� are symmetric in their arguments.
(b) Eα�X1� = 0� Eα2�X1� = 1; E�β�X1�X2��X1� = 0�Eη�X1�X2� = 0�
(c) The sequences D̃1n and D̃2n(depending only on n) satisfy �D̃1n� ≤ An−3/2

and �D̃2n� ≤ An−2.
(d) P

(�Vjn� ≥ C0n
−1/2

) ≤ Cjn−1/2� j = 1�2.

Then, for all n ≥ 2, we have

sup
x

∣∣∣P(T̃/S̃ ≤ x
)
= ��x�

∣∣∣ ≤ �A1�C0 +C1 +C2� +A2� �n−1/2�

where � is defined as in Theorem 2.1 except that θs is now replaced by θ′s =
E�η�X1�X2��s.

3. Some applications. In this section, we shall apply the main results
presented in Section 2 to several well-known examples, namely, the Studen-
tized U- and L-statistics and Studentized functions of sample means. Berry–
Esséen bounds for these statistics have been studied in recent years by various
authors. As can be seen later, applications of Theorems 2.1 and 2.2 to these
statistics lead to Berry–Esséen bounds of O�n−1/2� under weaker (sometimes
minimal) moment conditions.

3.1. Studentized U-statistics. Let h�x�y� be a real-valued Borel measur-
able function, symmetric in its arguments with Eh�X1�X2� = θ. Then the
U-statistic of degree 2 for estimation of θ with kernel h�x�y� is defined to be

Un = 2
n�n− 1�

∑
i<j

h�Xi�Xj��

Write

g�Xj� = E�h�Xi�Xj� − θ�Xj�� σ2
g = Var�g�X1���

S2
n = 4�n− 1��n− 2�−2

n∑
i=1

(
1

n− 1

n∑
j=1
j 
=i

h�Xi�Xj� −Un

)2

�

Note that n−1S2
n is the jackknife estimator of σ2

g. Define the distributions of
the standardized and studentized U-statistic, respectively, by

G1�x� = P
(√
nσ−1

g �Un − θ� ≤ x
)
�

G2�x� = P
(√
nS−1

n �Un − θ� ≤ x
)
�
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It is well known that G1�x� and G2�x� converge to the standard normal dis-
tribution function ��x� provided Eh2�X1�X2� <∞ and σ2

g > 0 [see Hoeffding
(1948) and Arvesen (1969), respectively].

In recent years, there has been considerable interest in obtaining rates of
convergence to normality for standardized and Studentized U-statistics. For
standardized U-statistics, for instance, this has been investigated by Grams
and Serfling (1973), Bickel (1974) and Chan and Wierman (1977). A sharper
Berry–Esséen bound was given by Callaert and Janssen (1978), which states
that

sup
t∈R

�G1�x� −��x�� ≤ Cσ−3
g E�h�X1�X2��3n−1/2

under the conditions that E�h�X1�X2��3 < ∞ and σ2
g > 0. However,

we note that the sharpest Berry–Esséen bound of O�n−1/2� for standardized
U-statistics comes from Friedrich (1989), who established the ideal bound un-
der the conditions that E�g�X1��3 < ∞, E�h�X1�X2��5/3 < ∞ and σ2

g > 0.
Indeed, Bentkus, Götze and Zitikis (1994) showed that the moment conditions
of Friedrich (1989) are the weakest for U-statistics.

For Studentized U-statistics, Berry–Esséen bounds were given by Callaert
and Veraverbeke (1981) and Helmers (1985) among others. Zhao (1983) sharp-
ened the work of Callaert and Veraverbeke (1981) and obtained the classical
rate O�n−1/2� under the condition E�h�X1�X2��4 <∞ and σ2

g > 0. However, it
remained an open question whether the moment conditionE�h�X1�X2��4 <∞
can be further weakened to E�h�X1�X2��3 < ∞, as in Callaert and Janssen
(1978) for the standardized U-statistics. The answer to this question is affir-
mative, as the next theorem shows.

Theorem 3.1. Assume thatE�h�X1�X2��3 <∞ and σ2
g > 0, then for n ≥ 3,

sup
x

�G2�x� −��x�� ≤ Aσ−3
g E�h�X1�X2��3n−1/2�

Proof. In order to apply Theorem 2.1, we rewrite
√
nS−1

n �Un− θ� = T/S,
where

T =
√
n�Un − θ�

2σg
� S2 = S2

n

4σ2
g

�

Then from Serfling (1980) and �A3� in Callaert and Veraverbeke (1981), we
have the following expansions:

T = n−1/2
n∑
i=1

α�Xi� +D1n
∑
i
=j
β�Xi�Xj� +V1n�

S2 = 1+D2n
∑

i
=j 
=k
γ�Xi�Xj�Xk� +V2n�
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where

α�Xj� = σ−1
g g�Xj��

β�Xi�Xj� = σ−1
g �h�Xi�Xj� − θ− g�Xi� − g�Xj���

γ�Xi�Xj�Xk� = σ−2
g �h�Xi�Xj� − θ��h�Xi�Xk� − θ� − 1�

D1n = n−1/2�n− 1�−1�

D2n = �n− 1�−1�n− 2�−2�

V1n = 0�

V2n = 2�n− 2�−1 +Qn1 +Qn2

with Qn1 and Qn2 given by

Qn1 = 2σ−2
g

�n− 1��n− 2�2
∑
i<j

�h�Xi�Xj� − θ�2�

Qn2 = −n�n− 1�σ−2
g

�n− 2�2 �Un − θ�2�

The conditions (a) and (b) in Theorem 2.1 can be easily checked. By Jensen’s
inequality, we have

