INVARIANTS AND COVARIANTS OF CERTAIN
FREQUENCY CURVES

By

Ricamonp T. Zocu

Introduction. After the most convenient type of equation
y=Ff (s, 4 b, c....) has been selected and the parameters a, b,
¢ ...., in the selected equation have been determined so that for
a given set of values x;, (#=1, 2, ....n), the computed values
¥y, (1=1,2, ...n) agree as closely as possible or as closely as
is consistent with the observed values ¥, (=1, 2, ...n), it may
be desirable to make one or more of the transformations: (1)
move the origin, (2) use a different scale (unit of measure),
(3) change the total frequency.

This paper discusses certain invariants and covariants of the
above transformations which were noted in developing the general
theory for the Pearson Cutves of frequency.

1. Change of Origin. Instead of considering the diff. eq.,

O 2‘%: _#x=P)

Lx*rbx+ b
which is the diff. eq. from which the Pearson curves are derived,
we take the more general diff. eq.,

) dy _ Y (x-P) _
7% & X+l X" E Xt b

-} o

Equation (1) is a special case of equation (2).
Make the following substitutions :

x<X+P, ¢ - B,,

nFt + 6.,- 53,

©) 2o PY rtr) Pl v by B,
n ‘-;-; --------

F#n"'P‘&”-,f--...f@o = B,
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and on simplifying we obtain,

4) dy - _uX .9 X
Z'g' ann+ B"_'X"-*"" +BX+B F(X)

If we now write

(5) X = x-F

we have:

(6) %.2. P — :ﬂx-P) — .
x Bu(x-)’) +a'_,(z—7’) +'"+B'(z-7’)f5°

The solutions of equations (4) and (6) can be written in

the form. )

7 Y = G(X) = G(=-P),

where P is the mode as will be observed from the diff. eq. In
other words the frequency function is a function of (x-P)
when it is written in the form of eq. (7). Therefore if we change
the origin of x by writing x'=x-h all of the constants of the
frequency curve will remain unchanged if at the same time P be
subjected to the transformation P Ph .

2. Change of Total Frequency. Let C, be the constant of
integration when the area under the curve is unity and when the
argument is X= x-F; K, the constant of integration when the
argument is X = x=/ for an arbitrary area under the curve; and
N the total frequency. Now whey the total frequency is changed
the area under the curve is changed, hence from the above defini-
tions
(8) K,= WG, -
Therefore if the total frequency be /V and it is desired to write
the equation of the frequency function for a total frequency of
NV then write /\-’,— for A, where
© K= (N
and leave all of the remaining constants unchanged.

It should be emphasized that in leaving the remaining con-
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stants unchanged we assume that the distribution of the hew
sample or the universe obeys tne same law as the old sample.
Occasionally one sees the statement in works on probability and
statistics in connection with the Theory of Errors that as the
number of observations is increased indefinitely, the arithmetic
mean tends to the true value of a distribution. T'his statement is
hased upon the tacit assumption that an observation less than the
true value (most probable) is as likely to occur as an observation
greater than the true value. If we make this assumption we will
always (if the number of observations be sufficiently large) ulti-
mately obtain a symmetrical frequency curve (the A, M. coincides
with the axis of symmetry) and this sssumption contradicts the
assumption that the distribution of the new sample obeys the same
law as the old sample (except the old sample itself be symmetric-
ally distributed).

3. Change of Scale. We are now ready to consider .the
behavior of the constants when the unit of measure is changed.
Perhaps it is well to point out here that quite often it is desirable
to change the unit from months to years, from feet to yards, from
pounds to grams, etc., The behavior of the constants under a
change of scale is not as easily arrived at as for the changes of
the origin and total frequency.

The behavior of B . where B,,_ is the coefficient of the high-
est power of X in /(X) of the differential equation,.;_{%g # X
will first be obtained. F(X)

Elderton® uses moments to determine the constants of a fre-
quency curve. Thorkelsson? and Fisher® have used Thiele’s semi-

1'W. Palin Elderton, “Frequency Curves and Correlation”, Second
Edition 1927, London.

2 Thorkell Thorkelsson, “Frequency. Curves Determined by Semi-In-
variants” (Visindafelag Islendinga IX) Reykjavik Rikisprentsmidjan Gu-’
tenberg. —MCMXXXI.

