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Let F be any distribution function on R, and F,, be the nth empiri-
cal distribution function based on variables i.i.d. (F). It is shown that for
2 < p < oo and a constant C(p) < oo, not depending on F, on some prob-
ability space there exist F, and Brownian bridges B, such that for the
Wiener-Young p-variation norm | - ||} E|nV2(F, - F)-B, o Flip =
C(p)n@=P)/@p) where (B, o F)(x) = B,(F(x)). The expectation can be
replaced by an Orlicz norm of exponential order. Conversely, if F' is con-
tinuous, then for any stochastic process V(¢, w) continuous in ¢ for al-
most all w, such as B,, o F', summation over n distinct jumps shows that
|nY2(F, — F) - Vg = n(2=P)/(2P) 50 the upper bound in expectation is
best possible up to the constant C(p). In the proof, B, is linked to F',, by
the Komlés, Major and Tusnady construction, as for the supremum norm

(p = 00).

1. Introduction. Let X, X,,... be independent and identically dis-
tributed random variables with uniform law UJ[0, 1] having distribution func-
tion U. Let U, (¢) be the empirical distribution function based on X, Xo, ...,
X, and «,,(¢) the corresponding empirical process, that is, o, (¢) = /n(U,(¢) —
t), t € [0, 1]. Donsker [5] proved in 1952, except for some measurability prob-
lems, that the empirical process «,(¢) converges in law to a Brownian bridge
B(t) with respect to the sup norm. A sharp bound for the speed of this con-
vergence was indicated by Komlés, Major and Tusnady [13]. They stated in
1975 that on some probability space there exist X; i.i.d. U[0, 1] and Brownian
bridges B,, such that

(1.1) p ( sup |vn(a,(t) — B,(t))| > clogn + x) < Ke ™

0<t<1

for all n and x, where ¢, K, and A are positive absolute constants. Komlés,
Major and Tusnady [13] specified a joint distribution for «,, and B,, but beyond
that published very little proof of (1.1). Cs6rgo and Révész ([4], Section 4.4),
gave a partial proof in which a crucial lemma attributed to Tusnady was not
proved. Bretagnolle and Massart [2] gave a proof, complete in principle, in
which several steps were sketched. For versions of the Bretagnolle-Massart
proof see also Csorg6é and Horvath [3], pages 116-139, and [8]. Mason and van
Zwet [18] give an alternative proof, also applying to subintervals, in which
some steps were sketched. Mason [17] gives more details.
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On the other hand, in practice, the sup norm is often not strong enough.
For example, several statistical functionals of interest are not Fréchet differ-
entiable in the sup norm but are Fréchet differentiable in some p-variation
norms (see Dudley [6], [7], Dudley and Norvaisa [9]) defined as follows. For
a real-valued function f on an interval J and 0 < p < oo, let its p-variation
on J be v,(f,dJ) = sup{X% [f(;) — F(E_)IP 1ty € I tg < 8y < -+ <
tmed, m=1,2,...}. Let f be such that v,(f) < oo. For 1 < p < oo, the p-
variation seminorm is defined by || f{|(,) := vp(f)l/p. Let || flloo := sup,eyg | (x)].
Then the p-variation norm is defined by ||f1|;,) = IIfll(p) + | Flloo-

For a function f which is 0 somewhere in J, as «, and B, are at the
endpoints of [0, 1], we have for 1 < p < oo,

(1.2) [floc < fll(py andso [£llip < 2[fl(p)-

Dudley [6] showed that the convergence in law of «,(¢) to B(¢) still holds
with respect to the p-variation norm for p € (2, c0). This article focuses on
finding the speed of convergence. We will use some Orlicz norms. A Young-
Orlicz modulus is a convex, increasing function from [0, co) onto itself. Let g
be a Young-Orlicz modulus and (X, ./, u) a measure space. Let .Z,(X, ./, u)
denote the set of all measurable real-valued functions on X such that

Il =inf{t>0: [g(f(x)l/t)du(x) =1} < oo

Let L, := L (X, .7, u) be the collection of equivalence classes of functions in
Zg(X, ./, n) for equality p-almost everywhere. It is known that L, with the

norm || - ||, is a Banach space, and that for f € 7, with ||f|, > 0,

(1.3) /g(lf(x)l/llfllg)du(x) =1

for example, Luxemburg and Zaanen [15]. For y >0 and 1 < p < oo let

8p(¥) = (ey/p)Plocyp+e’1,. .

