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Let F be any distribution function on �, and Fn be the nth empiri-
cal distribution function based on variables i.i.d. �F�. It is shown that for
2 < p <∞ and a constant C�p� <∞, not depending on F, on some prob-
ability space there exist Fn and Brownian bridges Bn such that for the
Wiener-Young p-variation norm � · ��p�, E�n1/2�Fn − F� − Bn ◦ F��p� ≤
C�p�n�2−p�/�2p�, where �Bn ◦ F��x� = Bn�F�x��. The expectation can be
replaced by an Orlicz norm of exponential order. Conversely, if F is con-
tinuous, then for any stochastic process V�t�ω� continuous in t for al-
most all ω, such as Bn ◦F, summation over n distinct jumps shows that
�n1/2�Fn −F� −V��p� ≥ n�2−p�/�2p�, so the upper bound in expectation is
best possible up to the constant C�p�. In the proof, Bn is linked to Fn by
the Komlós, Major and Tusnády construction, as for the supremum norm
�p = ∞�.

1. Introduction. Let X1�X2� � � � be independent and identically dis-
tributed random variables with uniform law U�0�1� having distribution func-
tion U. Let Un�t� be the empirical distribution function based on X1�X2� � � � �
Xn and αn�t� the corresponding empirical process, that is, αn�t� = √

n�Un�t�−
t�� t ∈ �0�1�� Donsker [5] proved in 1952, except for some measurability prob-
lems, that the empirical process αn�t� converges in law to a Brownian bridge
B�t� with respect to the sup norm. A sharp bound for the speed of this con-
vergence was indicated by Komlós, Major and Tusnády [13]. They stated in
1975 that on some probability space there existXi i.i.d. U�0�1� and Brownian
bridges Bn such that

P

(
sup
0≤t≤1

�√n�αn�t� −Bn�t��� > c log n+ x
)
< Ke−λx(1.1)

for all n and x, where c�K� and λ are positive absolute constants. Komlós,
Major and Tusnády [13] specified a joint distribution for αn and Bn but beyond
that published very little proof of (1.1). Csörgő and Révész ([4], Section 4.4),
gave a partial proof in which a crucial lemma attributed to Tusnády was not
proved. Bretagnolle and Massart [2] gave a proof, complete in principle, in
which several steps were sketched. For versions of the Bretagnolle-Massart
proof see also Csörgő and Horváth [3], pages 116-139, and [8]. Mason and van
Zwet [18] give an alternative proof, also applying to subintervals, in which
some steps were sketched. Mason [17] gives more details.
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On the other hand, in practice, the sup norm is often not strong enough.
For example, several statistical functionals of interest are not Fréchet differ-
entiable in the sup norm but are Fréchet differentiable in some p-variation
norms (see Dudley [6], [7], Dudley and Norvaiša [9]) defined as follows. For
a real-valued function f on an interval J and 0 < p < ∞, let its p-variation
on J be vp�f�J� �= sup�∑m

i=1 �f�ti� − f�ti−1��p � t0 ∈ J� t0 < t1 < · · · <
tm ∈ J� m = 1�2� � � ��. Let f be such that vp�f� <∞. For 1 ≤ p <∞, the p-
variation seminorm is defined by �f��p� �= vp�f�1/p. Let �f�∞ �= supx∈J �f�x��.
Then the p-variation norm is defined by �f��p� �= �f��p� + �f�∞.

For a function f which is 0 somewhere in J, as αn and Bn are at the
endpoints of �0�1�, we have for 1 ≤ p <∞,

�f�∞ ≤ �f��p� and so �f��p� ≤ 2�f��p��(1.2)

Dudley [6] showed that the convergence in law of αn�t� to B�t� still holds
with respect to the p-variation norm for p ∈ �2�∞�. This article focuses on
finding the speed of convergence. We will use some Orlicz norms. A Young-
Orlicz modulus is a convex, increasing function from �0�∞� onto itself. Let g
be a Young-Orlicz modulus and �X�� � µ� a measure space. Let �g�X�� � µ�
denote the set of all measurable real-valued functions on X such that

