SOME NOTES ON EXPONENTIAL ANALYSIS

By H. R. GRUMMANN
Assistant Professor, Department of Applied Mathematics, Washington University

M. E. J. Geuhry de Bray in his charming little book ‘“Exponentials made
Easy’’! tells how to determine the constants in the equation,

I Y = A1 + Ay

so that the curve will pass through four points, with equidistant ordinates on
an empirical curve. If (Fig. 1) yo, ¥1, ¥2, and y; are the equidistant ordinates
and § is their common separation, y, being the y intercept of the curve, de
Bray’s formulas are:
log 2 __log 2

5 0 "7

(II) ay =

where 2, and 2; are the roots of the quadratic equation
2 z 1

(I11) ¥s Y2 | =0.
Y2 1 Yo

The coefficients A; and A4, of the two exponential terms are obtained by solving
the two simultaneous equations

A, + A2 = yo
(Iv) Az, + Az = Y

In attempting to find suitable empirical equations for some “river rating
curves”’—graphs of discharge versus stage—the writer tried to make use of
de Bray’s procedure. The original intention was to use the above method to
determine the constants, and then to correct these constants by the use of
Least Squares, as done by J. W. T. Walsh? in an application of the method to
a problem in radioactivity. It often happens that a series of plotted obser-
vations suggest a simple exponential function, but that when the observations
are replotted on semi-logarithmic paper a straight line is not obtained. Often,
as in the case of a good many river rating curves, the result may be described

1 Macmillan & Co. Ltd., St. Martin’s St., London W. C. 2.
* Proceedings Phys. Soc London XXXII This reference is glven by de Bray in his

book, ‘Exponentials made Eagy.”’
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134 H. R. GRUMMANN

as “almost straight.” At first blush it might seem that in all such cases it
ought to be possible to fit a curve with equation I to the data by de Bray’s
Method. By an easy generalization of the above formulas, the constants in
an equation with three or four exponential terms could be determined if two
terms were not enough to secure a good fit.

It was soon found, however, that innocent looking monotonic curves without
points of inflection plotted from data that gave an “almost straight” line on
semi-logarithmic paper quite often led to a quadratic equation, (equation III)
whose roots were not both positive numbers.

Y

<
=<

Fia. 1

If 2, and 2;, the roots of III, are complex conjugates, it may be seen from IV
that 4, and 4, will be complex conjugates. Also, a; and a, will be conjugate
complex numbers and may be calculated as follows:

Let 2 = re? and 2z = re=v?
then from equation II,

&

re? = %,

re® = ¢t

whence, by division to eliminate r we have

62‘0 = e&(al—az)’ or

(Va) ? = a; — Gs.
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Also, by multiplication to eliminate 0,
72 = lrted  or

2logr
é

The sum and difference of the two a’s being obtained by these expressions,
one may solve for a; and as.

Let a1 =N+ @ A = a4 p
as =\ — Ay = a — 8

= 01+ asz.

(Vb)

Then equation I becomes
y = (a + B)ed+wz 4 (o — (B)eP—ww=
Yy = 2é*[a cos ux — B sin ux], or

(VD) y = 2¢*R cos (ux + ¢)

where R = \/a’+ﬁ’¢andtanc=§.

If one of the roots of III is negative, the de Bray formulas II and IV will
still give an expression for equation I which formally reproduces yo, 1, ¥z, and
ys when 0, §, 28, and 33, are substituted for z respectively, but which is useless
for interpolating and of no value as a solution of the curve fitting problem.
Suppose, for example, that z; is positive and z; is negative. Then

2= (—1)|2z| and
log z; = log (—1) + log | z2|.