The left and right limits and derivatives of g, at y = p all equal e?, so g, is
a Young-Orlicz modulus. Our main result is:

THEOREM 1. For 2 < p < oo there is a constant A(p) < oo such that if F
is any d.f. (distribution function) on R, then on some probability space there
exist X1, X,, ..., t.i.d. (F) and Brownian bridges B, such that for all n,if F,
is the empirical d.f. based on X4, ..., X,, then

1.4) |nY2(F, — F) = B, o Fllyll,, < A(p)n~(P~2/P),
In particular, for some constant C(p) < oo,
(1.5) E||n"*(F, — F) — B, o F||,; < C(p)n~(P=2/P),

If F is continuous, then for V.= B, o F or any sample-continuous process V,

(1.6) |nY2(F, — F) = V| = n~(?=2/p) a.s.
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It follows from (1.3) that for ||f|, > 0

WD ol f@Izdfl ) <e’  forg=g, and t> p.
From (1.4) and (1.7) we get the exponential bound [cf. (1.1)]

P (||ﬁ(Fn —F)—B,oF||, > xn—<P—2)/<2P>) < e ¥/AWD) for x > pA(p).

In Section 2 we will define another Orlicz norm suitable for applying to
p-variations v,,. The rest of the paper is then devoted to proving Theorem 1.

The lower bound (1.6) is elementary: since F' is continuous, the X; are a.s.
distinct, so the function n'/2(F, — F)—V has n distinct jumps of height n=1/2,
and (1.6) follows.

For the upper bound (1.4), the linkage of empirical processes and Brownian
bridges will be by means of the Komlés, Major and Tusnady construction ([13],
[2], [18]).

For the uniform d.f. U and its empirical d.f’s U, as above, clearly F = Uo F
and we can write F, = U, o F. For any d.f. F and function 2 on [0, 1] it
follows from the definition of p-variation that ||k o F|,; < [2],), while if F
is continuous, and A is right-continuous at 0 and left-continuous at 1, then

|20 Flpy = l2ll{p)- So we can and will assume in the rest of the proof of
Theorem 1 that F' is the U[0, 1] d.f. By (1.2), it will be enough to prove (1.4)
for the seminorm || - [|(,)-

Section 3 starts with a brief outline of our approach in proving (1.4) and a
description of special yet straightforward piecewise linear approximations of
a, and B, that are used throughout the paper. Section 4 reviews the KMT con-
struction, while Section 5 provides the details of our proof of (1.4). Throughout
we assume p > 2 unless otherwise specified.

This paper evolved from a Ph. D. dissertation [12], which proved (1.5) and
(1.6).

2. Another Orlicz norm. For 0 < y := 1/p < 1 and any x > 0 let
¥, (x) := gp(x7). Then ¢ (x) = k,x for 0 < x < x, where k, := (ey)? and
x, := pP. For x > x,, ¢, (x) = exp(x?) and one can check that ¢7(x) > 0, so
i, s convex and a Young-Orlicz modulus (the value and first derivative, but
not the second, are continuous at x.,).

In the rest of the paper p and y := 1/p will be fixed and we will set
8= gp’ lwlj = lrlly'

It is easily seen that for a measurable real-valued function f on a measure
space, f € £, if and only if |f[? € £, with

(2.1) APy = 1£11g-
In particular, for any stochastic process X such that v,(X) is measurable,
(2.2) o, (XN = 11Xl p)llE-

LEMMA 1. Let 0 <y = 1/p < 1. Then for some C = C, < 00, g,(y) <
exp(C,y) — 1 for all y > 0.
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PrROOF. For y > p it will suffice to make e’ < exp(C,y)/2 and 1 <
exp(C,y)/2. Both hold if C,, > 1+ (log2)/p. For 0 < y < p it suffices to make
C,y > k,yP. Since y > y” is convex it will be enough to make C,p > «, p”.
So we can set C, := max(x,pP~!, 1+ (log2)/p). O

LEMMA 2. Let 0 <y =1/p < 1. Then there is a constant K = K, depend-
ing only on vy such that whenever Y has a binomial b(n, q) distribution with
ng > 1, we have |Y?|, < K(ng)”.