�f�g �= inf
{
t > 0 �

∫
g��f�x��/t�dµ�x� ≤ 1

}
<∞�

Let Lg �= Lg�X�� � µ� be the collection of equivalence classes of functions in
�g�X�� � µ� for equality µ-almost everywhere. It is known that Lg with the
norm � · �g is a Banach space, and that for f ∈ �g with �f�g > 0,∫

g��f�x��/�f�g�dµ�x� ≤ 1�(1.3)

for example, Luxemburg and Zaanen [15]. For y ≥ 0 and 1 ≤ p <∞ let

gp�y� �= �ey/p�p10≤y<p + ey1y≥p�
The left and right limits and derivatives of gp at y = p all equal ep, so gp is
a Young-Orlicz modulus. Our main result is:

Theorem 1. For 2 < p < ∞ there is a constant A�p� < ∞ such that if F
is any d.f. �distribution function� on �, then on some probability space there
existX1�X2� � � � � i.i.d. �F� and Brownian bridges Bn such that for all n, if Fn
is the empirical d.f. based on X1� � � � �Xn, then

��n1/2�Fn −F� −Bn ◦F��p��gp ≤ A�p�n−�p−2�/�2p��(1.4)

In particular, for some constant C�p� <∞,

E�n1/2�Fn −F� −Bn ◦F��p� ≤ C�p�n−�p−2�/�2p��(1.5)

If F is continuous, then for V = Bn ◦F or any sample-continuous process V,

�n1/2�Fn −F� −V��p� ≥ n−�p−2�/�2p� a.s.(1.6)



EMPIRICAL PROCESSES AND p-VARIATION 1627

It follows from (1.3) that for �f�g > 0

µ��x � �f�x�� ≥ t�f�g�� ≤ e−t for g = gp and t ≥ p�(1.7)

From (1.4) and (1.7) we get the exponential bound [cf. (1.1)]

P
(
�√n�Fn −F� −Bn ◦F��p� > xn−�p−2�/�2p�

)
≤ e−x/A�p� for x ≥ pA�p��

In Section 2 we will define another Orlicz norm suitable for applying to
p-variations vp. The rest of the paper is then devoted to proving Theorem 1.

The lower bound (1.6) is elementary: since F is continuous, the Xi are a.s.
distinct, so the function n1/2�Fn−F�−V has n distinct jumps of height n−1/2,
and (1.6) follows.

For the upper bound (1.4), the linkage of empirical processes and Brownian
bridges will be by means of the Komlós, Major and Tusnády construction ([13],
[2], [18]).

For the uniform d.f.U and its empirical d.f.’sUn as above, clearly F ≡ U◦F
and we can write Fn ≡ Un ◦ F. For any d.f. F and function h on �0�1� it
follows from the definition of p-variation that �h ◦F��p� ≤ �h��p�, while if F
is continuous, and h is right-continuous at 0 and left-continuous at 1, then
�h ◦ F��p� = �h��p�. So we can and will assume in the rest of the proof of
Theorem 1 that F is the U�0�1� d.f. By (1.2), it will be enough to prove (1.4)
for the seminorm � · ��p�.

Section 3 starts with a brief outline of our approach in proving (1.4) and a
description of special yet straightforward piecewise linear approximations of
αn and Bn that are used throughout the paper. Section 4 reviews the KMT con-
struction, while Section 5 provides the details of our proof of (1.4). Throughout
we assume p > 2 unless otherwise specified.

This paper evolved from a Ph. D. dissertation [12], which proved (1.5) and
(1.6).

2. Another Orlicz norm. For 0 < γ �= 1/p < 1 and any x ≥ 0 let
ψγ�x� �= gp�xγ�. Then ψγ�x� = κγx for 0 ≤ x ≤ xγ where κγ �= �eγ�p and
xγ �= pp. For x > xγ� ψγ�x� = exp�xγ� and one can check that ψ′′

γ�x� > 0, so
ψγ is convex and a Young-Orlicz modulus (the value and first derivative, but
not the second, are continuous at xγ).

