EQUIMODAL FREQUENCY DISTRIBUTIONS

By

Epwin D. Motzox, Jr.

The object of this paper is the determination of a set of frequency
curves. each of which will give a better fit to the modal neighborhood
of the data 1o which it is applied than is often found in the existing
methods. Interest in this subject was aroused in the following way.
First it was discovered that a great number of distributions of data
derived frem a study of the financial ratios of public utility companies
conformed to the same general type of curve. Second, it developed
that the tipe of curve designated by the Pearsonian criterion quite
often viclded a very poor fit to the data. The mode determined by the
theoretical curve was obvicusly unsuited to the actual data. Further-
more, in some cases, on the left extremity of the distribution, the rise
of the curve to the mode was too steep for a good fit. The accompany-
ing chart (p. 140) presents a particvlar instance of these conditions,
together with the curve fitted by the method developed in this paper.

The curves which were used in this study f financial ratios were
those developed by Pearson and Elderton froin a consideration of the
various cases which arose in the solution of the differential equation

gy _ y(x-2)
dx F(x)

where F(x) was assumed to be expansible in ascending powers of X .
The other assumptions made were that F@X) =6, + b, + by T*
and that the constants @, 4, 4, and 4, were determined by equating
the moments of the raw data to the inoments of the theoretical dis-
tribution. Here we will modify these assumptions, and under the new
conditions determine the principal tvpes of curves which arise when
the polynomial in the denominator is of the third or lower degree.

The new assumption is that the value of the constant, g , the
mode, is determined first from the observed data, and equated to the
value of the mode in the theoretical distribution. This method of
procedure is particularly adapted to economic data, as it assures a good
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138 EQUIMODAL FREQUENCY DISTRIBUTIONS

fit about the mode, notwithstanding the fact that in some raw data the

mode is a rather vague concept. The fit about the mode is of primary
importance in much economic data.

II. We begin with the case of the cubic in the denominator, that
is with the differential equation

dy (z-3) y

= . , Oor
dx p,+ b, x+bx*hx’

b+ b x+ bxi+by x?) %:y(x—a)

where & is known. Multiplying both sides by x”, integrating, and
using the notation ) = /y " dx , we have

nb oy KD by (042) by pay, +(0+3) by py, 0= 344, = o,

Putting n =0, 1, 2, 3, and changing the origin to the mean, we have
ob+ b+ ob+t3ub =a
1) b+ 06 + b+ A4u by = M,
0bt b + Ap,b+ Spby = au~H,
S bt dpb + Sp b+ Ol by = au, -1,

Solving these equations for b,, b,, b,, and b,, we have

a / o S,
— M 0 3/1: 4/":
MMy SH, du; S
- b5u, 6
b IM=H, A4 yZ. s =~%
0 / .0 S,
/ o S, 4,
o S, I, S,
S, 41, SM, Oy
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0 a 0 dp,
/ — Mz 3, 4 1y
O pa~py 4l S
Spe,  Gpy i, 5u, 61 B
b= A A
o / a 3u,
/ o ~Ha 9 4y
o S, Ffde= My 5 Mo
Sp, 414 MMy 6y C
b = a A
o / 0o ]

/ o 3ty ~HMa
o S, 414, g My~ My

e 4144 S, G Hy—Hy D
b, = =2
? A A
The differential equation then becomes
9y _ (x-3) dx
Y A Bx + Cx* + Dx?

A A JAN A

The solution of the differential equation depends on the nature of
the zeros of the denominator of the right hand member, that is on the
discriminant of the general cubic,

18b,b; b, b,— 4blb, + bZB* - 4b,b2-27 6] b,?
The cubic has three distinct real zeros, one real and two imaginary
zeros, or at least two real and equal zeros, according as the discrim-
inant is greater than zero, less than zero, or equal to zero. We will
expect, therefore, three general types of curves when the integration
is effected.
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ITI. If we assume that b,=0, we will have only three con-
stants, b, , b, . and b, to determine, and the equations (1) become

b, = 4
(2) b, - +5bz M2 == M,
bt 4D,y == iy HIL,

Solving these equations simultaneously, we find

b = Khaths ¥

Yy
b, =3
b = Ly — L2344y
2 4#’

Thus, in the case of the quadratic in the denominator, we have
determined the constants in terms of the mode, and the first, second,
and third moments of the raw data. In other words, we are calculat-
ing the theoretical curve under the assumption that its mode, mean,
standard deviation, and skewness are equal respectively to the mode,

Ratio of Revenue to Net Worth in 351 Traction Companies

L 13

oY
o} ——PEARSON'S TYPE T  y=64.5(1+55mg) (l-,;w
vl -===Tvyre Ay Log y = 50.1479 + 5.9004 Log(x-

24.40T1) - 34.365 Log x
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mean, standard deviation, and skewness of the raw data. The differ-
ential equation then becomes

1 9y _ x-g
Yy T M fAopf o~y =20M ..
A5 Y1,

Now, the solution of this differential equation depends on the particu-
lar values of the constants in the denominator, i. e., on the quadratic
discriminant b,'- 45, b, Again, we will expect three general
types of curves when the integration is effected.