PROOF. We apply (2.1) and the previous lemma. We have Ee?”Y = (qe* +
1—q)", so for s > 0, Eexp(C,Y/s) — 1 < 1if gexp(C,/s) +1—q < 2'/".
We have e* < 1+ 2x for 0 < x < 1 and will take s > C,, so it will suffice if
1+2qC, /s < el°e2/n which will follow if s > 2C,nq/(log2),or s > 3C,ngq. Since
nqg > 1, s > C, does hold. We thus have ||Y||, < 3C,nq and the conclusion
follows from (2.1), with K = (3C,)?. O

To deduce (1.5) from (1.4) we have:

LEMMA 3. For any random variable Y, and 1 < p < oo, E|Y| < (1 +
p/o)Y ||,

PROOF. By homogeneity we can assume |Y |, = 1. Thus by (1.3), Eg(|Y])
< 1. Then by Holder’s inequality

ElY|ly)<py = (EIY[Plgy i)' < ple,

while E|Y |1y, ;3 < 1. The conclusion follows. O

>p} =

3. Piecewise linear interpolation and p-variation. To prove (1.4), we
will define some piecewise linear interpolations, [«, ], and [B,],, of «,, and B,
then bound |a, — B, ||, above by

(3.1 ”an - [an]r”(p) + ||[an]r - [Bn]rH(p) + ”[Bn]r - Bn”(p)

Specifically, for any f : [0,1] — R, [f], will be the function equal to f at
k/2™*! for k = 0,1,...,2""! and linear in between. If f(0) = f(1) = 0, as
holds for f = «, or B,, then [f], can be written as a sum as follows. For
j=0,1,...,and 2=0,1,...,2/ — 1, let T ; ; be the “triangle function” such
that T'; , = 0 outside the interval (k/2/, (k+1)/27), T, ; = 1 at the midpoint
(2k +1)/2/™1, and T'; ;, is linear in between. For each j and &, let

(3.2) [ k= Wu(f) = F((2k+1)/27") = L [F(R/27) + f((k+1)/27)].
Let ¢(j):=2/ — 1 and ¢ ;(f) := Z;e(:j()) ;2T j % Then

(3.3) 1 = 3 6 ,(F).
=0
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Clearly, if H is any monotone function and 1 < p < oo,
(3.4) v,(H)=(sup H —inf H)” and v,(T;;) =2

for each j and k. To provide bounds for p-variations, the next fact will be
useful.

LEMMA 4. Let 1< p <ooandlet fi,f9,..., [k be real-valued functions,
with supports included in [aq, b1], [ag, b9, ..., [ax, bx], respectively, such that
(i) ap < by for k =1,2,...,K; (i) b,_1 < a;, for each k = 2,3,..., K; and
(ii1) fr(ar) = fr(by) = 0 for every k = 1,2,..., K. Let [a, b] = [a1, bg] and
f= ZkK:1 f 1 Then, we have

K
(35) vp(f: [aa b]) < 21)71 Z Up(fka [aka bk])
k=1

PrROOF. Let A be the collection of all the a; and b;. Take any p-variation
sum S,(f) = Sy(f, {x;}5) = LXi_11f(x;) — f(x;-1)|7, where x4 € [a, )] and
Xog <Xy <-<xg €[a,b]. If (x;_1, x;)N A =, then either f(x;,_;) = f(x;) =
0or (x;_1,x;) C [a, b,] for some k. Therefore, we have

(o) = F(ai)IP < |Fa(x0) = Faloei)P < 2870 Fr(oy) = Fr(xion)l?
for some k. Or, if (x;_1,x,)NA=1A; #,let ¢, ;:=min A, and d; := max A;.
We have by Jensen’s inequality
(i) = F(xio)|” < 2P7H(1F () = 017 + [0 — £ (x;_1)[P)
=277 (|f (%) = F(A)IP +1f () = f(xi_)IP).
Either ¢; = b;, for some %, and then a; < x;_{ < by, or |f(c;) — f(x;_1)|? = 0.