σ3
g ≤E�g�X1��3 ≤ 8E�h�X1�X2��3�

E�β�Xi�Xj��s≤Aσ−s
g E�h�X1�X2��s ≤ Aσ−s

g

(
E�h�X1�X2��3

)s/3
for 0 ≤ s ≤ 3�

E�γ�Xi�Xj�Xk��3/2 ≤Aσ−3
g E�h�X1�X2��3�

From these inequalities, clearly � ≤ Aσ−3
g E�h�X1�X2��3. Now, by Theo-

rem 2.1, we only need to show that P��V2n� ≥ n−1/2� ≤ Aσ−3
g E�h�X1�

X2��3n−1/2, which follows from

P
(�V2n� ≥ n−1/2) ≤ n1/2E

∣∣2�n−2�−1 +Qn1 +Qn2

∣∣ ≤ An−1/2σ−3
g E�h�X1�X2��3�

where we have used E�h�X1�X2��3/σ3
g ≥ 1/8. The proof of Theorem 3.1 is

thus complete. ✷

Remark 3.1. If h�x�y� = �x + y�/2, then the Studentized U-statistic re-
duces to the Student t-statistic, whose Berry–Esséen bounds have been in-
vestigated by Slavova (1985), Hall (1988) and Bentkus and Götze (1996). For
other results on Studentized U-statistics, we refer to Maesono (1996, 1997)
and Ghosh (1985).

Remark 3.2. It remains an open question whether the moment conditions
in Theorem 3.1 can be further weakened toE�g�X1��3 <∞,E�h�X1�X2��5/3 <
∞ and σ2

g > 0.
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3.2. Studentized L-statistics. Let X1� � � � �Xn be i.i.d. real random vari-
ables with distribution function F. Define Fn to be the empirical distribution,
that is, Fn�x� = n−1∑n

j=1 I�Xi ≤ x�, where I�·� is the indicator function. Let
J�t� be a real-valued function on [0,1] and T�G� = ∫

xJ�G�x�� dG�x�. The
statistic T�Fn� is called an L-statistic [see Chapter 8 of Serfling (1980)]. Write

σ2 ≡ σ2�J�F� =
∫ ∫

J�F�s��J�F�t��F�min�s� t�� �1−F�max�s� t��� ds dt�

Clearly, a natural estimate of σ2 is given by σ̂2 ≡ σ2�J�Fn�. Now let us
define the distributions of the standardized and Studentized L-statistic T�Fn�
respectively by

H1�x� = P
(√
nσ−1�T�Fn� −T�F�� ≤ x

)
�

H2�x� = P
(√
nσ̂−1�T�Fn� −T�F�� ≤ x

)
�

It is well known that H1�x� and H2�x� converge to the standard normal dis-
tribution function ��x� provided E�X1�2 < ∞� σ2 > 0 and some smoothness
conditions on J�t� [see Serfling (1980) and Helmers, Janssen and Serfling
(1990) for references].

For standardized L-statistics, the rates of convergence to normality have
been studied by various authors. For instance, assuming that E�X1�3 < ∞,
σ2 > 0 and some smoothness conditions on J�t�, Helmers (1977) and Helmers,
Janssen and Serfling (1990) showed that

sup
x∈R

�H1�x� −��x�� = O�n−1/2��

For Studentized L-statistics, on the other hand, a Berry–Esséen bound was
also given by Helmers (1982) under the same conditions as those given above
except that E�X1�3 <∞ is now replaced by a stronger condition E�X1�4�5 <∞.
In the following theorem, we show that the condition E�X1�4�5 < ∞ can be
weakened to E�X1�3 <∞.

Theorem 3.2. Assume that:

(a) J′′�t� is bounded on t ∈ �0�1�.
(b) E�X1�3 <∞ and σ2 > 0.

Then there exists a positive constant A�J� such that for all n ≥ 2,

sup
x

�H2�x� −��x�� ≤ A�J�σ−3E�X1�3n−1/2�

Proof. To apply Theorem 2.1, we rewrite
√
nσ̂−1�T�Fn� −T�F�� = T/S,

where

T = √
n�T�Fn� −T�F��/σ and S2 = σ̂2/σ2�
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For abbreviation, we introduce the following notation:

J0�t� = J�F�t��� Jn�t� = J�Fn�t���
s ∧ t = min�s� t�� s ∨ t = max�s� t��
ηj�t� = I�Xj ≤ t� −F�t�� Z�s� t�F� = F�s ∧ t��1−F�s ∨ t���

ξ�Xi�Xj� = σ−2
∫ ∫

J0�s�J0�t�
(
I�Xi ≤ s ∧ t�I�Xj > s ∨ t�

−Z�s� t�F�)dsdt�
ϕ�Xi�Xj�Xk� = σ−2

∫ ∫
J′

0�s�J0�t�ηi�t�I�Xj ≤ s ∧ t�I�Xk > s ∨ t�dsdt�

From Lemma B of Serfling [(1980), page 265], we have

T�G� −T�F� = −
∫ [
K1�G�x�� −K1�F�x��]dx�

where K1�t� =
∫ t
0 J�u�du. Then, after some algebra, we have

T = n−1/2
n∑
j=1

α�Xj� + n−3/2 ∑
i
=j
β�Xi�Xj� +V1n�(3.1)

S2 = 1+ n−3 ∑
i
=j 
=k

γ�Xi�Xj�Xk� +V2n�(3.2)

where

α�Xj� = −σ−1
∫
J�F�t��ηj�t�dt�

β�Xi�Xj� = − 1
2σ

−1
∫
J′�F�t��ηi�t�ηj�t�dt�

γ�Xi�Xj�Xk� = ξ�Xi�Xj� + ϕ�Xi�Xj�Xk��
V1n = n1/2�Q1n +Q2n��
V2n = Q3n +Q4n +Q5n

with Qin� i = 1� � � � �5, defined by

Q1n = n−2
n∑
j=1

β�Xj�Xj��

�Q2n� ≤ A�J�σ−1
∫
�Fn�t� −F�t��3 dt�

Q3n = 2σ−2
∫ ∫ [

Jn�s� −J0�s� −J′
0�s��Fn�s� −F�s��]

× J0�t�Z�s� t�Fn�dsdt�

Q4n = σ−2
∫ ∫

�Jn�s� −J0�s���Jn�t� −J0�t��Z�s� t�Fn�dsdt�
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Q5n = n−3 ∑
j 
=k

