TESTS OF STATISTICAL HYPOTHESES WHICH ARE UNBIASED IN
THE LIMIT

By J. NEYMAN

1. Introduction. The idea of unbiased tests of statistical hypotheses has
been put forward and discussed in two recent papers." Recently also a particular
problem was solved introducing a test which has the property of being unbiased
in the limit.> The purpose of the present note is to discuss this conception in
its general form and to indicate methods of determining the tests unbiased in
the limit of a broad class of simple statistical hypotheses. The notation and
the terminology employed below are explained in the papers quoted.

2. Notation and definitions. Consider a set of n random variables
1) X, X, Xa
the particular values of which
2) Ty, Ty, e Tn

can be given by observation and denote by @ the set of hypotheses concerning
the probability law of (1) which are regarded as admissible. We shall assume
that all the hypotheses included in Q specify the probability law of the X’s
having the same analytical form but differing among them in the value of just
one parameter, §. Thus, if E, denotes the point (the “event point’’) in the
space W, of n dimensions with its coordinates equal to the values of (1) and w,
any region in W, , then the probability of E, falling within w, , as determined
by any of the hypotheses forming the set  will be denoted by

3) P{E, ew, | 6}

and will be a function of -the parameter . The probability (3) with fixed
considered as a function of varying w, is called the integral probability law of the
X’s. Frequently (3) is equal to the integral of a certain non-negative function of
E, over the region w, . This function will always be denoted by p(E, | ) and
called the elementary probability law of (1).

§

1J. Neyman and E. S. Pearson: Contributions to the Theory of Testing Statistical
Hypotheses. Part I. Stat. Res. Memoirs, Vol. 1, (1936) pp. 1-37. Part II, ibid., Vol. II
(1938).

J. Neyman: Surla vérification des hypothéses statistiques composées. Bull. Soc. Math.
de France, Vol. 63 (1935), pp. 246-266.

2 J. Neyman: ‘“Smooth” Test for Goodness of Fit. Skandinavisk Aktuarietidskrift,
(1937), pp. 149-199.

69

[ ﬁ

3

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [P
The Annals of Mathematical Statistics. IIKOIRS ®

WWw.jstor.org



70 J. NEYMAN

Denote by H, some particular hypothesis of the set @ and by 6 the value
that it ascribes to the parameter 6.

A test of the statistical hypothesis Hy consists in a rule of rejecting Ho when-
ever E, falls within a specified region w, and in not doing so in other cases.
The region w, used for this purpose is called the critical region. It follows
that to choose a test means to choose a critical region.

We shall consider below only cases such that for any region w, the probability
(3) considered as a function of 8 possesses two successive derivatives.

DerFinNiTION 1. If a critical region . has the property that, o being a fized
positive number.

4) (a) P{E.eWn|6)} = a
d
) ) & P(E.cw.|0) |..o., =0
d &
(6) (c) d—e—z'P{E”C'wnIO} ot 2 dT';P{E”Q’w”'O} b=t

where w, is any region satisfying (a) and (b), then the region W, is called the un~
biased critical region of type A corresponding to the level of significance «, and the
test of the hypothesis Ho based on W, , the unbiased test of type A.

This is the definition given in the first of the earlier papers quoted. Now we
shall define the test which is unbiased in the limit. For this purpose we shall
have to consider the situation where 7 is indefinitely increased and consequently
we have a sequence of probability laws (3), a sequence of spaces W, where they
are defined and a sequence of regions ., each @, being a part of the cor-
responding W, .

We must also introduce a varying scale with which to measure the differences
9 — 6. Thisis due to the fact that, if the choice of the sequence of regions
, is not very unlucky and 8 # 6 , then we shall frequently have
@ lim P{E, e®w, |0} =1

Comparing this with condition (4), we see that in general the limit of
P{E, ¢ ®, | 0}

for n — o will be discontinuous at § = 6. To avoid this we shall measure
§ — 6 in terms of n? introducing instead of § a new parameter ¢ connected
with the former by means of the equality

8
(8) o=oo+\—/—ﬁ

For the hypothesis tested Ho we shall have ¢ = 0 and ¢ # 0 for any other
hypothesis in ©. The new parameter ¢ thus introduced will be called the
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standardized error in Hy. It will be frequently convenient to use 8 but occa-

sionally we shall use ¢ as well, for example writing P{E, e w, | ¢} instead of

(3) etc., and it is necessary to remember the connection (8) existing between 6

and . It may be useful to notice at once that df/d6 = +/n df/ds.
DEeriNiTION 2. We shall say that the sequence of regions