Similarly, either d; = a; for some %, and then a;, < x; < b, or |f(x;) —
f(d;)|? = 0. The lemma then follows. O

For K = 2, disjoint supports are not needed for (3.5):

LEMMA 5. Let f, g be any two real-valued functions on an interval [a, b].
Then

(3.6) vp(f + 8 [a,b]) < 227 (v,(f, [a, b]) + v, (g, [a, B])).

PrOOF. For any x;_;, x; we have

(F + &)(x) = (f + @) )P < 2P 1 (1 () = Fain)|P + 18(xi) — g(x;-1)1P)

by Jensen’s inequality as in the previous proof, and the result follows. O

As mentioned above, our goal is to find a good bound for each term in (3.1).
We will fix r at first, then an appropriate r will be chosen to have a good
total bound. Finally, note that each term in (3.1) is measurable. In particular,
o, — B, ll(p) and |, —[a,],||(,) are measurable since we can restrict the points
t; in p-variation sums to be rational.
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4. The KMT construction-a review. If Bis a Brownian bridge on [0, 1]
and Z is a N(0, 1) variable independent of the process B, then Y (¢) := B(t)+
Zt gives a Brownian motion on [0, 1]. From (3.2), W ,(B) = W ,(Y) for each
J and k. Then it’s easy to check by covariances that:

LEMMA 6. Each W ; ,(B) has a N(0,27/72) distribution, and the W ; ,(B)
are independent for all j and k.

For m =0,1,2,..., let H(¢jm) := max{k < m : Y’ c(M2m <}, 0<t<1,
be the usual (left-continuous) inverse of the blnomlal distribution function
b(m, 1/2). Let ® be the standard normal distribution function. Given n and
a Brownian bridge B,,, and hence the W ; ,(B,), Komlés, Major and Tusnady
[13] constructed random variables U* , iteratively as follows. Let Uj , := n.
Next, let U7 o := H(®(2W, ((B,))|Us,) and U7 ; := Uj, — U7 ,- Then, given
U%_y 4 for j =2, foreach k=0,..., 2/-1 -1, let

(4.1) U;,Zk =H ((I) (2(j+1)/2Wj71,k(Bn)) |U>;'—1,k)

and U% o4 = U%_; ,, — U% 5. Since each 2UD2W ,_, ,(B,,) has law N(0, 1)
by Lemma 6, ® oflt has law U[0, 1], so that U o has law b(U _1.4 1/2), given
U ’; 1.x- It is easily seen that by interpreting U Gk as the number of points in
the interval I;, := (k/2/,(k+1)/2/] for each J and %k and letting j — oo,
the U” ;, in fact define n points in the interval (0, 1), so that intervals I,

contalmng the points have U ’; = 1 for j large enough. Let these n points
be the ordered sample X(l),XZ‘Z), ...,X’(kn) and define X3, X5,..., X} by a
random permutation 7, independent of Xzﬁ): X7 = X(w (i)’ 1=1,2,...,n

If we let X, X,,..., X,, be a sample of independent uniform (0, 1) random
variables and U ; ;, the number of X; in I;;, then one can easily show that
the U; ) and the U ’; have the same joint distribution. So X7, X3,..., X}
are indeed i.i.d. with unlform (0, 1) distribution. By virtue of this fact, we W111
drop the superscript «’ from now on and treat U ik and U ,, and thus X7
and X, as the same.