3 Arne Fisher, “Frequency Curves”,: Transiated. by E. A. Vigfusson
American Edition. 1922, The Macmillan Co.
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invariants for this purpose. Semi-invariants have an advantage
over moments in that the values of the higher semi-invariants do
not change when the origin is changed. Moreover Fisher (pp.
12-16, loc. cit.) has pointed out how the semi-invariants behave
when the unit is changed, viz:

A (axtc)= a A(x)+c
Alax+c)= a’ X (x) for i>l.

Referring to equation (2) let E be the value of P when
the origin is at the arithmetic mean, and let 4;,’, 5,,’_, yeen &,
and & be the values of &, , &,,, ... 4, and & when the
origin is at the arithmetic mean. Now Thorkelsson (loc. cit.) has
pointed out that when his method is used for computing the con-
stants of the curve there will be only one equation involving
E and only one equation involving 4.'. Moreover the coefficients
of the ( #')’s and the constant terms of the remaining equations
will be of constant weight.

Below is an example of the equations obtained when Thor-
kelsson’s method is used to compute the constants:

"R+ ran, 4 =0

A+ #,'-rs )“;.‘;' YA, 6’;’:0

As + 2 l; {;I"' 4’\3&»’ + (5A4+'1A:)(§' =0

14 + 3 A: é’ +(51‘IH):)63' (e ’\s“'5’\a.>‘5) 65"-'0

l’s 1+ 4 /\y ﬁ,’* ("15"2‘//\:1'13){*(7)’6”2 )i)‘u*s");"")i) é\3'“)

(10)

\
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Note that only the first of the above equations involves E and
only the second involves tf;’ .

Since the coefficients are of constant weight they are invari-
ants* of index W where w is the weight of the coefficient when
x is subjected to the transformation x'=ax+c |

Suppose that we now consider the general case where /~(X)
is of degree n. Hence, in general, equations (10) will consist of
77+2 equationsin 77+2 unknowns; the unknowns being /£ ,
¢, 4, ... &,: . Disregard the two equations which involve 2
and 4’ then there remain 7 equations in 72 unknowns, Observe
that the weights of the coefficients of the @: form an A.P. whether
taken by rows or by columns. Also the weights of the constant
terms form the same A.P, as the columns.

We now state the

Lemma: If all of the elements of a determinant are covari-
ants and the weights, (indices) of the elements of every row form
an A.P. and of every column form an A.P. then when the deter-
minant is expanded' every term is of constant weight (index).

Proof: Let the A.P. formed by the weights of the elements

of therowsbe w. . = s Ae 2.0
i = @, +(i-1) Lo tfaye, .

Then the weights of the elements can be displayed as follows:
a, a+8  ar2d a+3s ... %f(bl);
a,+d ai.;;.f 41,33"‘... 41.,.(77-,)3
a, a,+d  a,rz2d a,,-af ee aa,.(,,-,)['

R T e e e e e e o

@, a3  a,rzs a3 ... a+Oe)

(It should be emphasized that the above is not the determinant
mentioned in the statement of the Lemma but the elements of the
above array represent the weights of the elements of the determi-

4L. E. Dickson, “Modern Algebraic Theories”, Benj. H. Sanborn &
Co., 1926; Chicago. Chapter I.
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nant). Now since by hypothesis the elements of every column
have such weights that the weights form an A.P, then «q,, a,,
a,,...a, must forman A.P. Let this A:P.be @, +(/-/) &
Making use of this notation the weights of the elements of the
determinant can be displayed as follows:

a,+o a7+(n—/)¢r
a,+8 a+5+3 a7f(h—’)5'+f

a, +ln-1)5 a+d+ (n-)& .- a + Cr-1)E +(n-1) &
Hence the weight of the element in the ¢* row and the 4 * col-
umn is @, +(c-1)5+G1) 3. Along the principal diagonal of the
determinant (=4 . Therefore when the determinant is expanded
the weight of the term consisting of the elements of the principal
diagonal is the sum of the AP. W, = @ +(c-1)(5+3) or

n

E-Zf w = % -[.za., + (n-1)(5+ 3_')] =W.
Every term in the expansion is of weight W' because each term
consists of one element from each row and one element from each
column and hence the weight is equal to the sum of two series,
each being an A.P., plus the weight of the term in the upper left
corner.

TaeoreM : If all of the coefficients and the “constant” terms
of a system of 7 linear equations in 7 unknowns are covariants
of such respective weights (indices) that the weights (indices) of
the elements of every row of the matrix of the system of equa-
tions form an A.P. and of the elements of every column of the
augmented matrix fcrm an A.P. then the solutions are covariants
whose weights (indices) form an A.P. whose common difference
is of the same magnitude but of opposite sign to the common differ-
ence in the A.P. of the weights (indices) of the elements of the
rows.
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Proof: By Cramer’s rule the solutions are

Kn e K

2. =D where A = N and where
< A . .
Kot K,

D.