Equation I then becomes
z z log | 5]

Y= 41" 4 (~D)idse 5,

the factor (—1)? being real only when z is an integral multiple of 6. If the
(=1) is written e**, we have

Tz zlog | 22|

y=A1"" +¢€ 3 Aze 5 ,or

z log | zs|
y= A1 4 Aze 3 [cos%a-; + ¢sin 1_?:]
Neither the real nor the imaginary part would be a graduation function for a

monotonic curve as each has a half period of §.
The expression for I is similar, and of no greater practical value, if both of

the roots of III are negative.
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Without loss of generality we may let yo = 1, = % Te = 3—;3 rg = gf Then
0 1 2

the quadratic III becomes
2 2z 1
rers 2 1{ =0, or.
nre 1
written in the form
24 p24+q¢=0, ie,

ro(r1 — 13) nrs — 1) _ o

(HHie) N R R e

Hence the roots of this quadratic are real and unequal if D > 6, equal if D = 6,
. and complex if D < 6, where

= | _gn T T
b= [7'1 7‘3] + 4[7'2 + Ts]

From the point of view of the computer, however, it is about as much work
to calculate D as to solve the quadratic equation.
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Reverting to equation IIla; suppose the numbers ¢ and p are plotted as the
coordinates of a point (g, p) as in Fig. 2. Then the parabola p? = 4g¢ is, so to
speak, a locus of equal roots. The remainder of the figure requires no expla-
nation.

Suppose that all the r’s are positive, as they would be in the case of a simple
monotonic curve which one proposed subjecting to an exponential analysis.
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If ¢ < 0, the quadratic will have one negative root. Now

= ri7e(rs — 1)

o o and hence
2 — 171

for ¢ < 0, if r, > 71, then r3 < r2 and consequently rs < r, > r, and if r. <7y,
then rg > 7, or 1y > 13 < r3.  Also, provided p; > 4¢, a positive p and a pos-
itive ¢ will give two negative roots. But

— a1y — 73)
(ra—m)’

and p and ¢ can not both be positive when all the r’s are positive as this implies
either that r, > r,, r, > rs and 73 > 72, a contradiction, or else that r» < n1,
r < rsand r3 < 73, also a contradiction. Hence if both roots are negative, the
s can not be all positive. The case of two negative roots will not arisé in
trying to fit equation I to a monotonic curve, since if all the 7’s are positive
both p and ¢ can not be positive.

For all 7’s positive, provided p? > 4¢, a positive ¢ and a negative p will give
two positive roots. But

- [ Tz(rs - Tz)

>0
(re — 1) ’
and
ro(rs — 11)
_p=203"TV 59
(re — 1) >

means that 73 > 1, > norrg < r, <n.

To sum up: If all the s are positive, de Bray’s method of exponential
analysis is possible (a) when D < 6 and the roots of III are complex; (b) when
D> 6andr > 2 > rgorwhennr < r <rs.

Figure 3 gives a picture of the second condition (b) of the preceding para-
graph. Suppose an exponential curve is passed through the first two points
on the empirical curve with ordinates yo and y:. Its equation will be:

I
Yy =1 (:%('1)) = Yo

Suppose also that ys is less than the ordinate to this curve when z = 2. Now
pass an exponential curve through y; and y. using a new axis of ordinates
coinciding with y;. Its equation is

7
Yy=uth (Z—j) =Whnr ,

>|8
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or referred to the original axis:.

z—3

Y ==yﬁ§—7-.

Now if the graduation is possible without using trigonometric functions, ys
must be less than the ordinate of this second curve when z = 35.

y the
empirical
curve

73
x

FiG. 3

F16. 4

It is natural to inquire if the state of affairs is not similar to this, for the
cases of fitting curves with equations similar to I but having three or four ex-
ponential terms on the right hand side instead of only two. If three terms are
used (see Fig. 4) to find constants in

(Ia) Y = A1e%* + Aze™* + Az
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it:is first necessary to find the roots of the cubic
2 2 2z 1

(I1Ia) f(z) = Ys Ys Y3 Ys
Ys Ys Y2 Y

Ys Y2 U1 Yo

Now, f(z) will have no negative roots if f(—z) has no changes of sign. But
writing the conditions that the cofactors of the elements of the first row in
the above determinant have the same signs, and assuming that all the y’s are
positive, one does not get a series of conditions analogous to r; > r, > r;, or
rs < re <.