In the rest of the paper p and γ �= 1/p will be fixed and we will set
g �= gp� ψ �= ψγ.

It is easily seen that for a measurable real-valued function f on a measure
space, f ∈ �g if and only if �f�p ∈ �ψ, with

��f�p�ψ = �f�pg�(2.1)

In particular, for any stochastic process X such that vp�X� is measurable,

�vp�X��ψ = ��X��p��pg�(2.2)

Lemma 1. Let 0 < γ = 1/p < 1. Then for some C = Cγ < ∞, gp�y� ≤
exp�Cγy� − 1 for all y > 0.
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Proof. For y ≥ p it will suffice to make ey ≤ exp�Cγy�/2 and 1 ≤
exp�Cγy�/2. Both hold if Cγ ≥ 1+ �log 2�/p. For 0 ≤ y < p it suffices to make
Cγy ≥ κγyp. Since y �→ yp is convex it will be enough to make Cγp ≥ κγpp.
So we can set Cγ �= max�κγpp−1�1+ �log 2�/p�� ✷

Lemma 2. Let 0 < γ = 1/p < 1. Then there is a constant K =Kγ depend-
ing only on γ such that whenever Y has a binomial b�n�q� distribution with
nq ≥ 1, we have �Yp�ψ ≤K�nq�p.

Proof. We apply (2.1) and the previous lemma. We have EeuY = �qeu +
1 − q�n, so for s > 0, E exp�CγY/s� − 1 ≤ 1 if q exp�Cγ/s� + 1 − q ≤ 21/n.
We have ex ≤ 1 + 2x for 0 ≤ x ≤ 1 and will take s ≥ Cγ, so it will suffice if
1+2qCγ/s ≤ elog 2/n�which will follow if s ≥ 2Cγnq/�log 2�, or s ≥ 3Cγnq. Since
nq ≥ 1, s ≥ Cγ does hold. We thus have �Y�g ≤ 3Cγnq and the conclusion
follows from (2.1), with K = �3Cγ�p. ✷

To deduce (1.5) from (1.4) we have:

Lemma 3. For any random variable Y, and 1 < p < ∞, E�Y� ≤ �1 +
p/e��Y�g.

Proof. By homogeneity we can assume �Y�g = 1. Thus by (1.3), Eg��Y��
≤ 1. Then by Hölder’s inequality

E�Y�1��Y�≤p� ≤ �E�Y�p1��Y�≤p��1/p ≤ p/e�
while E�Y�1��Y�>p� ≤ 1. The conclusion follows. ✷

3. Piecewise linear interpolation and p-variation. To prove (1.4), we
will define some piecewise linear interpolations, �αn�r and �Bn�r, of αn and Bn,
then bound �αn −Bn��p� above by

�αn − �αn�r��p� + ��αn�r − �Bn�r��p� + ��Bn�r −Bn��p��(3.1)

Specifically, for any f � �0�1� �→ �, �f�r will be the function equal to f at
k/2r+1 for k = 0�1� � � � �2r+1 and linear in between. If f�0� = f�1� = 0, as
holds for f = αn or Bn, then �f�r can be written as a sum as follows. For
j = 0�1� � � � � and k = 0�1� � � � �2j − 1, let Tj�k be the “triangle function” such
that Tj�k = 0 outside the interval �k/2j� �k+ 1�/2j�, Tj�k = 1 at the midpoint
�2k+ 1�/2j+1, and Tj�k is linear in between. For each j and k, let

fj�k �=Wj�k�f� �= f��2k+ 1�/2j+1� − 1
2

[
f�k/2j� + f��k+ 1�/2j�] �(3.2)

Let t�j� �= 2j − 1 and φj�f� �=∑t�j�
k=0 fj�kTj�k. Then

�f�r =
r∑
j=0
φj�f��(3.3)
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Clearly, if H is any monotone function and 1 ≤ p <∞,

vp�H� = �supH− inf H�p and vp�Tj�k� = 2(3.4)

for each j and k. To provide bounds for p-variations, the next fact will be
useful.