). is the 7 -rowed determinant obtained from A by replacing
the elements of the & ™ column by the ‘“constant” terms of the
system. Let the weight (index) of the element in the (™ row
and jﬂ‘ column of A be a +(i-1)d+(f-1) 5. Also let the
A.P. formed by the weights (indices) of the elements of the 2t
rowof A be W, =a,+(c-1)§ , hence in particular the A.P.
of the weights (indices) of the elements of the first row are
a,+(<-1)§ . Further let the A.P. formed by the elements of the
column of constant terms of the augmented matrix be w, ;= a+(i-1) d.
By the lemma just established we see that when A, is expanded all
of the terms of the expansion will be of the same weight (index)
W . Hence A is of weight (index) YV . Also since the A.P.
of the weights (indices) of the column of constant terms is
Wee = Qo t(c=1) 5 then the weight (index) of each term in the
expansion of D: willbe - [a, +(c-1)J ] + o . different from
the weight (index) of each term in the expansion of V¥V . Hence
the weight (index) of D: is W - [a‘/ +(¢-1) 5_]-;— a. Therefore
the weight (index) of 2; is W~[a., f(,;_,)aj-f ac-M/=ac—a,+(¢'—/)(—X),
and the theorem is established. ,

Applying the above Theorem and observing that J=7 in
equations (10) we obtain the result:

weight of & = 3-2 +(n-1)C1)=2-7.

Since Bn = ¢,, we have the result that when x is subjected to the
transformation x'= ax+C then B3, = a_z’nﬁh . Or in other

words /3, isan invariant of index 2-72. under the transformation

x'= axt+c .

Now we turn to the consideration of /5. Here we have
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7 +/ equations in »+/ unknowns and the augmented matrix-
has elements of the following weights (* means that an element

is lacking):

4 0 * 2 3 - Mm%
* 2z > 4 5 nt! 3
* 3 o 5 ¢ o nt2 4
» 4 5 6 7 n+3 5

-);* (n;-l) (n;z) (m'a) (‘n‘ﬂ')ﬁ R .2'77 (77;1)

Now E is the ‘quotient of two determinants formed from
the above matrix and if these two determinants be expanded in
terms of the minors of the first column we see that the weight
of (W#1)-W = 1 Thatis P is of weight 1 regardless
of the degree of F(X). Therefore £ is an invariant of index 1.

Next considering ¢, the augmented matrix has the same
elements-as for /Z  except that the first row is now:

4 * z 3  AERIERI 2 2
Following the same procedure we see that the weight of &'~

(Ws2)-W = 2. Therefore £’is an invariant of index 2.

We can look upon equations (3) as a transformation. We
can reverse this transformation by solving for the ¢ in terms of
the [, . Also, by moving the origin to the A.M. equations (3)
may be written:

’

8,- 4
’
By = #Cn £ J'” +#‘»—I
r ’
(11), Bﬂ—z, : "Cm /. fn—:.(r‘:-: ° &m *é:—z
T T T e, s, ’

B"‘ Xy cﬂ'v’—" ° é'fmcn-u/ o Vgt t &n—a.
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In equations (11) /,p, J,,’, é,_’, g e é, are the values of ~,
¢ ,6,, ..., 6 when the origin is at the A.M.

Note that the right hand numbers of equations (11) are iso-
baric and that 5, is of weight 2; 8 of weight 1; 5, of weight 0;
and in general & is of weight 2-¢.

’ ’” /
Now let %:i 'y g,= .ﬁ., in general ¢. = .6_2. ; hence
¢ ' ¥z 8%

4.2/ . Therefore when the g:S are computed we note that ¢, is of
weight 72 ; ¢, is of weight -1 and in general g, is of weight
(z-¢)-(2-n)=m-¢ . Since g, is the product of all the roots,
4 the sum of the products taken ( 77-/) at a time and so on and
X" is the sum of all the roots (due consideration being taken
of the signs) it follows that all the roots of /(X)are invariants of
index 1 under the transformation X'= ax+c.