�ξ�Xj�Xk� + ϕ�Xj�Xj�Xk� + ϕ�Xk�Xj�Xk��

−n−1σ−2
∫ ∫

F�s ∧ t��1−F�s ∨ t��dsdt�

The condition (a) of Theorem 2.1 can be shown easily by integration by
using the assumption (1): J′′�t� is bounded on t ∈ �0�1�. The condition (b)
of Theorem 2.1 is trivial as we have D1n = n−3/2 and D2n = n−3. For the
remainder of this section, we shall show that

� ≤ A�J�σ−3E�X1�3�(3.3)

nE�Q1n� ≤ A�J�σ−3E�X1�3(3.4)

and, for i = 1�2�

P
(�Vin� > 2n−1/2�1+ nE�Q1n��

) ≤ A�J�n−1/2σ−3E�X1�3�(3.5)

Theorem 3.2 will then follow from Theorem 2.1.
Similarly to the proof of Lemma A is Serfling [(1980), page 288], we can

show that

�α�Xj�� ≤ A�J�σ−1��Xj� +E�X1���(3.6)

�β�Xi�Xj�� ≤ A�J�σ−1��Xj� +E�X1���(3.7)

�ξ�Xj�Xk�� ≤ A�J�σ−2(X2
j +X2

k +EX2
1

)
�(3.8)

�ϕ�Xi�Xj�Xk�� ≤ A�J�σ−2(X2
j +X2

k

)
�(3.9)

Noting Eα2�X1� = 1, it follows from (3.6) that

A�J� ≤ σ−2EX2
1 ≤ (

σ−3E�X1�3
)2/3
�

Therefore, it is easy to check (3.3) and (3.4).
Let us look at V1n next. Clearly,

P
(
n1/2�Q1n� ≥ n−1/2�1+ nE�Q1n��

) ≤ P��nQ1n −E�nQ1n�� ≥ 1�
≤ A�J�n−1/2σ−2EX2

1�
(3.10)

Using E�Fn�t� −F�t��3 ≤ An−3/2F�t��1−F�t��, we have

P
(
n1/2�Q2n� ≥ n−1/2

)
≤ A�J�n−1/2σ−1

∫
F�t��1−F�t��dt

≤ A�J�n−1/2σ−1E�X1��
(3.11)

Hence, from (3.10) and (3.11), we obtain (3.5) for i = 1.
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We shall now investigate V2n. From Taylor’s expansion, assumption (a)
and the following inequality: Z�s� t�Fn� ≤ �Fn�s��1 − Fn�s���1/2�Fn�t��1 −
Fn�t���1/2, we have

�Q4n� ≤ σ−2 sup
x

�J′
0�x��

( ∫
�Fn�t� −F�t��dt

)2
�(3.12)

�Q3n� ≤ σ−2 sup
x�y

�J′′
0�x�J0�y��

∫ ∫
�Fn�s� −F�s��2Z�s� t�Fn�dsdt

(3.13)
≤ A�J�σ−2

∫
�Fn�s� −F�s��2 ds

∫
F1/2
n �t��1−Fn�t��1/2 dt�

From E�Fn�t� − F�t��k ≤ An−k/2F�t��1 − F�t�� and E�Fn�t��1 − Fn�t��� ≤
F�t��1−F�t��, it follows that

E

{( ∫
�Fn�t� −F�t�dt

)2
}
≤
( ∫ (

E�Fn�t� −F�t��2)1/2 dt)2

≤ An−1
( ∫ [

F�t��1−F�t��]1/2 dt)2
(3.14)

and

E
{ ∫

�Fn�s� −F�s��2 ds
∫
F1/2
n �t�(1−Fn�t�

)1/2
dt
}

≤
( ∫ [

E�Fn�s� −F�s��4]1/2 ds)( ∫ [EFn�t��1−Fn�t��
]1/2

dt
)

(3.15)

≤ An−1
( ∫ [

F�t��1−F�t��]1/2 dt)2
�

Combining (3.12)–(3.15) and applying Markov’s inequality, we have

P�√n�Q3n +Q4n� ≥ 1� ≤ A�J�n−1/2σ−2
( ∫ [

F�t��1−F�t��]1/2 dt)2

≤ A�J�n−1/2σ−2
( ∫

�1−F�t��1/2 dt
)2

(3.16)
≤ A�J�n−1/2σ−2

( ∫
�t�≤σ

1dt+E�X1�3/2
∫
�t�≥σ

t−3/2 dt

)2

≤ A�J�n−1/2σ−3E�X1�3�

For Q5n, it follows from (3.8) and (3.9) that nE�Q5n� ≤ A�J�σ−2EX2
1. Hence

P
(√
n�Q5n� ≥ 1

) ≤ A�J�n−1/2σ−2EX2
1�(3.17)

Consequently it follows from (3.16) and (3.17) that (3.5) holds for i = 2. The
proof of Theorem 3.2 is thus complete. ✷
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3.3. Studentized functions of the sample mean. Let X1� � � � �Xn be i.i.d.
real random variables with EX1 = µ and Var�X1� = σ2 < ∞. Let f be a
real-valued function differentiable in a neighborhood of µ with f′�µ� 
= 0.
Thus the asymptotic variance of

√
nf�X� is given by σ2

f = �f′�µ��2σ2. De-

note the sample mean and sample variance by X = n−1∑n
i=1Xi and σ̂2 =

n−1∑n
i=1�Xi−X�2. Then an obvious estimate of σf is simply �f′�X��σ̂ . In this

paper, however, we shall use an alternative estimate, that is, the jackknife
variance estimate given by

σ̂2
f = n− 1

n

n∑
j=1

(
f
(
X

�j�)− f�X�
)2

where X
�j� = 1

n− 1

( n∑
i=1

Xi −Xj

)
�

Define the distributions of the standardized and Studentized f�X� respec-
tively by

L1�x� = P
(√
nσ−1

f �f�X� − f�µ�� ≤ x
)
�

L2�x� = P
(√
nσ̂−1

f �f�X� − f�µ�� ≤ x
)
�

Asymptotic properties of L1�x� (e.g., the asymptotic normality, Berry–
Esséen bound and Edgeworth expansion) have been well studied [see Bhat-
tacharya and Ghosh (1976), for instance]. On the other hand, Miller (1964)
showed that σ̂2

j is a consistent estimator of σ2
f and hence proved that L2�x�

follows the asymptotic standard normal distribution. In this section, we shall
give a Berry–Esséen bound for the convergence rate of L2�x� to normality. The
special case where f�x� = x has been studied by Slavova (1985), Hall (1988)
and Bentkus and Götze (1996).