In the following, formulas will be derived for finding the constants in equation
Ia after the roots of IIla have been determined. Also formulas will be obtained

for finding the constants in

(Ib) y=Ar1e®+ As e + Az e+ Ay
after the roots of

2 2 2 2z 1

Y Y Yo Ys Us
(I1Ib) Yo Us Ys Ys y2|=0

Ys Ys Ys Y2 U1
Yo Y3 Y2 Y1 Yo

have been found. Both sets of formulas have been tested by an “‘exponential
analysis” of the same body of data, viz., the very accurate recent determina-
tions by the U. S. Bureau of Standards of the saturation pressure of water

vapor above 100C.?
For the case of three exponential terms in the graduation function, the a’s

are found by formulas like IT or V, after the roots of the cubic are found. If
21, 22, 23 are the roots, the A’s are obtained by solving the simultaneous equa-

tions
A1+ 42 + 43 =1y
(IVa) A2y + A2y + Azs = %
Az? + Ay + Az = 1

3 Osborne, Stimson, Fiock, and Ginnings: The Pressure of Saturated Water Vapor in
the Range 100° to 374°C. Bureau Standards Journal of Research, Vol. 10, Febr. 1933,
page 178.
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This presents no new difficulty unless two of the roots are conjugate complex
numbers. In this event, if we let 2, = the real positive root, z, = r ¢, and
23 = r ¢~Y the determinant D of the equations IVa may be written

1 1 1
D=|z ref rev
2] @0 22
or, expanded in terms of the elements of the first column and their minors,
D = 2{[z;r*sin 20 — (r® + 22r)sin 6),

& pure imaginary. Similarly,
A, D = 2{[r?y, sin 20 — (yor® + yor)sin 6],

also a pure imaginary, so that A, is real. Having calculated A4,, it is substituted
in the first two of equations IVa, which are then solved for A; and 4;. a,
and a; are then determined by formulas Va and Vb, replacing the subscripts 1
and 2 in those formulas, by the subscripts 2 and 3 respectively. Finally the
two exponential terms corresponding to the complex roots of the cubic are
combined into a single trigonometric term as in equation VI.

The necessary formulas for the case of four exponential terms in the gradu-
ation function will be discussed briefly. The equations

4, +4;, + As +4A40 =1y
A121 + AﬂZz + Aazs + A4z4 =
Az} + A + Ay + A2l =
Az} + A + Agzl + Al = ys
have to be solved for the A’s. The 2’s are the roots of IIIb. Two cases will
be considered: First case: 2, and z, are complex conjugates and z; and 2, are
complex conjugates. Second case: z; and.z; are complex conjugates and zs
and z, are real and positive. In either event A, and As are complex conju-

gates, as will be proved below. Formulas for A, are given for both cases.
Then A, is known since it is the conjugate of 4;. Having found 4, and A.,

let

(IVb)

co = Yo — (41 + 42)
a =y — (diz1 + Asz)
Both ¢o and ¢, are then real. To get 4; and A, solve the equations:
A; + A =co
Agzs + Ay = &1
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A pair of exponential terms with conjugate complex coefficients will then-be
expressed as a single real trigonometric term as in VI.
The determinant of equations IVb may be written

(VII) D = (21 — z0)(21 — 23) (21 — 24) (22 — 23)(22 — 24)(25 — 24)..

First case: Let 2z = a 4 b, 22 = a — b, 23 = a + f,24 = a — 8. Then D
may be written

(VIIa) D = —4gbl(a — a)® + (b — B)}] [(a — @) + (b + B)%,
which is real. Now

w 1 1 1 1 % 1 1
N 22 23 2 21 N B U
AiD + 42D = PR el 2 2
Y2 29 23 24 21 Y2 23 24
Ys 23 23 2% TR -
0 w 1 1
1 h & 2
=(a—2) 2 2
(21 + 22) Yo 23 24

(z1 +azm+23) w25 2%

and this is real since (z; — 2,) is a pure imaginary and the minors of the real
elements of the first column of the determinant are all pure imaginaries. Hence
A, and A, are complex conjugates since when each is expressed as a quotient
of two determinants by Cramer’s rule, the sum of the two numerators is real
and the common denominator is also real.

" For purposes of numerical calculation 4, may be obtained from

in which D is obtained from VIIa,
N =ys — (22 + 23 + 20y2 + (2223 + 202 + 2320y — (222520)Y0,
and P = (22 — 23)(22 — 24) (25 — 23)
= 28[(a — @)2b + {(a — @)% 4 (B2 — b?)}], a complex number.