Lemma 4. Let 1 ≤ p <∞ and let f1� f2� � � � � fK be real-valued functions,
with supports included in �a1� b1�, �a2� b2�, � � � � �aK� bK�, respectively, such that
(i) ak < bk for k = 1�2� � � � �K; (ii) bk−1 ≤ ak for each k = 2�3� � � � �K; and
(iii) fk�ak� = fk�bk� = 0 for every k = 1�2� � � � �K. Let �a� b� = �a1� bK� and
f =∑K

k=1 fk. Then, we have

vp�f� �a� b�� ≤ 2p−1
K∑
k=1
vp�fk� �ak� bk���(3.5)

Proof. Let A be the collection of all the aj and bj. Take any p-variation
sum Sp�f� �= Sp�f� �xi�s0� �= ∑s

i=1 �f�xi� − f�xi−1��p, where x0 ∈ �a� b� and
x0 < x1 < · · · < xs ∈ �a� b�. If �xi−1� xi� ∩A = �, then either f�xi−1� = f�xi� =
0 or �xi−1� xi� ⊂ �ak� bk� for some k. Therefore, we have

�f�xi� − f�xi−1��p ≤ �fk�xi� − fk�xi−1��p ≤ 2p−1�fk�xi� − fk�xi−1��p
for some k. Or, if �xi−1� xi� ∩A =� Ai �= �, let ci �= minAi and di �= maxAi.
We have by Jensen’s inequality

�f�xi� − f�xi−1��p ≤ 2p−1��f�xi� − 0�p + �0− f�xi−1��p�
= 2p−1��f�xi� − f�di��p + �f�ci� − f�xi−1��p��

Either ci = bk for some k, and then ak ≤ xi−1 < bk, or �f�ci� − f�xi−1��p = 0.
Similarly, either di = ak for some k, and then ak < xi ≤ bk, or �f�xi� −
f�di��p = 0. The lemma then follows. ✷

For K = 2, disjoint supports are not needed for (3.5):

Lemma 5. Let f�g be any two real-valued functions on an interval �a� b�.
Then

vp�f+ g� �a� b�� ≤ 2p−1�vp�f� �a� b�� + vp�g� �a� b����(3.6)

Proof. For any xi−1� xi we have

��f+ g��xi� − �f+ g��xi−1��p ≤ 2p−1��f�xi� − f�xi−1��p + �g�xi� − g�xi−1��p�
by Jensen’s inequality as in the previous proof, and the result follows. ✷

As mentioned above, our goal is to find a good bound for each term in (3.1).
We will fix r at first, then an appropriate r will be chosen to have a good
total bound. Finally, note that each term in (3.1) is measurable. In particular,
�αn−Bn��p� and �αn−�αn�r��p� are measurable since we can restrict the points
ti in p-variation sums to be rational.
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4. The KMT construction–a review. If B is a Brownian bridge on �0�1�
and Z is aN�0�1� variable independent of the process B, then Y�t� �= B�t�+
Zt gives a Brownian motion on �0�1�. From (3.2),Wj�k�B� =Wj�k�Y� for each
j and k. Then it’s easy to check by covariances that:

Lemma 6. Each Wj�k�B� has a N�0�2−j−2� distribution, and the Wj�k�B�
are independent for all j and k.

For m = 0�1�2� � � �, let H�t�m� �= max�k ≤ m � ∑k−1
i=0 �mi �2−m < t�, 0 < t < 1,

be the usual (left-continuous) inverse of the binomial distribution function
b�m�1/2�. Let 7 be the standard normal distribution function. Given n and
a Brownian bridge Bn, and hence the Wj�k�Bn�, Komlós, Major and Tusnády
[13] constructed random variables U∗

j�k iteratively as follows. Let U∗
0�0 �= n.