Theorem 3.3. Assume that f�3��x� is bounded in a neighborhood of µ and
f′�µ� 
= 0, and that E�X1�3 <∞. Then for all n ≥ 2,

sup
x

�L2�x� −��x�� ≤ A�f�n−1/2φ�σ�f�E�X1�3�

where A�f� depends only on f and φ�σ�f� depends only on σ .

Proof. Using Taylor’s expansion and noting that X
�j� −X = �X −Xj�/

�n− 1�, we can get

nσ̂2
f = �n− 1�

n∑
j=1

{
f′�µ�

(
X

�j� −X
)
+
(
f′(X)− f′�µ�

)(
X

�j� −X
)

+1
2
f′′
(
ηjX

�j� + �1− ηj�X
)(
X

�j� −X
)2
}2

�for 0 ≤ ηj ≤ 1�
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= f
′2�µ�
n− 1

n∑
j=1

(
Xj −X

)2
+ 2f′�µ�f′′�µ�

n− 1

n∑
j=1

(
Xj −X

)2(
X− µ

)
+W2n

= f
′2�µ�
n− 1

n∑
j=1

(
Xj − µ

)2
+ 2f′�µ�f′′�µ�

n− 1

n∑
j=1

(
Xj − µ

)2(
X− µ

)
+W3n

= σ2f
′2�µ� + 1

n2

∑
j 
=k

{
f

′2�µ�
((
Xj − µ

)2 − σ2
)

+2f′�µ�f′′�µ�(Xj − µ
)2(
Xk − µ

)}+W4n�

where �W4n� ≤ A�f��Kn1 +Kn2 +Kn3 +Kn4 +Kn5� with Kni being defined
by

Kn1 =
(
X− µ

)2
+ �X− µ�3 +

(
X− µ

)4
�

Kn2 = 1
n2

n∑
j=1

�Xj −X�3�

Kn3 = 1
n3

n∑
j=1

(
Xj −X

)4
�

Kn4 = 1
n

(
X− µ

)2 n∑
j=1

(
Xj − µ

)2
�

Kn5 = 1
n2

n∑
j=1

((
Xj − µ

)2 + �Xj − µ�3
)
�

Similarly, by Taylor’s expansion, we have

f
(
X
)
− f�µ� = f′�µ�

(
X− µ

)
+ 1

2
f′′�µ�

(
X− µ

)2
+K∗

n�

= 1
n

n∑
j=1

f′�µ��Xj − µ�

+ 1
2n2

∑
j 
=k

f′′�µ��Xj − µ��Xk − µ� +K∗
n1�

(3.18)

where K∗
n1 is the remainder term, which will not be given explicitly here.

In order to apply Theorem 2.2, we rewrite
√
nσ̂−1

f �f�X� − f�µ�� = T̃/S̃,
where

T̃ = n−1/2
n∑
i=1

α�Xi� + n−3/2 ∑
i
=j
β�Xi�Xj� +V1n�

S̃2 = 1+ n−2 ∑
i<j

�η�Xi�Xj� + η�Xj�Xi�� +V2n�
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where

α�Xj� = �Xj − µ�/σ�

β�Xi�Xj� =
f′′�µ�
σf′�µ��Xi − µ��Xj − µ��

η�Xi�Xj� =
�Xj − µ�2 − σ2

σ2
+ f′′�µ�
σ2f′�µ��Xi − µ�2�Xj − µ��

V1n = n1/2σ−1K∗
n1�

V2n = σ−2Wn4�

The conditions (a) and (b) in Theorem 2.2. � ≤ A�f�φ�σ�f�n−1/2E�X1�3
can be easily checked. In the remainder of this section, we shall show that

P��Vjn� ≥ n−1/2� ≤ A�f�φ�σ�f�n−1/2E�X1�3 for j = 1�2�

Theorem 3.3 then follows from Theorem 2.2. We shall investigate V2n first. It
suffices to show that

P
(√
nKnj ≥ A�f�σ2) ≤ A�f�φ�σ�f�E�X1�3 for j = 1�2�3�4�5�(3.19)

Here we only show (3.19) in details for the case j = 4. Proofs for j = 1�2�3�5
are similar but simpler and hence omitted. Note Kn4 = W∗

n1 +W∗
n2 +W∗

n3,
where

W∗
n1 = 1

n3

n∑
j=1

�Xj − µ�4�

W∗
n2 = 1

n3

∑
j 
=k

[�Xj − µ�2�Xk − µ�2 + 2�Xj − µ�3�Xk − µ�
]
�

W∗
n3 = 1

n3

∑
j 
=k 
=m

�Xj − µ�2�Xk − µ��Xm − µ��

By Markov’s inequality, it follows that

P
(√
n�W∗

n1� ≥ A�f�σ2
)
≤ A�f�σ−3/2n3/8E�W∗

n1�3/4

≤ A�f�φ�σ�f�n−5/8E�X1�3�
(3.20)

P
(√
n�W∗

n2� ≥ A�f�σ2
)
≤ A�f�σ−2√nE�W∗

n2�
≤ A�f�φ�σ�f�n−1/2E�X1�3�

(3.21)