Now if equation (4) be solved in the form of equation (7)
then it can be seen by actual substitution of the indices of /3 and
the roots of (X ) which are involved in the constants that the
exponents K and & of factors of the form (1-» 1},_—;)“ and

are invariants of index zero. The

P\ -
factor (l- ’%‘,,'E) occurs for a real root .z of F(X ) and the factor

= P+l3
Lt arc tan 2= 122

e ©
[14 (225t2) |2

plex roots of F[X). The fact that the exponents K are invariants
of index zero will be generalized for the case where complex

occurs for a pair of conjugate com-

roots do not occur and where no real root is repeated.
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If complex roots do not occur the differential equation

;)ﬂzaé‘x canbewntten_{zuxdx [X n__]dx

/-E-(_)—O F( X, X+a,,
where in separating X into partial fractions and equating
coefficients of like powers of X we obtain n equations in n un-
knowns -and since the roots are all of weight 1 the weights of the
augmented matrix will be (the unknowns of the system are the
7”,_') :

7=/ Yool 2 R »*
”-2 M-z 2 N o
e T »*

o o o « . o e o e . . o *

Applying the Lemma we see that the 777, are all of the same
weight (since 4 = 0). Expanding the determinant in the numer-
ator by minors we see that the 77, are of weight - 2. Since /5,
is of weight 2-77, we have 7<= k- is of weight zero. There-
fore the X are invariants of Index zero under the transformation

x_' = ax+rC.

We have now considered all of the constants of the curves
except the constant of integration. Let the solutions be written in
the form: y = C G(X).

Now it is possible to write G(X ) in such a form that G(X)
is a covariant of index zero under the transformation X’=d- X,
In the case of real roots this is accomplished by dividing both the
numerator and the denominator of each partial fraction by the
root involved in the fraction before the integration is performed.
Partial fractions which involve complex roots can be similarly
treated. This is the way Pearson actually treated his Types I, II,
III, IV, and VII curves although he did not deal with his Types
V and VI curves in this manner.

After we have our solution in the form whnch makes G-(X) a
covariant of index zero then if we write x for a.X the total
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frequency between n)('and (1) X " will be the same as the total.
frequency between #a X and G7#1)a X . Therefore y is a co-
variant of index (—1). Hence C, is an invariant of index
(—=1).

An example will now be given. Take the equation to which
Elderton (loc. cit.) fits a Type I curve on pages 54-59. He has
used a unit of 5 years. Suppose we wish to change to a unit of
1 year. Then the constants @, and @, being the roots of F(X)are
invariants of index 1 and are each multiplied by 5 and become
9.98190 and 67.63640 respectively. Since 77, and 7, are invari-
ants of index zero they remain unchanged and are as he gives
them viz. .409833 and 2.776978. The constant of integration be-
ing an invariant of index — 1 it is divided by 5 and becomes 29.892.
The equation with a unit of 1 year becomes (See top of page 58):

400833 2.776978
_x x'
5:28.892 {I*m } . {[—m
Suppose that now we wish to move the origin to age 26.75942. Then
the above equation becomes:

X—26.75942 s X - 2675942 amem
y =882 {(*_9.68190 { - 67,6368

Finally suppose we wish to change to a total frequency of 2000
instead of 1000 as in the given sample. Then the equation be-

comes :
409833 2.776978

‘. ¥- X - 26.75042 -.zmsm
Y =078 J1+ =S5 58100 - { I = gewea .

" 4. Conclusion: Benefits of this Information. If the diff. eq.
(2) be written in the form (4) by means of the transformation
(3) then the integration is more easily accomplished. That is to
say : in general the solution in the form of eq. (7) is more readily
obtained from (4) than some equivalent form of solution would
be from (2). Thus a solution in the form of eq. (7) is not only
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more easily obtained but also lends itself readily to a change of
origin,

Each type of Pearson’s Curves may be written in a number
of ways. The numerical example given above shows the con-
venience and advantage of writing a solution so that the origin is
atthemode, G( )() is a covariant of index zero, 4 a covariant of
index (—1) and the constant of integration an invariant of
index (—1).

Regardless of what form is selected for writing a sojution
the solution will be a covariant and the constants will be invari-
ants, but not necessarily of the indices mentioned above. A
knowledge of these invariants will save much labor if it is desired
to make a change in the unit of measure.

Similar laws of transformation can be worked out for (1)
solutions. of the diff. eq. % . l,:%‘)’_where both #¢>)and F(x)
are integral rational functions of x and (2) for the Gram-Char-
lier Types A and B series. In the first case we obtain the same
result as outlined above for the simpler diff. eq. é.‘f - .'g?-:-) ; that
is the solution may be written in the form < G.G(X ) where
G-(X) is a covariant of index zero, 4 a covariant of index (—1)
and &, is an invariant of index (—1). In the case of the Type
A series the coefficient of each term is an invariant of index zero.

George Washington University.