If we assume b, = b, =0, equations (1) become

b,=a
(3
b

o

“Hz

and the differential equation is

L dy__ x-a
y dxr  usiax

If we keep only b, , we have b,=-u, and =0, and our

equationis / dy_ _x
y dx .

We now turn to a discussion of the various types of curves which
arise from the solution of the preceding differential equations. The
following classification will be made—Class A will include all curves
arising from the solution of differential equations in which F(z) has
real and unequal zeros. Class B will include all curves arising from
the solution of differential equations in which F(xr) has complex
zeros. Class C will include all curves arising from the solution of
differential equations in which F(x) has at least two equal zeros.

TypPE A-1

IV. When all the zeros are positive, the differential equation may
be written in the form
dy _ (x-a)dx
y B a-AXx -A)EA,)
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where we assume A,> A,> A,. Separating into partial fractions
and integrating, we have

(A-A)A-8)

log y = bAoA A-A) G =A) log (x-A)
(A;— A,XA,“'O)
TG A ANAAA -4, 1964
U-4)4,-9
+ -A
by A4, A, A) A, Ay 1084
+ log k&
Exponentiating
(4s-4,XA,-2) (4, -4)(4,-a)
Kz-A,) HA-LIA-DXA- 49 (-4 ) by - AXAs-A,XAAD
a (A,-AXA,-a)

(x- Az) b, (A,' A,XA“' A,XA,"A)

Transferring the origin to the mode, i. e, putting 2 for xr-g

we have 5439; 2 9
k(x+a-A) °(x+3-4,) °
cs a,
(x+a-A)
c a, cy 3,
A (/—x/al) KB (/—I/Q,) s
Ce “’:
-Z K
where ¢/ /8‘)
C = Az—A, C3=Al "Aa C,=A,-—A,
a,=4,-a 3,=A,- 3 8,=A,~ &

5 =5, (A,~AXA-A,XA,~4,)

Then G8,=¢ 48, +¢,9,

C C Cy _
I&t ?Sm, LY -:,—!=mz 'Y ?!—m’
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The equation now becomes

mydy

Yo =) "% (1 =%/

F SN

With the exception of y, , the values of all the constants in the
equation are known in terms of moments. Two methods will be given
for its determination.

First—Calculate the area under the curve, using the theoretical
ordinates measured in terms of 3y, . Let this area equal &V, the
number of observations, and solve for y, .

N
Thus y = 5,+8,+ - 458, , where y, B, represents the areas
calculated from the theoretical ordinates.

Second—Calculate the value of Xz( Chi-square) with the theo-
retical ordinates measured in terms of y, . Set the first derivative
of this expression equal to zero, and determine the value of y,
which makes X ®a minimum. From the goodness of fit point of view,
this gives the best possible value of y, .

W B,- 07
Thus Xz=£ ‘(‘L_y.‘y:—d , where the ), B; represent the

theoretical areas as before, and the O; represent the observed areas.

Setting the first derivative of this expression equal to zero, we have

2
Z8-5 £~

A By
of
Y= .
° 2B
Tyre A2

V. \Vhen there are two positive zeros and one negative zero, the
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equation may be written in the form

gx = (-1"67) gz \ —
Y " Th (m-d)x-Ay (xidy A> 4>- A,

Proceeding as in Type A-I, we find
()
.yo (/—x/a/).—s—_

= c, 8 Cc, 84
(-5, ) 5" (1-%,) %"

Yy

where
c, =AAA, 3, =A-a
c, = A+ A, 8, A;9 S=b5¢,C,C,

c,=A-4A, a,=Ata

Y, is calculated as in Type A-I. The origin is at the mode.