For the term W∗
n3, note that W∗

n3 = 18n−3∑
1≤j<k<m≤n q�Xj�Xk�Xm�, where

q∗�Xj�Xk�Xm� = �Xj − µ�2�Xk − µ��Xm − µ�
and

q�Xj�Xk�Xm� = 1
3�q∗�Xj�Xk�Xm� + q∗�Xk�Xj�Xm� + q∗�Xm�Xj�Xk���
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It is easy to see that q is symmetric in its arguments and satisfiesE�q�Xj�Xk�
Xm��Xj� = 0. Therefore, by applying a moment inequality for a degenerate
U-statistic, we obtain

P
(√
n�W∗

n3� ≥ A�f�σ2
)
≤ A�f�σ−4/3n−3/4E�q�X1�X2�X3��3/2

≤ A�f�φ�σ�f�n−1/2E�X1�3�
(3.22)

Thus, (3.19) for the case j = 4 follows from (3.20)–(3.22). Hence, we have
shown that P��V2n� ≥ n−1/2� ≤ A�f�φ�σ�f�n−1/2E�X1�3. Similarly, we can
show that P��V1n� ≥ n−1/2� ≤ A�f�φ�σ�f�n−1/2E�X1�3. The proof of Theo-
rem 3.3 is complete. ✷

4. Proofs of the main results.

4.1. Proof of Theorem 2�2� The proof of Theorem 2.2 is rather long. We
shall therefore first present the main steps of the proof. The technical details
are given in the Appendix. Roughly speaking, the main idea of the proof is first
to truncate the Studentized statistic on the level

√
n/�x� then to approximate

the statistic by a U-statistic of second order and finally to apply a result due
to Friedrich (1989) to the U-statistic.

Without loss of generality, we may assume that with probability 1,

�η�Xi�Xj�� ≤ 2n2 for 1 ≤ i ≤ n� 1 ≤ j ≤ n�(4.1)

For, if not, we may replace η�Xi�Xj� and V2n by

η∗�Xi�Xj� = η�Xi�Xj�I
{
�η�Xi�Xj�� ≤ n2

}
−E

(
η�Xi�Xj�I

{
�η�Xi�Xj�� ≤ n2

})
�

V∗
2n = D̃2n

∑
i<j

�η�Xi�Xj� − η∗�Xi�Xj�� +V2n�

respectively, since we have

D̃2n
∑
i<j

η�Xi�Xj� +V2n = D̃2n
∑
i<j

η∗�Xi�Xj� +V∗
2n�

where �η∗�Xi�Xj�� ≤ 2n2, and by Markov’s inequality,

P
[
�V∗

2n� ≥ �C0 + 1�n−1/2
]

≤ P
(
D̃2n

∣∣∣∣ ∑
i<j

�η�Xi�Xj� − η∗�Xi�Xj��
∣∣∣∣ ≥ n−1/2

)
+P

(
�V2n� ≥ C0n

−1/2
)

≤ A√
nE

(
�η�X1�X2��I

{
�η� > n2

})
+C2n

−1/2

≤ �C2 +Aθ3/2�n−1/2�
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Next we note that, for any real random variables X, Y, Z1, Z2 and any
positive constants C1 and C2, we have

P

(
X+Z1√

1+Y+Z2

≤ x
)
≤ P

(
X−C1√

1+Y+C2

≤ x
)
+

2∑
i=1

P��Zi� ≥ Ci��

P

(
X+Z1√

1+Y+Z2

≤ x
)
≥ P

(
X+C1√

1+Y−C2

≤ x
)
−

2∑
i=1

P��Zi� ≥ Ci��

Therefore, we can replace Vjn by ±C0n
−1/2. For simplicity, we may further

assume Vjn = 0 for i = 1�2 and

D̃1n = n−3/2� D̃2n = n−1�n− 1�−1�

It will be clear that this assumption will not affect the proof of the main
results.

Coming back to the main proof of the theorem, we note that S̃2 can be
rewritten as

S̃2 = 1+ 1
n

n∑
j=1

g�Xj� +
1

n�n− 1�
∑
i<j

ψ�Xi�Xj��

where

g�Xj� = E�η�Xi�Xj��Xj��
ψ�Xi�Xj� = η�Xi�Xj� − g�Xi� − g�Xj��

Now we define the truncated version of S̃2 by

S̃2
0 = 1+ 1

n

n∑
j=1

g�Xj�I
{�g�Xj�� ≤ n/

(
1+ x2)}+ 1

n�n− 1�
∑
i<j

ψ�Xi�Xj��

Define

;n =
{
x:

1+ �x�3√
n

�ρ+ θ3/2� ≤ 1/32
}
�

Then we have

sup
x

∣∣P�T̃/S̃ ≤ x� −��x�∣∣
≤ sup
x∈;n

∣∣P�T̃/S̃0 ≤ x� −��x�∣∣+ sup
x 
∈;n

∣∣P�T̃/S̃ ≤ x� −��x�∣∣
+ sup
x∈;n

∣∣P�T̃/S̃ ≤ x� −P�T̃/S̃0 ≤ x�∣∣�
The proof of Theorem 2.2 follows immediately from Lemmas 2–4 in the Ap-
pendix. ✷
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4.2. Proof of Theorem 2�1� Without loss of generality, we assume that
γ�x�y� z� is a symmetric real-valued Borel measurable function. Let us intro-
duce kernels γ�1�� γ�2� and γ�3�, which are defined recursively by the equations

γ�1��x1� = Eγ�x1�X2�X3��

γ�2��x1� x2� = Eγ�x1� x2�X3� −
2∑
j=1

γ�1��xj��

γ�3��x1� x2� x3� = γ�x1� x2� x3� −
3∑
j=1

γ�1��xj� −
∑

1≤i<j≤3

γ�2��xi� xj��

By applying Hoeffding’s decomposition for U-statistics [see, e.g., Lee (1990),
page 25], we obtain

