ON THE PROBLEM OF CONFIDENCE INTERVALS
By J. NEYMAN

When discussing my paper read before the Royal Statistical Society on 19th
June, 1934, Professor Fisher said that the extension of his work concerning the
fiducial argument to the case of discontinuous distributions, as presented in
my paper, has been reached at a great expense: that instead of exact probability
statements we get only statements in the form of inequalities.

This remark raises the question whether the disadvantage of the solution
which he mentioned (the inequalities instead of equalities) results from the un-
satisfactory method of approach, or whether it is connected with the nature of
the problem itself.

I think that the problem is of considerable general interest. For instance it
may be asked whether the confidence intervals for the binomial distribution
recently published by E. S. Pearson and C. J. Clopper,! which correspond to
the probability statements in inequalities, could be bettered.

The purpose of the present note is to show, (1) that in some exceptional cases
the exact probability solution of the problem exists and that then it may easily
be found by the method described in Note I of my paper;? (2) that in the general
case of discontinious distribution exact probability statements in the problem
of confidence intervals are impossible.

In particular it will be seen that exact probability statements are impossible
in the case of the binomial distribution and so that the system of confidence
intervals published by Clopper and Pearson could not be bettered.

In order to avoid any possible misunderstanding I shall start by restating
the problem.

We shall consider a random discontinuous variate z, capable of having one
or another of a finite, or at most denumerable set of values
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We shall assume that the frequency function, say p (z | ), of z depends upon one

parameter 6, the value of which is unknown. The problem of confidence in-

tervals consists in ascribing to every possible value of ze.g. toz,, (n = 1,2, - . .)

a ‘“confidence interval,” say 6:i(n) to 62(n) such that the probability, P, of our
being correct in stating

01(n) é [/} é 02(’”) .......................... (2)

whenever we observe z = 2, (n = 1,2, . . .), is either:
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(a) equal to a given value @ < 1 chosen in advance, or

(b) at least equal to this value a.

I proposed to call this chosen value « the confidence coefficient.

In the earlier paper I showed that the solution of the problem in its form (b)
is always possible and easy to find. If the variate z is continuous, then the
solution of the problem (a) is equally easy. At present we shall consider whether
and under what conditions the solution (a) is possible when the variate z is
discontinuous.

Suppose that the variate z is discontinuous as described above, and that the
solution of the problem in its form (a) exists and is given by the system of
confidence intervals (61(z.), 82(x,)) forn = 1,2, . . ..

The position is illustrated in the diagram below. On the axis of abscissae
the possible values of the variate z are marked. The axis of ordinates is the
axis of 8. The confidence intervals are marked on verticals passing through
corresponding values of z.

DIAGRAM REPRESENTING THE CONFIDENCE INTERVALS.

@® MARKS A POINT BELONGING

8, (n)
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P is the probability of an event, say E, which we shall describe in some detail.
Let us denote generally the probability of any event a by P{a}. Pf{a|b} will
denote the probability of an event, @, calculated under the assumption that
another event, b, has already occurred.

Now

P = P{E} = the probability that {either (z = z,) and then 6:(1) < 6 < 62(1)
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or (x = z,) and then 6,(2) = 0 = 6:(2)

= P{z = &:}P{6:i(1) < 6 < 6,() | (z = z1)}

+ Plz = @}P(6:(2) S 6 < 0,2) | (= = 25))

= Z:l Plz = z,}P{6i(n) S 0= 0(n) |[(x=2,) } = aeeevvvvvnnnna. ... 4)
The calculation of the probability P in the above form is not convenient, as
both multipliers in each term of the sum in (4) depend upon the unknown
probability function @ prior: of 8. Therefore we shall present P in another
form, giving to the event E a geometrical interpretation. Let us denote by
CB the set of all confidence intervals (61(n), 62(n)), as marked on the plane of
z and §. Thus CB will be composed of points with co-ordinates z and 6, where
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The set CB will be called the confidence belt.

Denote by A any point of the plane of z and 6, having any values for its
co-ordinates.

It is easily seen that the event, which we denote by E, and the probability
of which is P = a, consists in the point A belonging to the confidence belt CB.
In fact the event E occurs if and only if the co-ordinates of A fulfil the condi-
tions (5). But just these conditions define the points belonging to CB.

The above circumstance allows us to calculate P by means of a formula which
discloses its connection with p(z | 6).

Fix any possible value of § = 6’ and draw the straight line LL the points
of which have just this fixed value ¢’ for their ordinates. The line LL will cut
some of the confidence intervals. Denote by X(8’) the set of points of inter-
section, and by ¢(8) the unknown frequency function of 8. The set X (8) will
be called the set of acceptance corresponding to the specified value of 8.

The function ¢(f) may be continuous or not. So may be p(z | §) considered
as a function of 8. These cases may be treated together if we agree that Zo: F(9)

will denote either the sum or the integral of F(6) extending over all values of 0,
whenever F(6) is integrable.
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Using this notation we may write

P = P{E} = zoj {¢(o) X(Z” (p(xIO))} ............... (6)
where Y denotes the summation over all values of z belonging to X (6).