TyreE A-3

VI. When there are two negative zeros and one positive zero,
the equation may be written in the form

dy_ (x-0)dx » where A, >-A4,>-A,
Y by (x-4)ax+A))(x+A),)

Using the same method as before, we find

C, 9 C, 9,
x, \ = x, %5
= Yo (/— /a/) (/+ /<92) ° where
¢,y 9; '
(/ + x/d_.,) °
6, =A-a c,=-A+A4,
a8, Asta c.= AtA, s=b,cc¢,cC,
8,=A,+3 c,=A, +A,

Yo is calculated as in the previous cases. The origin is at the mode.
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Tyre A-4

VII. Where all three zeros are negative, the equation may be
written in the form

gy _ (x-9)dx . where -A4> -A4.>-4,
Y by(x+A)(x+A)(x +A,)

Proceeding as in the last three cases, we find

Ce A, .
— Yo (/ 'Fr/dz) Ea where
v P A ’
(1+%%8) ~ (1+%,) 7
3,=4A,+9 C,= -A+A,
8,=A,+3 C.= -A,+A, s =b,c,c,c,
0,=4A,+3 Cs= -A,+A,

Y, is determined as in the previous cases. The origin is at the mode.

TypeE A-5

VIIT. In Type A-3, suppose A,=A,. Then

(-a,+4,)(4, -8) ( 4,*4.)3( A,+9)
Y (/-9 ° (/+ T 48)
Y= 24,(4,+8)

r 3
</\'> A’+a)
where  s= b, (4,+4,)(-A,+4) (24)

Suppose & , the made, is at the mean, that is, is equal to zero. Then.
A,,—& =A,+¢9 = 8,
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Then
(-4,+4,) a (4,+4,) 5,
o (-%) T (%)
= 24,9,
(/‘f'x/a) s

Y. is calculated as before. The origin is at the mode.

Tyre A-6
IX. In Type A-3, suppose one of the zeros is zero, say 4,. The
equation then(bccom;:? )
-4, +4,)(-2 A, (A o
kx L E T A

A, +4,) (I_‘.Al) g 42 Ag (A, + A,)

A:%!00 )
) +A
(..Z'+A ,) .72 e

_E-./ Agt+d
%x L (/+.z./A)bl‘l ("a"‘l)

(/+x/,43) A, (~4,+%24,)

The values of all the constants except y, are known, and it may be
calculated by either of the formulas given in Type A-1.

The origin is at the mean.

Tvyee A-7
X. Incase JF (x) is quadratic, and its zeros are of like sign,
we have
dy (x-8)dx A+ dx A+ dx

YV T b, (x+A)(x+A,) 5,(A-A) T+, b, A-A) x+A,
Integrating, we have

- -(A,+
oy v~ Gy o8 =AY G Carp 108 (eod,) +1og
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Exponentiating,

A ta -{,+a

_y=y’(r+A,)°‘l"*“’ @*Az)b‘ 4,-4,)

Changing x to x ~A4,, we have

y =y’(x+A,—AJzeT‘z’{7;’ x LA

Let

4 . A,+6 . Age B
‘A/ Az‘ m s ‘bz/ﬂ =ph ’ bl/ﬂ =P
Then

y‘ yo (x_m) Ple’g

The constants A, and A, aie given by the zeros of the quad-
1atic in the denominator, and m , p, , and p, are given in terms of
these above. By integration of this equation between the limits m
and o , it has been found' that

- N7 (p,) m Pro~!
% TN T (o-p-1)

Y, may also be determined by finite integration by either of the
methods given in Type A-1.
Origin = Mean - 4,

Tyre A-8

XI. This type occurs when /#'(x)is a quadratic and the zeros
are real and opposite in sign. The equation then becomes

dy 1 __z=o
Y b, (x+4)(x-A),)

1. Elderton, “Frequency Curves and Correlation,” p. 85.
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Integrating, we obtain

/] A+a ;] Agfa Al
108)/’75, ATA. Iog (.r+A,)+bz A, Jog(x-A)-Iog y’
Exponentiating,
£ A,‘J 4.;0

y=y(x+4)% 0 (2-4,)"

Now, changing the origin to the mode, i. e., putting x for -9 ,
we have

F) A e
%‘(I_A‘_’_a) -{Fa A, + Ay

L
y=y'(x+A+8) *

-, (/+.g_/)”" > .

where
8,=A4,+38 3 8y = A,—&
m IO PR m,= / _Ga__
= ; L
"5, A4, <5, A4,
and
m,  m,
a, a,

The value of 3, has been found' by integration to be

_Nmm"™ T (mAm,+2)
%= b(mam)™ " N(mat) F(my+1)

Where 6=8,+3; , /N = total frequency. Yo may also be calcu-
lated by either of the methods given in Type A-1. The origin is at
the mode.