9) Wy, Wa, +vv ) W, -

determines a test of the hypothesis Ho which is unbiased in the limit and corresponds
(Pn the limit) to the level of significance a, if for any n

(10) (@) ‘ZVP{E,, ; w,.w}l > EP{E,, cwa|0}|
where w, s any region such that
(11) P{E,ew,|d =0} = P{E, e®, | = 0}
and
(12) L P(Baewn|9)| =2 P(E,cwm.|s)
dd om0 dY Omd
and if
(13) (e) lim PE,.e®W,|0 =0} = a
(14) ® 3%(%P{E..ewnld}o-o =

The practical application of the test determined by the sequence of regions (7)
consists in observing as large a number n of the X’s of (1) and in rejecting the
hypothesis Hy whenever E, falls within %, . If n is sufficiently large, then this
rule will have about the same advantages as the application of the unbiased test
of type A. In fact, allowing for the circumstance that the values of (11) and
(12) will be only approximately equal to the limits (13) and (14), the properties
of the test satisfying the Definition 2 will be as follows: If the hypothesis tested
be true, it will be wrongly rejected with a relative frequency approximately
equal to « fixed in advance. If H, is false and the true value say ¢’ of ¢ is not
very different from zero, then the frequency of rejecting H, will be greater than
a and could not be increased by applying some other similar test.

It may be useful to notice that in general there may be more than one test
of the same hypothesis which is unbiased in the limit and corresponds to a
fixed level of significance. Consequently there is a possibility of choosing
between such tests, but it seems to the author that such a choice would require a
previous strengthening of the theorem of S. Bernstein on which the present
work is based.
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3. Theorem of S. Bernstein. In the following, we shall have to use the
following particular case of a theorem due to S. Bernstein.® Denote by &(z)
the mathematical expectation of any variate z and by

X, X, -, X0, -
Yi,Ye, -+, Y., -

two unlimited sequences of random variables.
We shall assume that
(1) X:is independent of X; and Y, for any ¢  j.
(2) The following mathematical expectations exist and are independent of %:

&X)=a &¥)=0D

EX;—at=di &Yi-b)'=an '
6[(X: — a)(Yi — b)] = ravoe

§(|Xi—al)=un &(Y:i=b[)=v

Consider now the space of 2n dimensions W, and denote by K. a point in it
as determined by the values of X;, Y;fors =1,2,...n considered as its co-
ordinates. Let u, and v, denote the sums

(17) Un = Z X, Un = Z Y;

=1 =1

(15)

(16)

and denote by D, the point on a plane S with its orthogonal coordinates equal
to u, and v,. If s is any region in S then let P{D, s} be the probability of D,

falling within s.
TueorREM OF S. BERNSTEIN. If the variates (15) satisfy the conditions (1)
and (2) then, for any € > 0, there exists a number N., such that the inequality

n > N, implies
1

21rna-m\/ 1 —r?

. _ 1 (u—na)’__zru—na v—nb+(v—nb)2)
// e 2n (1—r2%) af 7 L2y ag du dv
s

P{D,es} —
(18)

<

whatever the region s in S may be.

4. Tests unbiased in the limit. We shall consider the problem of determining
the tests satisfying Definition 2, in the case where the following hypotheses are

fulfilled.

3 8. Bernstein: Sur un théoréme limite du calcul des probabilités. Math. Ann., Bd. 97
(1926) p. 44.

See also V. Romanovskij, Bull. de I’Académie des Sciences de I'U. R. S. S., 1929, p. 209
and W. Kozakiewicz, Ann. Soc. Polonaise Math., t. XIII (1934), pp. 24-43.
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(i) All the random variables (1) are mutually independent and each of them
follows the same elementary probability law which we shall denote by p(z; | 6).

(ii) The elementary probability law p(z;| 6) admits three differentiations
and two consecutive differentiations with respect to 8 under the integral taken
over any fixed finite or infinite interval, so that

(19) -ql—k- ' p(z;|0) dz; = /b d—k p(z: | 0) dz;
dok A 1 1 A dak T 1
fork =1, 2.
(iii) If
~_ 0 log p(x:]6) o 0” log p(x: | 6)
(20) o= a9 [N and ¥ = 06? 0=0¢

then we shall assume the existence of the following integrals all taken from
—® to +x

(21) o1 = / @i p(x: | 60) da:

(22) o3 = / (Wi + 01)” p(z: | 60) dz,
(23) ro10p = / o:Vip(x: | 6o) dx

(24) w= [ 16t 1nte: o) ds

(25) v = f | ¥; + ot |* p(x: | 60) d

ProrositioN 1. If the above conditions (i), (ii) and (iii) are satisfied, ¥
being a function of x; and | r | < 1, then the sequence of regions W, including all
the points of W, where p(E. | 6) = 0 and also those of the remaining ones which
satisfy the inequality

n n 2 n

(26) El‘l’;-f- (El ¢i) > Moon/n(1 — 12) — no§+r‘—;-’Zl¢i
= (e 1 t=
where the coefficient M 1is to be found from the equation
1 (™[ 4 1 ° _3y2

27) '__./ {e b= e / e by d }dx =
( V2r J-= V2 Ju-nz v *
with

2
28 N.—_M_
( ) az\/l—-rz’
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defines a test of the hypothesis Ho , which is unbiased in the limit and corresponds
(in the limit) to the level of significance a.

RemArRg. The calculation of M satisfying the equation (27) is, of course,
laborious. But a table of values of M corresponding to varying values of N
is being constructed by N. L. Johnson at the Department of Statistics, Univer-
sity College, London, and it is hoped that it will soon be published.

To prove Proposition I, we must first prove (a) that whatever n, the region
W, determined by the inequality (26) satisfies the condition (d) in the definition
2. The proof is based on the following Lemma.*

Lemma. If Fo, Fi, --- Fyn are functions of ., - -- . tntegrable over any
region in W, and wo a region tn W, such that within wo

(29) Fo > X a:F:
=]

while outside of wo

(30) Fo £ 2 aiF;

=]

@, Gy - -+ Qm being some constant coefficients, then, whatever may be any other
region w in W, , such that

(31) /---/F;dxl---dx,,=/---/ Fidxy ---dz,, fori=1,2,...m,
w wo

we shall have

(32) // Fodxl---dx,.Z/---/Fodxl---dx,..
wo w

Proor orF ProrositioNn I. Denote, for simplicity, by p(E.) the ele-
mentary probability law of the X’s as determined by the hypothesis tested.
Comparing the statement of the Lemma with the definition (26) of ., we
immediately see that this region has the following property: whatever may be
any other region w in W, such that

(33) /ﬁp(En)dx1~--dxn%/--- -[bnp(E',.)dxl---dxn

and
1 n
7%/ w§¢¢P(En)d$1'--dxn
(39) 1 )
=\_/—ﬁ/ ZiDiP(En)dxl"'divn

Wy =1

¢J. Neyman and E. S. Pearson: loc. cit., pp. 10-11.
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we shall have

%/Lu<§w.+ ggo;y)p(E,.)dxl,-udxn
2:—1/ --~/‘;(g\lf.'+(izl¢.-)2>p(En)dx1-udxn

But under the conditions (i) and (ii)

(35)

(39) p(. ) = YL ptel 00 + 0/7/%)
(37) B~ D L eED
Fp(E.]9)

(B (Bw))pEn

i1

(38)

8?

and it is easily seen that the relations (33), (34) and (35) are identical with
(11), (12) and (10) respectively and that therefore the region ®, satisfies the
condition (d) of definition 2. It remains to prove that . satisfies also the
conditions (e) and (f), that is to say that, for n — o, the formulas in the right
hand sides of (33) and (34) tend to the prescribed values a and zero respectively.
This conclusion concerning (33) is a consequence of the theorem of 8. Bernstein,
quoted above. To see this, write

(39) Un = E @iy Un = E ¥

im=1 im=1

and denote by so the region in the plane S of (u, v) defined by the inequality
(40) v + u > Maor/n(1 — 1) —na§+r?u
! 1

obtained from (26) by means of (39). The right hand side of (33) represents
the probability determined by the hypothesis tested of the X’s satisfying the
inequality (26). But this is satisfied simultaneously with the variates u, and v.
satisfying (40). Therefore, if we denote by D, the point in S with its coordinates
equal to (39), then the right hand side of (33) may be interpreted as the proba-
bility P{D. € s} of Dy falling within s . Comparing (21)-(25) with (16), it is
easily seen that, according to the Theorem of S. Bernstein, whatever may be
¢ > 0, if n is sufficiently large, then

(41) | P{Dy e s} — // Gudv| < ¢

20
where

1 u?_, lv_-&-_mrj (v+noh)?
(42) Gn 1 e“?n(l—ri){;? rcl e + dzl }

- 2mne1oe V1 — 12
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In fact, to what is given explicitly, we must only add that as

+o0
the derivative with respect to 6 of the left hand side must be identically equal to
zero. Therefore

d .
W) & [ el il = [ epnl0)dn = &) = 0
where again the integrals are taken from — « to 4 «. It follows further that
the second derivative with respect to 6 of (43) must be again identically equal to
zero. Therefore, keeping in mind the definitions of ¢; and ¥;, we may write

@) L sl dnid, = [ @t Dplac|a)dn = 0
and thus
4®) 8w) = —6() = —of

The proof that the right hand side of (24) tends to a with n — o« will be
completed if we manage to reduce the integral of (42) over the region s, to the
integral (27). This is easily done by substituting

47 T =

u
o1V n

(48) y = v + not — roa U/ o)
o/ n(l — 19)

Thus, if the coefficient M in (26) and (40) satisfies the condition (27), then the
value of the integral of G, in (41) is permanently equal to a and this means
that the right hand side of (33) tendsto a as n — «.