In other words, the KMT construction defines a joint distribution of a Brow-
nian bridge B,, and empirical process «,, as follows. Begin with B,, which has
continuous sample functions, and for it, extend (3.3) to

oo H(J)

Bn = Z Z Wj,k(Bn)Tj,k

j=0 k=0
(which by piecewise linear interpolation clearly converges uniformly on [0, 1]).
Let F,(0):=0 and F,(1):=1. Apply (4.1) repeatedly to get
and so on. Then F,(k/27) for j=0,1,..., k=0,1,...,2/ —1, have their cor-

rect joint distribution, and F, (¢) for 0 < ¢ < 1 is then defined by monotonicity
and right-continuity. Let a,, := nY/?(F, — F).
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Theorem 8.1 of Major [16] implies that if Z has law N(0,1), then ¥ =
H(®(Z)|m) minimizes E(|m~Y2(2Y — m) — Z|P) among all Y with law
b(m, 1/2). This motivates the choice (4.1). To prove Theorem 1, we need to
define a distribution of {(«,, B,)};~;, although the joint distribution for dif-
ferent n has no effect on (1.4), (1.5) or (1.6). One way is as follows. Let
X1, Xg, ... beiid. U[0, 1] and define «,, from X, ..., X, as usual. For each
nlet ((X4,...,X,), B,) have the KMT joint distribution as just defined. Then
let B, for n > 1 be conditionally independent given {X}:°; (the Vorob’ev [22],
Berkes and Philipp [1] method). Good conditional distributions exist because
the spaces (of sequences and C[0, 1]) are complete separable metric spaces.

5. Piecewise linear approximations. First we will give a bound for
[v,(B —[B],)ly, where as always ¢ := ¢, for any Brownian bridge B, for
example, B = B,. For a function f from a closed interval [c, d] into R, let
f{c,ay be the linear function on [c, d] which equals f at ¢ and at d. On [c, d]
we define A(f;[c, d])(-) := [ — f{c,q)- The following two lemmas are straight-
forward to check by covariances. In both lemmas, as in (3.2) and Lemma 6, a
Brownian bridge can again be replaced by a Brownian motion Y, simplifying
the covariances.

LEMMA 7.  Suppose t; € (s1,89) C [0,1] and ¢y € (s3,54) C [0, 1]. Then
A(B;[s1, s2])(t1) and A(B;[s3, s4])(t9) are independent if sy < sg or ty ¢ (s1, Sg)
C [s3, 84]-

LEMMA 8. Let M(t),0 < ¢ < 1, be a Brownian bridge. For any fixed 0
u < v <1,define

IA

B(t;u,v) = (v —u) V2 [M(tv+ (1 — t)u) — tM(v) — (1 — t)M(u)]

for 0 < ¢ < 1. Then B(t;u,v) is a Brownian bridge. Specifically, for 0 <t <1,
let B ;(t) := B(t)—[B];_1(t) if t € [k/27,(k+ 1)/27], and otherwise B ;(t) :=
0. Let B ,(t) := (2J’_)1/23J-,k((k+t)/2f) for 0 <t <1.Then BY ), for j=0,1,...
and k=0,1,...,2/ — 1 are Brownian bridges.

Now we are in a position to bound the last term in (3.1).

LEMMA 9. For any p € (2, 00), there exists a constant Cg(p) such that for
=12 1B~ (Bl il = Ca(p)(@)P-D/CD),

PROOF. First, v,(B, [0, 1]) < cc a.s. since B a.s. satisfies a Holder condition
of any order < 1/2, [19], (9.11), or from the more precise results of Lévy
[14], page 172, or S. J. Taylor [21]. Let C, := || B|/(pllg- By the Landau-
Shepp-Marcus-Fernique theorem (specifically Fernique [10]; note that || - ||,
is measurable but not separable), C,, is finite. Then by (2.2), ||v,(B, [0, 1])||, =
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C5H. Recall that ¢(r) := 2" — 1. By Lemma 4, for r = 1, 2, ..., we have

i(r)
Up(B - [B]rfb [07 1]) =Up (Z Br,k7 [07 1])

k=0
H(r)
k=0

t(r)
= 2771 37(27)Pv, (B} 4. [0, 1])
k=0

tr) 1
= gr-1(2r)~ (P22 3 ?vp(Bg’k’ [0, 1]).
k=0

(5.1)

Since p > 2 and B(},k(t), k=0,1,...,2/ — 1, are all Brownian bridges, we
have
lv,(B = [B],_1,[0, 1], < 2°71(2") (»~22Ch,

By (2.2), the conclusion follows. O
Next we approximate the empirical process.