Next, let U∗
1�0 �= H�7�2W0�0�Bn���U∗

0�0� and U∗
1�1 �= U∗

0�0 −U∗
1�0. Then, given

U∗
j−1�k, for j ≥ 2, for each k = 0� � � � �2j−1 − 1, let

U∗
j�2k �=H

(
7
(
2�j+1�/2Wj−1�k�Bn�

)
�U∗

j−1�k
)

(4.1)

and U∗
j�2k+1 �= U∗

j−1�k −U∗
j�2k� Since each 2�j+1�/2Wj−1�k�Bn� has law N�0�1�

by Lemma 6, 7 of it has lawU�0�1�, so thatU∗
j�2k has law b�U∗

j−1�k�1/2�, given
U∗
j−1�k. It is easily seen that by interpreting U∗

j�k as the number of points in
the interval Ij�k �= �k/2j� �k+ 1�/2j� for each j and k and letting j → ∞,
the U∗

j�k in fact define n points in the interval �0�1�, so that intervals Ij�k
containing the points have U∗

j�k = 1 for j large enough. Let these n points
be the ordered sample X∗

�1��X
∗
�2�� � � � �X

∗
�n� and define X∗

1�X
∗
2� � � � �X

∗
n by a

random permutation π, independent of X∗
�·�: X

∗
i �= X∗

�π�i��� i = 1�2� � � � � n�
If we let X1�X2� � � � �Xn be a sample of independent uniform �0�1� random
variables and Uj�k the number of Xi in Ij�k, then one can easily show that
the Uj�k and the U∗

j�k have the same joint distribution. So X∗
1�X

∗
2� � � � �X

∗
n

are indeed i.i.d. with uniform �0�1� distribution. By virtue of this fact, we will
drop the superscript ‘∗’ from now on and treat U∗

j�k and Uj�k, and thus X∗
i

and Xi, as the same.
In other words, the KMT construction defines a joint distribution of a Brow-

nian bridge Bn and empirical process αn as follows. Begin with Bn, which has
continuous sample functions, and for it, extend (3.3) to

Bn =
∞∑
j=0

t�j�∑
k=0
Wj�k�Bn�Tj�k

(which by piecewise linear interpolation clearly converges uniformly on �0�1�).
Let Fn�0� �= 0 and Fn�1� �= 1. Apply (4.1) repeatedly to get

Fn�1/2� �= U∗
1�0/n�Fn�1/4� �= U∗

2�0/n�Fn�3/4� �= Fn�1/2� +U∗
2�2/n�(4.2)

and so on. Then Fn�k/2j� for j = 0�1� � � � � k = 0�1� � � � �2j−1, have their cor-
rect joint distribution, and Fn�t� for 0 ≤ t ≤ 1 is then defined by monotonicity
and right-continuity. Let αn �= n1/2�Fn −F�.



EMPIRICAL PROCESSES AND p-VARIATION 1631

Theorem 8.1 of Major [16] implies that if Z has law N�0�1�, then Y =
H�7�Z��m� minimizes E��m−1/2�2Y − m� − Z�p� among all Y with law
b�m�1/2�. This motivates the choice (4.1). To prove Theorem 1, we need to
define a distribution of ��αn�Bn��∞n=1, although the joint distribution for dif-
ferent n has no effect on (1.4), (1.5) or (1.6). One way is as follows. Let
X1�X2� � � � be i.i.d. U�0�1� and define αn from X1� � � � �Xn as usual. For each
n let ��X1� � � � �Xn��Bn� have the KMT joint distribution as just defined. Then
let Bn for n ≥ 1 be conditionally independent given �Xi�∞i=1 (the Vorob’ev [22],
Berkes and Philipp [1] method). Good conditional distributions exist because
the spaces (of sequences and C�0�1�) are complete separable metric spaces.

5. Piecewise linear approximations. First we will give a bound for
�vp�B − �B�r��ψ, where as always ψ �= ψγ, for any Brownian bridge B, for
example, B = Bn. For a function f from a closed interval �c� d� into R, let
f�c�d� be the linear function on �c� d� which equals f at c and at d. On �c� d�
we define :�f� �c� d���·� �= f − f�c�d�� The following two lemmas are straight-
forward to check by covariances. In both lemmas, as in (3.2) and Lemma 6, a
Brownian bridge can again be replaced by a Brownian motion Y, simplifying
the covariances.