Denote by p.(u, v) the elementary probability law of u, and v,. It will be
noticed that, whatever s in S

(49) P{D, es} = // Pa(u, v) du dy

and that consequently in the course of the above discussion we have proved
that, whatever ¢ > 0, there exists a sufficiently large number N, such that
n > N, implies

(50) ‘ / /: (pn(u, v) — Go) dudy| < e
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whatever may be the region s in 8. We shall now use this circumstance to
prove that, when n — o, the right hand side of (34) tends to zero. It will be
noticed first that

(51) / [B”(Z 0:) p(E,) dzy - - - dz, = //0 ©*paly, v) dudy

for k = 1, 2. Further

(52) // W pa(u, v) dudy < // W pn(u, v) dudv = net
80 S

Using the inequality of Schwartz,” we may write
Ivl-ﬁ / / u(pa(u, v) — G,) dudz

_W<// u* | palu, v) — G, ]dudv// | Dalu, v) — ldudv)

Now, it is easy to calculate that

(54) / / 2| pola, ) — Go | dudy < 2no?
L1}

On the other hand, if = is so large that (50) holds good for any region s in S and
s, and s_ denote the two parts of s, where p.(u, v) — G, is respectively positive
and negative, then

05 [ [ 1pwy0) = Guldudo = [ [ outas ) = G2 dude

- / / (Palu, v) — G)dudy < 2e
and it follows that, for such large values of n,
(56) 1 / f u(pnlu, ) — Go) dudo| < 2017/

V) s

On the other hand, using the transformation (47) and (48), we find that

1 1 ol e 1 T |
57 // G,.dd=-———/ { *’_/ e*”d}dx
(57) a\Vn 8ou wa V 2r J-o e V2% JM—Nz? 4

and consequently is permanently equal to zero. As e is an arbitrarily small
number, it follows that

58) lim — / / upa(u, v) dudyv = lim ;/Lﬁ / ) E eip(B)dx, - dz, =0

n—00 '\/ n—»o Wy =1

which fulfills the proof of Proposition I.

(53)

(55)

5 See for example: S. Kaczmarz and H. Steinhaus, Theorie der Orthogonalreihen,
Warsaw, 1935, p. 10.
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ProrosiTioN II. If the conditions of Proposition I are satisfied but either
| 7| = 1 or ¥; is independent of x:, then the test of the hypothesis Ho which is un-
biased in the limit and which corresponds, to the level of significance a, is determined
by the sequence of critical regions W, , defined by the inequality

(59) El ¢¢| > )\Ul‘\/;l
where \ satisfies the equation
1 +A 42
60) —_ / e dr=1—
( V2w J *

Proor. We notice first that the condition |7 | = 1 and the equation (44)
imply

(/ @i ¥ + oD)p(a: | 6o) d:z:.o)2

(61)
= [ eiptalondn [ (o oo des = 0

or

[ e+ ol 09 a [ e+ ool o as
(62) ' = =A4#0

] ¢ p(x: | 8o) da; / o:(¥; + o)p(: | o) dus

and therefore
(63) / (@ + 01)* — Aei(¥: + o1)}p(x: | o) dzi = 0
(64) / {ou®: + 01) — Aei}p(zi| 60) dui = 0
and finally
(65) / (¥ + of — Ap)*p(zi| 80) dzs = 0

which means that at almost every value of z; for which p(z; | ) # 0,
(66) Y + o1 = Ag;

It follows that the inequality (10) in the definition 2 of the test which is
unbiased in the limit reduces to the following

; / [0 (X 0)*p(En|80) dzs - - - da

(67
Z:—l/“°/‘;(E‘Pizp(EnIOO)dxl'“dxn
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owing to (11), (12), (37) and (38). On the other hand, the inequality (59)
is equivalent to

(68) (e >a+b2 e

with @ = Msin and b = 0. Referring to the Lemma, we conclude that the
regions W, satisfy the condition (d) of the Definition 2. It remains to show
that they satisfy also the conditions (e¢) and (f). This immediately follows
from the theorem of Liapounoff® and the reasoning which we used above in
order to prove (58).