1
n�n− 1��n− 2�

∑
i
=j 
=k

γ�Xi�Xj�Xk�

=
(
n

3

)−1 ∑
i<j<k

γ�Xi�Xj�Xk�

= 3
n

n∑
i=1

γ�1��Xi� + 3
(
n

2

)−1 ∑
i<j

γ�2��Xi�Xj� +H�3�
n

= 3
(
n

2

)−1 ∑
i<j

η�Xi�Xj� +H�3�
n �

where η�Xi�Xj� = γ�2��Xi�Xj� + 1
2�γ�1��Xi� + γ�1��Xj�� and

H
�3�
n =

(
n

3

)−1 ∑
i<j<k

γ�3��Xi�Xj�Xk��

By applying Jensen’s inequality and the moment inequality of degenerate
U-statistics [see Chen (1980) for example], it is easy to show that

E�γ�t��X1�X2�Xt��3/2 ≤ AE�γ�X1�X2�X3��3/2 = Aθ3/2 for t = 1�2�3�

P
(√
n�H�3�

n � ≥ 1
)
≤ E

[√
n�H�3�

n �
]3/2

≤ An−3/4E�γ�3��X1�X2�X3��3/2�

Therefore, from Theorem 2.2, we have the desired result. ✷

APPENDIX

In this section, we shall give some lemmas which were used in the proof of
the main theorems in Section 4. The notation here is as in Section 4. For



BERRY–ESSÉEN BOUND 527

abbreviation, we write

Wj = g�Xj�I
{
�g�Xj�� ≤ n/

(
1+ x2)}�

Yn = 1
n

n∑
j=1

g�Xj��

Wn = 1
n

n∑
j=1

Wj�

Sn = n−1/2
n∑
j=1

α�Xj��

R1n = n−3/2 ∑
i<j

β�Xi�Xj��

R2n = 1
n�n− 1�

∑
i<j

ψ�Xi�Xj��

From these, we can rewrite T̃ and S̃2 in (2.3) and (2.4) as

T̃ = Sn +R1n� S̃2 = 1+Yn +R2n�(A.1)

We now establish some inequalities concerning the random variables de-
fined above.

Lemma 1. Under the conditions of Theorem 2�2� we have

ρ = E�α(X1
)�3 ≥ 1�

E�g(X1
)�3/2 ≤ θ3/2�

E�ψ(X1�X2
)�3/2 ≤ 4θ3/2�

P
(�Yn� ≥ A) ≤ A1n

−1/2θ3/2�(A.2)

P
(�R1n� ≥ A

) ≤ A2n
−1/2λ5/3�

P
(�R2n� ≥ An−1/4) ≤ A3n

−1/2θ3/2�

P
(�Wn� ≥ A

) ≤ A5n
−1/2θ3/2 if x ∈ ;n�

Proof. We shall only show the last inequality (A.2) since the proofs of
others are easier and hence omitted here. It is easy to see that

�EWn� ≤ E
(
�g�X1��I

{
�g�X1�� ≥ n/

(
1+ x2)}) ≤ 1+ �x�√

n
θ3/2�

Then, for x ∈ ;n, we have

∣∣EWn

∣∣3/2 ≤
(
�1+ �x��3√
nθ3/2

)1/2
θ3/2√
n

≤ θ3/2√
n
�
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Therefore, by Markov’s inequality, we obtain

P��Wn� ≥ A� ≤ A−3/2E�Wn�3/2

≤ 2A−3/2
(
E�Wn −EWn�3/2 + �EWn�3/2

)
≤ An−1/2θ3/2�

The proof is complete. ✷

Lemma 2. Under the conditions of Theorem 2�2� we have

sup
x 
∈;n

∣∣P(T̃/S̃ ≤ x)−��x�∣∣ ≤ An−1/2� �(A.3)

Proof. From the definition of ;n, if x 
∈ ;n and �x� ≤ 1, then we have
1 ≤ 64�ρ+ θ3/2�n−1/2 ≤ 64n−1/2� , which implies that

sup
x 
∈;n� �x�≤1

∣∣P(T̃/S̃ ≤ x)−��x�∣∣ ≤ 128n−1/2� �(A.4)

We thus need to prove only (A.3) for �x� ≥ 1. From the Berry–Esséen theorem
for sums of independent random variables [cf. Feller (1971), page 544],

sup
x

�P�Sn ≤ x� −��x�� ≤ An−1/2ρ(A.5)

and

1−��x� ≤ 1√
2π

exp�−x2/2� ≤ 2
1+ �x�3 for x ≥ 1�(A.6)

we have, for x ≥ 1 and x 
∈ ;n,
P�Sn ≥ x/2� ≤ 1−��x/2� +An−1/2ρ

≤ A1n
−1/2�ρ+ θ3/2��

From this, (A.6) and Lemma 1, if follows that

sup
x 
∈;n�x≥1

∣∣P�T̃/S̃ ≤ x� −��x�∣∣ = sup
x 
∈;n�x≥1

∣∣P�T̃/S̃ ≥ x� − �1−��x��∣∣
≤ P��R1n� ≥ 1/4� +P��Yn +R2n� ≥ 1/2�

(A.7) + sup
x 
∈;n�x≥1

�P�Sn ≥ x/2� + 1−��x��

≤ An−1/2� �

Similarly, we have

sup
x 
∈;n�x≤−1

∣∣P�T̃/S̃ ≤ x� −��x�∣∣ ≤ An−1/2� �(A.8)

Now, (A.3) for the case �x� ≥ 1 follows from (A.4), (A.7) and (A.8). The proof of
Lemma 2 is thus complete. ✷
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Lemma 3. Under the conditions of Theorem 2�2� we have

sup
x∈;n

∣∣P�T̃/S̃ ≤ x� −P�T̃/S̃0 ≤ x�∣∣ ≤ An−1/2� �

Proof. Let Zk = g�Xk�I��g�Xk�� ≥ n/�1+ x2��, 1 ≤ k ≤ n. For �x� ≤ 1, it
is clear that∣∣P(T̃/S̃ ≤ x)−P(T̃/S̃0 ≤ x)∣∣ ≤ n∑

k=1

P�Zk 
= 0�

=
n∑
k=1

P
(
�g�Xk�� ≥ n/

(
1+ x2))