If 212, = r? and 2324 = p?, the symmetric functions of the 2’s in the above formula
may be calculated from

2252 = (@ — b)p?
2023 + 224 + 232 = p? + 2a(a — b)
Zo+ 25+ 2 = (@ — b)) + 2
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For the second case, which is exemplified by the vapor pressure data,
(VIIb) D = 2bl(a — 25)* + b [(@ — 2)% + b?] [es — 2],

a pure imaginary. The sum of the two numerators of 4, and 4., namely

0 w 1 1

1 N B

(21 — 29) -
21+ 2 Y2 23 2%

2 2 3 3
Zitantz B oz 2

is a pure imaginary, since (z; — 2:) has this character, and the determinant
has nothing but real elements. Hence 4, and A are still complex conjugates
when z; and 2, are real, z;, and 2; being complex conjugates.

For purposes of numerical calculation A, may be obtained from

N

Sl A Y Fn P Y

Here (21 — z2) is a pure imaginary and the other three factors are complex.
Let N = ri(cos 6, + ¢ sin 6;)

2 — 23 = ro(cos 6, + ¢ sin 6;)

21 — 24 = r3(cos 03 4+ ¢ sin 6;)
Then

4, =" [cos (B — 6: — 65) + v sin (6 — 62 — 65)]
1 (1 —2) 123

In calculating N by the formula given for it in the preceding paragraph, the
symmetric functions of the z’s were obtained from

20252 = (@ — b)zg2y
2023 + 2024 + 2320 = (@ — b) (23 + 21) + 2324
22+ 25+ 2= (a— b)) 4 23+ 2.

Example

The first two of the following tables are abstracted from Table 2, p. 178 of
Bureau Standards Research Paper No. 523. The third table is abstracted from
Table 3, p. 179 et. seq. of that publication. z is the number of degrees centi-
grade above 100°. y is the pressure of saturated water vapor in International
Standard Atmospheres. In the first two of the following tables, the values
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of y are cbserved values. In the third, they are interpolated or graduated
values calculated at the Bureau of Standards.

TABLE I
F3 Yy
0 1.0000
90 12.3887
180 63.3558
270 207.771
TABLE II
z Yy
0 1.0000
50 4.6069
100 15.3472
150 39.2566
200 84.7969
250 163.205
TABLE III
z v
0 1.0000
39 3.4666
78 9.4490
117 21.612
156 43.302
195 78.974
234 133.64
273 215.37

The observed values of y in Table I are reproduced by the following formula
used in conjunction with a standard six place table of logarithms and trigono--

metric functions:

I) y = 3.967433 018954z cog (.4085758x — 75°24/03".7).

The observed values of y in Table II are reproduced by the following formula
used in conjunction with a standard six place table of logarithms and trigono-

metric functions.

y = 3.0253744 €-01615606z

an

+ 2.2171657 011597162 ¢og (155°59'35”.5 — 0.7899232z).
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Hence the formula is presumably an excellent one for interpolation between
the values of y listed in Table II, if the greatest accuracy is not needed.

The values of y in Table III are reproduced exactly to five significant figures
by the following formula used in conjunction with a standard six place table
of logarithms and trigonometric functions.

y = 3.8902543 01413920z __ 164787 02169302
+ 2.743000 9884200z cog (7860725 + 186°28'53".2).

By means of this formula the saturation pressure of water vapor was calculated
for every five degrees from 100°C to 370°C in order to make comparisons with
the corresponding “smoothed” values in Table 2 of the Bureau of Standards
publication referred to above. The discrepancies were never more than one in
the fourth significant figure and generally less. The poorest agreement was
in the ranges of temperature from 100°C to 135°C and from 245°C to 270°C.

It is a pleasure to acknowledge the intelligent and painstaking assistance of
Mr. G. D. Lambert, undergraduate student at Washington University, for doing
most of the computing.

WasHINGTON UNIVERSITY,
St, Louis, Mo.

4 The values of y in Table IIT (not counting the value of y for £ = 0) are reproduced
by it with an average error of .13% and a largest error (for z = 234°) of .30%. Four of
the errors are negative and three positive.