LEMMA 10. For any p >2and r =1,2,..., with n/2" > 1, and K, from
Lemma 2,

lvp(an = [en] 1)y < 47K, nP/22777 0,

PRrROOF. Since «,, — [@,],_1 = 0 at each point £/2", we have by Lemma 4

tr) B k+1
vp(ay = [ap],1) <2771 Y v, (“n ~ Lok [2_ ’ z—D '
k=0

Now note that the map f +— [f],_; is linear and that F = [F],_;. Thus «, —
[a,],-1 = V/n(F,—[F,],_1). Recall that U, ; is the number of points X; in the
interval I, ;,, which almost surely equals the number in the closure [%£/2", (k+
1)/2"]. On that interval, by Lemma 5, v, (F, — [F,],_;) < 2P Xv,(F,) +
v,([F,]--1))- Applying monotonicity (3.4) then gives

t(r)
Up(an - [an]rfl) = 4pn—p/2 Z Uf,k
k=0
Since U, j, has a binomial b(n, 1/27) distribution for each &, we can take | - |,
of both sides and apply Lemma 2. The conclusion follows. O

Now we approximate the difference B, — «,. We have for r = 1,2, ..., by
(3.2) and (3.3),

r t(J)

(5.2) [Bn]r - [an]r = Z Z Wj,k(Bn - an)Tjak'
J=0 k=0
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Recall the inverse H(-|N) of the the binomial b(N, 1/2) distribution function.
For a N(0, 1) variable Y let By := H(®P(Y)|N) — N /2. Then according to a
lemma of Tusnady whose first published proof was given as far as we know
by Bretagnolle and Massart [2], Lemma 4,

N

TY <1+ Y2/8.

Bn —

Letting N := U%_; , and Y := Y, := 2U+V2W;_, ,(B,) we get from (4.1)
and (3.2)

N
Wi a(a,)=n""? ( ok — 5) = Bn/V/n.

Then since EN = n/2/71,
(5.3) VW g (e, — B, <1+ 1Y%, + 3|V ;4| VN - VEN|.

Via the inequality (a + b + c)? < 3P 1(a? + bP + cP) we will treat the three
terms on the right of (5.3) separately.

For a standard normal variable Y such as Y ; ;, || |Y 22| o 18 a finite constant

n, depending on p. For the last term in (5.3) we will use

(5.4) Y 4|?- VN -~ VEN]? <|Y;?? + |vVN - VEN|?».

For ¢ > 0 we have by the relation ¢, (x) = gp(xl/ P) and Lemma 1 that
(55)  Ey, (VN —VEN|*?/t) < Eexp(C, (VN —VEN)?/t'/P) — 1.
We have the following:

LEMMA 11. Let N be a binomial b(n, q) random variable and ¢(s) :
Dn.q(s) = E exp(s(v'N — VEN)?). Then for 0 < s < 1/2 and all n, q, ¢(s)
eS/a/1—2s.

Al

REMARKS. The supremum over (n, q) of ¢(s) is +oo for s > 1, as can be
seen by taking the Poisson limit n — oo, ¢ — 0, ng — A > 0, where the N =0
term converges to e **5*, then letting A — co. We have a 3%-page proof that
for ¢ < 1/2, ¢(1) is uniformly bounded, by a large constant. Thus, Lemma 11
is not efficient for s close to 1/2. A referee and an Associate Editor pointed out
to us that smaller values of s can yield better bounds on |||vN — vVEN 27,
and suggested most of the following proof.