≤ 3n−1/2� �

Hence, it remains to show that

sup
x∈;n� �x�≥1

∣∣P(T̃/S̃ ≤ x)−P(T̃/S̃0 ≤ x)� ≤ An−1/2� �(A.9)

Without loss of generality, we may assume that x ≥ 1, since, if x ≤ −1, we can
replace α�Xj� and η�Xi�Xj� by −α�Xj� and −η�Xi�Xj�, respectively. From
x ≥ 1, it follows that for any k = 1� � � � � n,

P
(�α�Xk�� ≥ x

√
n/8

) ≤ An−3/2ρ
(
1+ �x�3)−1

�

Hence, from (A.5), (A.6) and x ∈ ;n, we have

P

(
n−1/2 ∑

j 
=k
α�Xj� ≥ x/4

)
≤ P�Sn ≥ x/8� +P��α�Xk�� ≥ x

√
n/8�

≤ 1−��x/8� +An−1/2ρ+A1
(
1+ �x�3)−1

≤ A(1+ �x�3)−1
�

Therefore, for x ≥ 1 and x ∈ ;n,
P�Sn ≥ x/2� Zk 
= 0 for some k ≥ 1�

≤
n∑
k=1

P�Sn ≥ x/2� Zk 
= 0�

≤
n∑
k=1

P

(
n−1/2 ∑

j 
=k
α�Xj� ≥ x/4�Zk 
= 0

)
+

n∑
k=1

P�n−1/2�α�xk�� ≥ 1/4�

(by independence)

≤ A�1+ �x�3�−1
n∑
k=1

P
(
�g�Xk�� ≥ n/

(
1+ x2))+A1n

−1/2�

≤ An−1/2� �
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Next, by applying Lemma 1, it follows that

sup
x∈;n�x≥1

P
(
T̃/S̃ ≥ x�Zk 
= 0 for some k ≥ 1

)
≤ P��R1n� ≥ 1/4� +P(�Yn +R2n� ≥ 1/4

)
+P�Sn ≥ x/2�Zk 
= 0 for some k ≥ 1�

≤ An−1/2� �

(A.10)

Similarly, we have

sup
x∈;n�x≥1

P
(
T̃/S̃0 ≥ x�Zk 
= 0 for some k ≥ 1

)
≤ An−1/2� �(A.11)

Now (A.9) follows from (A.10) and (A.11). This completes the proof of
Lemma 3. ✷

Lemma 4. Under the conditions of Theorem 2�2� we have

sup
x∈;n

∣∣∣P(T̃/S̃0 ≤ x
)
−��x�

∣∣∣ ≤ An−1/2� �(A.12)

Proof. We shall only show (A.12) for x > 0 and � <∞. The other cases
are similar and hence omitted. First, we note that for x ∈ ;n,

1+ �x�k√
n

(
ρ+ θ3/2

) ≤ 1/16� k = 0�1�2�(A.13)

From the inequality ��1+u�1/2 − 1−u/2� ≤ u2/6 for �u� ≤ 1/9, we have, for
�Wn +R2n� ≤ 1/9,∣∣∣(1+Wn +R2n

)1/2 − 1− 1
2

(
Wn +R2n

)∣∣∣ ≤ 1
3

(
W

2
n +R2

2n

)
�(A.14)

Recall T̃/S̃0 = �Sn+R1n�/�1+Wn+R2n�1/2. Also write =n�τ� = 1
2Wn+τW

2
n+

1
2R2n. It follows from (A.14) that

P
(
T̃/S̃0 ≤ x

)
≤ P

[
Sn +R1n ≤ x(1+ =n�1/3� + n−1/2)]

+P(�Wn +R2n� ≥ 1/9
)+P(R2

2n ≥ 3n−1/2
)
�

(A.15)

P
(
T̃/S̃0 ≤ x

)
≥ P

[
Sn +R1n ≤ x(1+ =n�−1/3� + n−1/2)]

−P(�Wn +R2n� ≥ 1/9
)−P(R2

2n ≥ 3n−1/2
)
�

(A.16)

In view of (A.15) and (A.16), then (A.12) follows from Lemma 1 and

δn ≡ sup
x∈;n

�P�Sn +R1n ≤ x�1+ =n�τ� +Cn�� −��x�� ≤ An−1/2� �(A.17)
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where �Cn� ≤ n−1/2 and �τ� ≤ 1/3. Let us define

Kn�x� =
1√
ndn

n∑
j=1

�l�Xj� −El�Xj�� +
1

n3/2dn

∑
i<j

M�Xi�Xj��

where

bn = 1
2
+ 2τ�n− 1�

n3/2
EW1�

l�Xj� = α�Xj� −
xbn√
n
Wj −

τx

n3/2
W2
j�

d2
n = 1

n

n∑
j=1

E�l�Xj� −El�Xj��2�

M�Xi�Xj� = β�Xi�Xj� −
x

2
√
n
ψ�Xi�Xj�

− 2τx√
n
�Wi −EWi��Wj −EWj��

Note that the term �Wn�2 in the definition of =n�τ� can be written as(
Wn

)2
= 1
n2

(
n∑
j=1

W2
j +

∑
i
=j
WiWj

)

= 1
n2

(
n∑
j=1

W2
j + 2

∑
i<j

�Wi −EWi��Wj −EWj�

+2�n− 1�EW1

n∑
j=1

Wj − n�n− 1��EW1�2
)
�

Then it is clear that

P�Sn +R1n ≤ x�1+ =n�τ� +Cn�� = P�Kn�x� ≤ σn�x���(A.18)

where σn�x� = d−1
n �1+θn�x−

√
nd−1

n El�X1� and θn = Cn−τ�EW1�2�n−1�/n.
Therefore, from (A.17), we have

δn = sup
x∈;n

�P�Kn�x� ≤ σn�x�� −��x��
(A.19) ≤ sup

x∈;n
sup
y

�P�Kn�x� ≤ y� −��y�� + sup
x∈;n

���σn�x� −��x���

We shall investigate the first term on the right-hand side of (A.19). It is
clear from the definition of Wj that