1. Elderton, “Frequency Curves and Correlation,” p. 59.
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Tyre A-9

XII. If the zeros of the quadratic are 4,, and-4, , the equation
may he written

dy | A4-e Jx +_/_ A+a dx
Y b, 24, x-A, b, 24, x+A4,
Integrating, we obtain
A-2 /A
Yop y=L L9 _ 1 Ara I
oyt G dople-a)ri L22 o (xia)sles v
Exponentiating,

1 A8 1 A28
y:y’(x—A,)b.—it(x"'A,) E —2.’-:—

Changing the origin to the mode, i. e., putting x for x-g , we
have

;! Ac® 1 A
yey(aea-4)% ** (x15+4,) > 2t

v -E)" (14 E)™

where
8,=A4,-2 3,+28=A4A,t3 = c,
8, C,
=m —_— =]
Zb, A 2b, A 2

/
Then, as before, '

N m, " m," " (m,+my+2)

arC, (mam)y T T(m+1) T (mg+/)
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Tvype A-10

XII. If Fx) is assumed to be linear, the equation may be
written

dy  x-a

Y Th+bx 9% =(b, 47+,

Integrating,

g y=-L+ (-0-2) lop (bxib)+log y’
- b/ b ’ bl !

Exponentiating,

y=y'e i’(blx'f-bo) b(ar g

Changing the origin to the mode by putting x for -4 , we
have

-4
yey'e H (1v g E ) o M)

2,910,
5,
Now let
a B . ab+b .o
y e "=y, ; ——Z;—"—m ’ b, Y
Then

-7 x| Tm.
Y=Y, € * (/ + E‘)
The constants may be determined as follows :

When b,=b,= 0, it has been found that

by=-p4, 3 b=a
ab1+bo: az—#l
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The value of y, has been found' to be
NQ’ Qé+/
Yo= Tne Ty (q+7)
where q=Ym .

y, may also be found by the methods of Type A-1. The origin
is at the mode.

TypPE A-11 (The normal curve)

XIV. Putting b,= b= b, = 0, we have

Integrating,

.x* _ax _(x-a)? '
log y 25, " b, +log ¢ 25, + log y

Exponentiating,
2
y-ye

Changing the origin to the mode, and substituting the value for
b,when b, = b,= by= 0, thatis b,=-4, , we obtain

2z

.:J_
Y=VYo € #e

To find the value of y, , integrate hetween the limits - and @
and find the total frequency V. It has been found? that

Vad

Yo zmie

1. Elderton, “Frequency Curves and Correlation,” p. 68.
2. Elderton, “Frequency Curves and Correlation,” p. 91.
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y, may also be found by either of the other two methods. The
origin is at the mode.

Tyre B-1

~ XV. When F(x) is a cubic, and two of the zeros are com-
plex, the differential equation may be written in the form

@b (x-a) dx
Yy by (z-4) [xtAs4,) 4A]

Separating into partial fractions and integrating,

where (4,-4,)'<0

/- i Ve
Yy b, [4,(4,-4,-4)+A4, 4, / x-4

A-a xdx

) by [A(A/"Az"As) +A3‘A,] /xz_ A,"‘A,)‘I-O-A‘ A,

a(A-A,-A)+4.4, f Jdx
b [4,04,-A,-4,)+4, 4] x2(A,+4,) z+A, 4,
&
Now let _'F.x_ﬁl‘;_'és.; N;:ﬂlzlé.)_

k=a(4,-4,-4,)+4,4,- B 5_3? (A.+A,)
o= [4,(4,-4,-4,)+4, A, 15,

Performing the integration, we have

]og,_y:-—fd—— log (x % —’i‘—‘%d) A’ 2 Jog (z’% M7

_k_
iy~ tan” _]\?—+105 Yo

Exponentlatmg,
v, [x44 L(ap4,)- A]—:;’- G tan i
(x’-f—M 9%
Cr+c) am e,,,, ton-17E

(z4MH”

y:
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LA A+ 4,
where m 7 > -A,=C

¥ may be determined as in Type A-1. Origin = Mean + i’:?téa_

Tyre B-2

XVI. When two of the zeros are pure imaginaries, the equation
may be written:
dy __A-¢e dx _ 2xdx
Y b,(A 1A x-A, 2b,(A +A:)f x*+A;
aA+A;
b (A, +A ‘)-/-’c‘&-A’

Performing the integration, we have

A-a A-a
log y= A7 A2 108 (2-AF Zp (5 g5 log (x4 Al)

_9A+A; x
v 3, 4, U AT e " A, T IoB ve

Exponentiating, we have

(IA)b, YIS e TZ%)’“’}
(x?+4, )m

Let &, (4,%A)-¢d A;;a =2m ; ad,+A}=k Then
y= Yo (x’A/)"' el:‘:?“""i
(=445

Y, may be determined as in the previous case. The origin is at
the mean.
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Type B-3