Lemma 7. Suppose t1 ∈ �s1� s2� ⊂ �0�1� and t2 ∈ �s3� s4� ⊂ �0�1�. Then
:�B� �s1� s2���t1� and :�B� �s3� s4���t2� are independent if s2 ≤ s3 or t2 /∈ �s1� s2�
⊂ �s3� s4��

Lemma 8. Let M�t��0 ≤ t ≤ 1, be a Brownian bridge. For any fixed 0 ≤
u < v ≤ 1, define

B�t�u� v� �= �v− u�−1/2�M�tv+ �1− t�u� − tM�v� − �1− t�M�u��

for 0 ≤ t ≤ 1. Then B�t�u� v� is a Brownian bridge. Specifically, for 0 ≤ t ≤ 1,
let Bj�k�t� �= B�t�−�B�j−1�t� if t ∈ �k/2j� �k+ 1�/2j�, and otherwise Bj�k�t� �=
0. Let B0

j�k�t� �= �2j�1/2Bj�k��k+t�/2j� for 0 ≤ t ≤ 1. Then B0
j�k for j = 0�1� � � �

and k = 0�1� � � � �2j − 1 are Brownian bridges.

Now we are in a position to bound the last term in (3.1).

Lemma 9. For any p ∈ �2�∞�, there exists a constant CB�p� such that for
r = 1�2� � � �, � �B− �B�r−1��p��g ≤ CB�p��2r�−�p−2�/�2p��

Proof. First, vp�B� �0�1�� <∞ a.s. sinceB a.s. satisfies a Hölder condition
of any order < 1/2, [19], (9.11), or from the more precise results of Lévy
[14], page 172, or S. J. Taylor [21]. Let Cp �= � �B��p��g. By the Landau-
Shepp-Marcus-Fernique theorem (specifically Fernique [10]; note that � · ��p�
is measurable but not separable), Cp is finite. Then by (2.2), �vp�B� �0�1���ψ =
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C
p
p� Recall that t�r� �= 2r − 1. By Lemma 4, for r = 1�2� � � �, we have

vp�B− �B�r−1� �0�1�� = vp
(
t�r�∑
k=0
Br�k� �0�1�

)

≤ 2p−1
t�r�∑
k=0
vp

(
Br�k�

[
k

2r
�
�k+ 1�
2r

])

= 2p−1
t�r�∑
k=0

�2r�−p/2vp�B0
r�k� �0�1��

= 2p−1�2r�−�p−2�/2
t�r�∑
k=0

1
2r
vp�B0

r�k� �0�1���

(5.1)

Since p > 2 and B0
j�k�t�� k = 0�1� � � � �2j − 1, are all Brownian bridges, we

have

�vp�B− �B�r−1� �0�1���ψ ≤ 2p−1�2r�−�p−2�/2Cpp�

By (2.2), the conclusion follows. ✷

Next we approximate the empirical process.

Lemma 10. For any p > 2 and r = 1�2� � � � � with n/2r ≥ 1, and Kγ from
Lemma 2,

�vp�αn − �αn�r−1��ψ ≤ 4pKγn
p/22−r�p−1��

Proof. Since αn − �αn�r−1 = 0 at each point k/2r, we have by Lemma 4

vp�αn − �αn�r−1� ≤ 2p−1
t�r�∑
k=0
vp

(
αn − �αn�r−1�

[
k

2r
�
k+ 1
2r

])
�

Now note that the map f �→ �f�r−1 is linear and that F ≡ �F�r−1. Thus αn −
�αn�r−1 ≡ √

n�Fn−�Fn�r−1�� Recall that Ur�k is the number of pointsXi in the
interval Ir�k, which almost surely equals the number in the closure �k/2r� �k+
1�/2r�. On that interval, by Lemma 5, vp�Fn − �Fn�r−1� ≤ 2p−1�vp�Fn� +
vp��Fn�r−1��. Applying monotonicity (3.4) then gives

vp�αn − �αn�r−1� ≤ 4pn−p/2
t�r�∑
k=0
U
p
r�k�

Since Ur�k has a binomial b�n�1/2r� distribution for each k, we can take � · �ψ
of both sides and apply Lemma 2. The conclusion follows. ✷