Let Z := (VN — EJ/N)2 Then (VN —VEN)? — Z < EN — (Ev/N)? since
EVN < VEN. Then EN — (Ev/N)? < EN — (EN)?/E(N?), in other words
(EN)? < (EVN)?E(N?), by Holder’s inequality for f = N3 ¢ /32 g =
N?/3 ¢ /3, Next,

EN - (EN)*/E(N?) < Var(N)/EN <1
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as follows from [E(N?) — (EN)?]? > 0. Thus if N’ and N are i.i.d.,
2 2
¢(s) < e®Eexp (s (m— Em) > < e*Eexp (s (\/N— vN’) >

by Jensen’s inequality, noting that Ev/N' = E+N. Let S := N + N’ and
D := N — N'. Then

(JN— W)z =S <1 — \/1 - (D/S)2> < D?/S

as is easily checked. Now write D = N — N' = Y ; ¢; where §; = 1, — 7
and n;,m}, i = 1,..,n, are iid. Bernoulli (¢). Then n; = n?, 1, = 71}, so
S=>3", f?. Conditional on §? fori =1,...,n, D is equal in distribution to
Y ¢ where g; are Rademacher functions, equal to +£1 with probability
1/2 each, independent of each other and the ¢;. We will show that

2
(5.6) d(s) < e°sup {Eexp (s |:Z aisi] ) Y ol < 1} .
i=1 i=1

To see this, condition on the &; and if not all &; are 0, let a; := &;/(X"}_; £3)V/2.
If all ¢; are O let «; = O for all .

We next need the following known bound, which is asymptotically sharp,
letting o; = 1/4/n, n — oo.

LEMMA 12. For 0 < s < 1/2, a N(0,1) random variable Z, any «; with
>" ,a? < 1, and independent Rademacher &;,

2
E exp (s <Z aisi) ) < Eexp(sZ?).
i=1

PROOF. Let Y := Y ", a;&;. It suffices to show that E(Y?*) < E(Z?*) for
k=0,1,.... We have from Ee'? = exp(t%/2) that E(Z2*) = (2k)!/(2*k!). Thus
the lemma follows from Whittle [23], Theorem 1. The lemma as stated is also
a special case of Pinelis [20], Corollary 2.7; see also [11], Theorem 1.1.

Lemma 12 is proved. O

By Lemma 12 and (5.6), since E exp(sZ?) = 1/4/1 —2s, Lemma 11 fol-
lows. O

Now returning to the proof of Theorem 1, by (5.5) we have ||vN—
VEN*?P||, < ¢tif $(C,/t*P) < 2. Lemma 11 gives ¢(0.28) < 2. Thus

(5.7) IIV'N — VEN|??|, < (3.6C,)?,

a constant depending only on p. Summing up the terms from (5.3) with (5.4),
there is some A, < oo such that |(n|W; (a, — B,))?|l, < A, for each j
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and k. Thus for each j, by Lemma 4 and (3.4),

1) ,

v, (Z W w(a, — Bn)Tjk) < 21+PApn—p/2.
k=0 "

Hence by (2.2), for some constant B, < oo,

t(J)

> W, (e, — BT, <2/PB n712
k=0

| g

Now, for a given n, we use the KMT construction (4.1) and (4.2) to construct
a, from B,,. We choose r = r(n) = |logy(n)|, where | x| := the largest integer
< x. Then n/2" > 1 and

() 1(J)
> 2 Wik, = B,)T

J=0 k=0

r(n)
< Bpn—l/2 3 9J/p
J=0

< B,n 2pl/P /(1 —271P),

(5.8)
(D)l g

By Lemma 9 we have
(5.9 1B, — (Bl llpls = Co(p)(2H)EPVED) < Cp(p)n PP
for some constant Cgz(p). Next, by (5.2) and (5.8) we have
(5.10) 1B, = [l gl < Cp(p)n@0
for some constant Cp(p). Third, by Lemma 10 and (2.2) we have
(5.11) ety = eyl < Cal pIn =PV

for some constant C,(p). Combining (5.9), (5.10), and (5.11) as in (3.1), now
(1.4) and Theorem 1 are proved. O
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