XVII. If F(x) is quadratic and the zeros are complex, the
equation may be written

/‘-_,y= (x-a)dx =/ (x-a) dx
Y bytbxtb, x? [(.z‘ +b'.1:+ 2)+(b 4b)]
2 £

. a2 by B}
Let X=x+-272 5 A - b: 4b2
Th h -
en -8 Zb. , where ¢ ~(zbz+8)
We have then
log =/(X»fc) dX _f XdX I / cdX
Y T6,(X%A47 ) b,(X*A%) X%A”
- L 4 A1 -C_ ton X
- 25 Iop (X %A% 25, ton Y +logy’
Exponentiating,
(X +A ) 7&- tan ™ -’-
s o F
"yo (/+ Al)
which may be written
2 77 -7 tan~’
y=vo (1+25) e 77" *,
A
/. c . . 4b,b,.-b,'
where n--Z—b_' 3 —Y:E ; A’ 457

Yo may be calculated as in Type A-1. Origin = Mean— .~ _
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Tyee C-1

XVIII. When F(x) is cubic, and two zeros of the denom-
inator are equal, the equation may be written in the form

/ﬁl - (x-& dx A -6 " dx
y b, (x-4, )’(-’c—Az) b,(A-A,) Jix-4)*

) b(A A,)‘f -4, b (A A,)/

Performing the integration, we have

64 a) A,-

A,-3
myr log (x-A)+ log y '

Exponentiating,
- - Y -

y- yle m%;rr_-i,) (1‘—44,) by (A, -a,) ) yIe ﬁ(I_AP

(-a, 5T (z-ay™
A~ . A,-6
where MR A-AT P M B4R

Now, changing the origin to A,, i. e., replacing & by x+4,,
we have _m
_ y‘e = (.I-O-A,—A,)m'
y= z ™
o
Vo= (1+25)™
x ™

where A=A, -4,
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Y, may be determined as in the previous case,
Origin =Mean + 4,.

Tvype C-2
are equal, the equation may be written

/dy‘fb (.r—A)""“' /b( -4

Integrating,

XIX. If all the zeros

A-a /
b = bz Ay T B Ayt o8 Y

Exponentiating,

H4,-0) _ ’ ¢ A-4- 2
y=y e 2‘.""'411 ;'zt“‘)=y o 26‘1-'"43'
o o v

where y, may be determined as before. Origin = Mean.

Type C-3

XX. When F(x) is quadratic,
equal, the equatlon may be written

/ (x- o)d.r
b, (x+b)

=/ [+ 4 750 + #5)] dx

and the zeros are real and

b (.I'Jr-lh)z
/b (.z:+ ) ‘f (Ttrfg)'

=~ log _y=— 103(x+ ‘)+ Zg ,‘) +log y'
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Exponentiating,
! o+
v’ +__b_:_ %2 b,( x4, ‘)
y=y'(x+; 5,
Now 1&
b / a+£
—_l = fe = . =~
x+zbt ‘z B4 b‘ ﬁ ] bz Y

Then y=y,x " e"

The constants in terms of moments are

4 M, .y tap—2aty)

T rzap, T pi-dap, purdaty,
Pt
It has been found' that ;= I't/,ya f’/ 3" Origin = Mean - Z—z’:

XXI. The following example, illustrated in the chart (p. 140°
is given to illustrate the method. The data is fitted by Type A-7.

Ratio of Revenue to Net Worth in Traction Companies

Observed Theoretical

Ratio Frequency Frequency
.04 7 7.3
12 43 319
20 48 55.6
.28 75 63.6
.36 LX] 57.6
44 34 45.1
.52 25 32.2
.60 22 216
.68 12 14.1
.76 14 86
84 5 5.2
.92 6 3.2
1.00 7 19

1. Elderton, “Frequency Curves and Correlation,” p. 82.
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The constants calculated from the observed frequencies were

Jie= 64354 b, =-57908 m = 2497
M, =180115 b, =-12125 p, = 53312
Mean = .376 b,=- 0334  p, = 352713
Mode = 2793 A, = 5.6587 lIog y,= 50.1479
a = 12125 A, = 306287

Origin at Mean -~ 30.6287 or 30.4287 to left of 53 group.
Curve starts at 30.4287 — 24.97 = 5.4587 before the center of this
group.

Egu.aTioN

533/2 -39.273

Y=Y (x -2497) X

f D Fpoy