Now we approximate the difference Bn − αn. We have for r = 1�2� � � � � by
(3.2) and (3.3),

�Bn�r − �αn�r =
r∑
j=0

t�j�∑
k=0
Wj�k�Bn − αn�Tj�k�(5.2)



EMPIRICAL PROCESSES AND p-VARIATION 1633

Recall the inverseH�·�N� of the the binomial b�N�1/2� distribution function.
For a N�0�1� variable Y let βN �= H�7�Y��N� −N/2. Then according to a
lemma of Tusnády whose first published proof was given as far as we know
by Bretagnolle and Massart [2], Lemma 4,∣∣∣∣∣βN −

√
N

2
Y

∣∣∣∣∣ ≤ 1+Y2/8�

Letting N �= U∗
j−1�k and Y �= Yj�k �= 2�j+1�/2Wj−1�k�Bn� we get from (4.1)

and (3.2)

Wj−1�k�αn� = n−1/2
(
U∗
j�2k − N

2

)
= βN/

√
n�

Then since EN = n/2j−1,
√
n�Wj−1�k�αn −Bn�� ≤ 1+ 1

8Y
2
j�k + 1

2 �Yj�k� · �
√
N−

√
EN��(5.3)

Via the inequality �a + b + c�p ≤ 3p−1�ap + bp + cp� we will treat the three
terms on the right of (5.3) separately.

For a standard normal variable Y such as Yj�k, ��Y�2p�ψ is a finite constant
ηp depending on p. For the last term in (5.3) we will use

�Yj�k�p · �
√
N−

√
EN�p ≤ �Yj�k�2p + �

√
N−

√
EN�2p�(5.4)

For t > 0 we have by the relation ψγ�x� ≡ gp�x1/p� and Lemma 1 that

Eψγ��
√
N−

√
EN�2p/t� ≤ E exp�Cγ�

√
N−

√
EN�2/t1/p� − 1�(5.5)

We have the following:

Lemma 11. Let N be a binomial b�n�q� random variable and φ�s� �=
φn�q�s� �= E exp�s�√N − √

EN�2�. Then for 0 < s < 1/2 and all n�q, φ�s� ≤
es/

√
1− 2s.

Remarks. The supremum over �n�q� of φ�s� is +∞ for s > 1, as can be
seen by taking the Poisson limit n→ ∞, q→ 0, nq→ λ > 0, where theN = 0
term converges to e−λ+sλ, then letting λ → ∞. We have a 31

2 -page proof that
for q ≤ 1/2, φ�1� is uniformly bounded, by a large constant. Thus, Lemma 11
is not efficient for s close to 1/2. A referee and an Associate Editor pointed out
to us that smaller values of s can yield better bounds on ��√N − √

EN�2p�ψ
and suggested most of the following proof.

Let Z �= �√N −E√
N�2. Then �√N − √

EN�2 −Z ≤ EN − �E√
N�2 since

E
√
N ≤ √

EN. Then EN − �E√
N�2 ≤ EN − �EN�3/E�N2�, in other words

�EN�3 ≤ �E√
N�2E�N2�, by Hölder’s inequality for f = N1/3 ∈ � 3/2, g =

N2/3 ∈ � 3. Next,

EN − �EN�3/E�N2� ≤ Var�N�/EN ≤ 1
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as follows from �E�N2� − �EN�2�2 ≥ 0. Thus if N′ and N are i.i.d.,

φ�s� ≤ esE exp
(
s
(√
N−E

√
N
)2)

≤ esE exp
(
s
(√
N−

√
N′
)2)

by Jensen’s inequality, noting that E
√
N′ = E

√
N. Let S �= N + N′ and

D �=N−N′. Then(√
N−

√
N′
)2

≡ S
(
1−

√
1− �D/S�2

)
≤ D2/S

as is easily checked. Now write D = N −N′ = ∑n
i=1 ξi where ξi = ηi − η′

i

and ηi� η
′
i, i = 1� ���� n, are i.i.d. Bernoulli �q�. Then ηi ≡ η2i , η

′
i ≡ η′

i
2, so

S ≥ ∑n
i=1 ξ

2
i . Conditional on ξ

2
i for i = 1� � � � � n, D is equal in distribution to∑n

i=1 εiξi where εi are Rademacher functions, equal to ±1 with probability
1/2 each, independent of each other and the ξj. We will show that