�EW1� ≤ E�g�X1��I
{�g�X1�� ≥ n/

(
1+ x2)} ≤ 1+ �x�√

n
θ3/2�(A.20)

E�α�X1�W1� ≤ ρ1/3θ
2/3
3/2 ≤ ρ+ θ3/2�(A.21)

E�W1�α ≤
(

n

1+ x2

)α−3/2

θ3/2� α ≥ 3/2�(A.22)
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Hence, if x ∈ ;n, we have that �bn� ≤ 2/3,

�El�X1�� ≤
�x�√
n

(
2
3
�EW1� +

1
3n
EW2

1

)
≤ �1+ �x���x�

n
θ3/2 ≤ 1/4�(A.23)

�d2
n − 1� ≤ �El�X1�2 − 1� + �El�X1��2

≤ 2�x�√
n

(
2
3
E�α�X1�W1� +

1
3n
E�α�X1��W2

1

+ �x�
3n3/2

E�W1�3
)

(A.24)

+4x2

9n

(
E�W1�2 +

1
4n2

EW4
1

)
+ 1

4
�El�X1��

≤ 5
(
1+ x2

)
√
n

(
ρ+ θ3/2

)
≤ 1/3�

Similarly, it follows from x ∈ ;n that

E�l�X1��3 ≤ A
(
E�α�X1��3 +

( �x�√
n

)3

E�W1�3

+
( �x�

3n3/2

)3

E�W1�6
)

≤ A1�ρ+ θ3/2��

(A.25)

E�M�X1�X2��3/2 ≤ A
(
E�β�X1�X2��3/2 +

( �x�
2
√
n

)3/2

E�ψ�X1�X2��3/2

+4
( �x�√

n

)3/2(
E�W1�3/2

)2)

≤ A
(
λ3/2 + 2

( �x�√
n

)3/2

θ3/2 + 4
( �x�√

n

)3/2(
θ3/2

)2)
≤ A1

(
λ3/2 +max

(
1� θ1/2

3/2

))
[from (A.13)]�

(A.26)

E�M�X1�X2��5/3 ≤ A
(
λ5/3 +

( �x�
2
√
n

)5/3

E�ψ�X1�X2��5/3

+4
( �x�√

n

)5/3(
E�W1�5/3

)2)
≤ A1

(
λ5/3 + θ3/2

)
�

(A.27)
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where in the last inequality of (A.27) we have used the following inequalities:

E�ψ�X1�X2��5/3 ≤ 6n1/3θ3/2 [from (4.1)]�( �x�√
n

)5/3

�E�W1�5/3�2 ≤ �x�√
n

(
E�W1�3/2

)2 ≤ θ3/2 [from (A.13) and (A.22)]�

From (A.25) and (A.26), we find that(
E�l�X1��3

)2/3(
E�M�X1�X2��3/2

)2/3
≤ A(ρ+ θ3/2

)2/3[
λ3/2 +max

(
1�
√
θ3/2

)]2/3

≤ A(ρ+ θ3/2
)2/3
λ

2/3
3/2 +

(
ρ+ θ3/2

)2/3 max
(
1� θ1/3

3/2

)
≤ A� �

(A.28)

Therefore, from Lemma 5 and (A.24)–(A.28), we obtain that, for any fixed
x ∈ ;n,

sup
y

�P�Kn�x� ≤ y� −��y�� ≤ An−1/2� �(A.29)

Next, we shall study the second term on the right-hand side of (A.19). From
(A.13) and (A.20), when x ∈ ;n, we have

�θn� ≤
1√
n
+ 1+ �x�

3
√
n
θ3/2 ≤ 2�1+ �x��

3
√
n

�ρ+ θ3/2� ≤ 1/4 as ρ ≥ 1�

Thus it follows from (A.23) and (A.24) that∣∣∣σn�x�
x

− 1
∣∣∣ ≤ √

n�El�X1��
�x�dn

+ �dn − 1� + θn
dn

≤ 2�1+ �x��√
n

θ3/2 +
6�1+ x2�√

n
�ρ+ θ3/2�

≤ 16�1+ �x�3�√
n

�ρ+ θ3/2�

≤ 1
2
�

Therefore,

���σn�x�� −��x�� ≤
1√
2π

�σn�x� − x�min
{
exp

(− σ2
n�x�/2

)
� exp

(− x2/2
)}

≤ A1n
−1/2� �x��1+ �x�3� exp�−x2/18�

≤ An−1/2� �

(A.30)
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Thus (A.17) follows from (A.19), (A.29) and (A.30). We therefore complete the
proof of Lemma 4. ✷

Lemma 5 is a corollary of Theorem 3.1 in Friedrich (1989).

Lemma 5. Let X1� � � � �Xn, n ≥ 2, be a sequence of independent real r.v.’s.
Define

Kn =
(

n∑
j=1

Eg2
nj�Xj�

)−1(
n∑
j=1

gnj�Xj� +
∑
i<j

ψnij�Xi�Xj�
)
�

where gnj�·� and ψnij�·� ·�, i 
= j, are real-valued Borel measurable functions
such that for each n ≥ 2, i 
= j,

Egnj�Xj�=0� 0 < s2n ≡∑n
j=1Eg

2
nj�Xj� <∞�

sup
n�j

E�gnj�Xj��3 ≤ ρ∗� E�ψnij�Xi�Xj��Xt� = 0� t = i� j�

sup
i
=j

E�ψnij�Xi�Xj��s ≤ λ∗n� s for s = 3/2� 5/3�

Then there exists an absolute constant A > 0 such that

sup
y

�P�Kn ≤ y� −��y�� ≤ Ans−3
n �ρ∗ +�1 +�2��

where �1 = n(ρ∗λ∗n�3/2)2/3 and �2 = ns4/3n λ∗n�5/3.
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5 136–139.
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Slavova, V. V. (1985). On the Berry–Esséen bound for Student’s statistics. Lecture Notes in Math.

1155 355-390. Springer, Berlin.
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