%(9)
From the formula (6) may be deduced the following important proposition.
The probability P may possess a constant value o, independent of the properties

of the unknown function ¢(0), if and only if for each 6

f/(V_of,) CICAR)) o T (7

The condition (7) is obviously sufficient to have P = a. In fact, if it is satisfied,
then we should get from (6)

P=a zo: @0) = coviieii (8)

since ) (¢(6)) = 1 whatever the frequency distribution of 6. It is equally
[}

easy to see that the condition (7) is necessary for having P = « whatever the
function ¢(f). For suppose that for 6 = 6, we have

x(z;‘,) P@]0)) =B 0 cveeeiaanaananns 9)
Then if it happens, that
6(6) =1 for 6 = 6, (10)
and
o0 =0 for 0 = 6, (11)

the only term in the sum », which is different from zero will be that corre-
[

sponding to 6§ = 6, and the formula (6) will reduce to
P= %‘,)(p(xlol)) =B+#a. (12)
X(01

The original question, whether the solution of the form (a) is possible when
the variate z is discontinuous is thus put in the following form: is it possible
to define for every possible value of 6 a set of acceptance X () such that the
equation (7) holds good?

The answer is: in some cases it may be possible, but this depends upon the
nature of the function p(x|6). It is very easy to invent functions p(x | 6) for
which the equation (7) for a definite value of a holds good, and we may even
fix in advance the sets of acceptance X (). However the important question
is not whether there may exist elaborately invented cases of discontinuous
distributions where the solution (a) exists, but rather whether this solution
exists always, or at least whether it exists frequently and in cases which are
practically important.



ON PROBLEM OF CONFIDENCE INTERVALS 115

This question must be answered in the negative on the basis of the following
example concerning the most important of the discontinuous distributions, the
Binomial.

In fact it will be seen below that if x is a variate following the binomial fre-
quency law, then whatever the arrangement of the sets of acceptance X (6),
corresponding to different values of 6, the left hand side of the equation (7)
cannot be constantly equal to the confidence coefficient & < 1. It will follow
that in the case of the binomial distribution, the solution of the problem (a )
is impossible.

To prove this we shall consider the variate, z, following the binomial frequency
law. That is to say we shall assume that  may have values 0, 1, 2, . . . n,
and that

(x | o) = —L gz(l _ 0)(n—x) (13)

P = Zl(n — o)1
while0 < 8 < 1. Since the set of possible values which £ may have is finite, there-
fore the set of all confidence intervals must be finite also. It follows that there
is possible only a finite number of sets of acceptance X (). Therefore there
must be at least one set of acceptance, say X° which will be common to an

infinite number of values of 6, say 6y, s, - - - 04, - - - so that for each it will
be X(6,) = X°.
Now
@] 6a) oo (14)
x(e,)

for all these values of § = 6, will be the same polynomial in 8 of the order n.
If it has the same value o for a number of values of 8 exceeding n, it means that
this polynomial is an absolute constant. Therefore if it were possible to give
a solution of the type (a) in the case of the binomial distribution, it would be
possible to construct a sum (14), the terms of which are all different and have
the form (13), and such that after all possible reductions and simplifications
all terms involving 6 would cancel and we should be left only with one constant
term «<1. This, however, is impossible, since the only term of the form (13)
which involves a constant, is the term corresponding to z = 0

pO10) = (1= =1 —np 4 20 =D

and then this constant is 1. Other terms of the form (13) involve 6 as a multi-
plier. Therefore there exists only one sum of the form (14) which is an absolute
constant, but this includes all the terms (13)

Z”) (C1CAN)) I S (16)

=0

and thus is of no value. It follows that whatever the sets of acceptance X(6)
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the corresponding sum (14) will have values varying with the value of 6 and
hence the solution of the type (a) in the case of the binomial does not exist.

This, I think, gives the solution of the question raised by Professor Fisher.
It is clear also that whenever the solution of the type (a) exists, it may be
found by a suitable choice of sets of acceptance, and thus by the method ex-
plained in my earlier paper.

I should like now to raise another question. Past experience shows that the
general problem of estimation may be formulated in different ways. The form
of. this problem as it appears in Bayes theorem, required for its solution the
knowledge of the probabilities a priore.

The form of the same problem treated by R. A. Fisher in his theory of esti-
mation was solved in terms of a new conception, that of likelihood.

The problem of estimation in its form of confidence intervals stands entirely
within the bounds of the theory of probability, without involving any concep-
tion not already inherent in this theory. In the case of continuous distribution
the problem also allows the solution (a) entirely independent of the probabilities
a priori. Now it is shown that the necessity of the solution (b) is bound up
with the nature of the problem if the distributions are discontinuous.

My question is: is it possible to formulate the problem of estimation in a
fourth form, leading to a solution which (1) stands entirely on the grounds of
the classical theory of probability, and (2) is not depending upon the probabili-
ties a priori—whatever the conditions of the problem?