φ�s� ≤ es sup


E exp


s

[
n∑
i=1
αiεi

]2 �
n∑
i=1
α2i ≤ 1


 �(5.6)

To see this, condition on the ξi and if not all ξi are 0, let αi �= ξi/�
∑n
j=1 ξ

2
j�1/2.

If all ξi are 0 let αi = 0 for all i.
We next need the following known bound, which is asymptotically sharp,

letting αi = 1/
√
n, n→ ∞.

Lemma 12. For 0 < s < 1/2, a N�0�1� random variable Z, any αi with∑n
i=1 α

2
i ≤ 1, and independent Rademacher εi,

E exp


s

(
n∑
i=1
αiεi

)2

 ≤ E exp�sZ2��

Proof. Let Y �= ∑n
i=1 αiεi. It suffices to show that E�Y2k� ≤ E�Z2k� for

k = 0�1� � � �. We have from EetZ = exp�t2/2� that E�Z2k� = �2k�!/�2kk!�. Thus
the lemma follows from Whittle [23], Theorem 1. The lemma as stated is also
a special case of Pinelis [20], Corollary 2.7; see also [11], Theorem 1.1.

Lemma 12 is proved. ✷

By Lemma 12 and (5.6), since E exp�sZ2� = 1/
√
1− 2s, Lemma 11 fol-

lows. ✷

Now returning to the proof of Theorem 1, by (5.5) we have ��√N−√
EN�2p�ψ ≤ t if φ�Cγ/t1/p� ≤ 2. Lemma 11 gives φ�0�28� < 2. Thus

��
√
N−

√
EN�2p�ψ ≤ �3�6Cγ�p�(5.7)

a constant depending only on p. Summing up the terms from (5.3) with (5.4),
there is some Ap < ∞ such that ��√n�Wj�k�αn − Bn���p�ψ ≤ Ap for each j
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and k. Thus for each j, by Lemma 4 and (3.4),∥∥∥∥∥vp
(
t�j�∑
k=0
Wj�k�αn −Bn�Tjk

)∥∥∥∥∥
ψ

≤ 2j+pApn
−p/2�

Hence by (2.2), for some constant Bp <∞,∥∥∥∥∥∥
∥∥∥∥∥
t�j�∑
k=0
Wj�k�αn −Bn�Tjk

∥∥∥∥∥
�p�

∥∥∥∥∥∥
g

≤ 2j/pBpn
−1/2�

Now, for a given n, we use the KMT construction (4.1) and (4.2) to construct
αn from Bn. We choose r = r�n� = �log2�n� , where �x �= the largest integer
≤ x. Then n/2r ≥ 1 and∥∥∥∥∥∥

∥∥∥∥∥
r�n�∑
j=0

t�j�∑
k=0
Wj�k�αn −Bn�Tjk

∥∥∥∥∥
�p�

∥∥∥∥∥∥
g

≤ Bpn−1/2
r�n�∑
j=0

2j/p

≤ Bpn−1/2n1/p/�1− 2−1/p��
(5.8)

By Lemma 9 we have

��Bn − �Bn�r��p��g ≤ CB�p��2r+1��2−p�/�2p� ≤ CB�p�n�2−p�/�2p�(5.9)

for some constant CB�p�. Next, by (5.2) and (5.8) we have

���Bn�r − �αn�r��p��g ≤ CD�p�n�2−p�/�2p�(5.10)

for some constant CD�p�. Third, by Lemma 10 and (2.2) we have

��αn − �αn�r��p��g ≤ Cα�p�n�2−p�/�2p�(5.11)

for some constant Cα�p�. Combining (5.9), (5.10), and (5.11) as in (3.1), now
(1.4) and Theorem 1 are proved. ✷
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