If ¥; does not depend on z; then, owing to (38) and (11), the inequality (10)
immediately reduces to (67) and the proof of Proposition II follows exactly
the same lines as before.

5. Limiting power function. To know the properties of a test undoubtedly
means to know (i) how frequently this particular test will reject the hypothesis
tested when it is in fact true and (ii) how frequently will it detect its falsehood
when it is wrong. The information of this kind is provided by the properties
of the so called power function of the test. This has been defined’ as follows.
Let wn be any critical region and, as formerly, P{E, ¢ w, | 6} the probability of
E, falling within w, as determined by a specified value of 6. If w, is fixed,
then P{E, e w, | 0} will be a function of § only. To emphasize this circumstance
we may introduce a new symbol, writing

(69) P{E.ew,| 0} = B(6 | wa}

which will mean that in the above formula w, is kept constant and 6 varied.,
The function B(6 | w,) thus defined is called the power function of the critical
region w, or that of the test based on w,. If w, corresponds to the level of
significance « and 6, is the value of 6 specified by the hypothesis tested Hy , then

(70) BB | wa) = o

and it will be noticed that this is the probability of rejecting Hy when it is in
fact true. As we reject Hy only in such cases when E, ¢ w,, the values of
B(8 | w,) corresponding to other values of 8 = 6, are equal to the probability of
detecting the falsehood of the hypothesis, Hy when 6 has any specified value
different from 6. The larger the value of 8(6 | w.) at a given 6, the greater
will be the ‘“‘detecting power” of the test, which justifies the name attached to
the function B(6 | w.). Until the present time the power function of only a few
tests has been studied and it follows that we know comparatively little of the
properties of the tests even if they are in frequent use. The first study of this
kind was concerned with the power function of the “Student’s’ test as applied
to the problem of one sample and there are three publications giving various

8 See for example Paul Lévy: Théorie de I’addition des variables aléatoires. Paris,
1937. Pp. 101-107.
7 J. Neyman and E. 8. Pearson: loc. cit., p. 9.
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numerical tables.® However, in these publications the term ‘‘power function”
does not appear yet. Apart from the joint paper already referred to where
the term ‘‘power function’’ was first defined, we may mention a few papers in
Biometrika, the most important of which seems to be that by 8. S. Wilks and
Catherine M. Thompson.” The purpose of studying the power function of any
test is to be able to answer the following three questions:
. (a) What should be the size of a sample in order to have a reasonable chance
of detecting the falsehood of the hypothesis tested, when the error in the pa-
rameters that it specifies has some stated value?

(b) If in some particular case a test failed to reject the hypothesis tested
(which, of course, does not mean that it is necessarily true), is it likely that the
error in 6, does not exceed some specified limit A?

(c¢) Two different tests corresponding to the same level of significance are
suggested for the same hypothesis Ho , which shall we use?

In this last case the answer is obvious—the one which gives the greater
chance of detecting the falsehood of the hypothesis tested in cases when it is
wrong. But to know this we must know the power functions of both tests.

For the above reasons it seems to be important to study the power function
of the test unbiased in the limit as defined above. It is obvious that, as in this
case the elementary probability laws are not specified, it is impossible to find
the actual explicit formula giving the power function. Therefore we shall
endeavour to find its limiting form. This will be done by means of the two
following theorems.

Consider an infinite sequence of situations

71) 81,8, -+ 8m,y---

In each of these situations we shall have to test the same hypothesis Ho con-
cerning the probability law p(z | 6) and specifying the value 6 of 6. The situa-
tions differ among themselves by the number of the X’s and by the hypotheses,
alternative to H, , which are considered. For the situation S, we shall denote
them by 7., and H,, respectively. We shall assume that lim n, = + « when
m — ». As to the hypothesis H,. , we shall assume that the value 6,, which it
ascribes to the parameter 6 is

¢
V N

8 (1) S. Kolodziejezyk: Sur 'erreur de la seconde catégorie dans le probléme de ‘‘Stu-
dent.”” C. R. Academie des Sciences, Paris, t. 197 (1933) p. 814.

(2) J. Neyman with co-opgration of K. Iwaszkiewicz and S. Kolodziejezyk: Statistical
Problems in Agricultural Experimentation. Suppl. Journ. Roy. Stat. Soc. Vol. II (1935)
pp. 107-180.

(3) J. Neyman and B. Tokarska: Errors of Second Kind in Testing ‘‘Student’s”” Hy-
pothesis. J. A. 8. A., Vol. 31 (1936) pp. 320-334.

9 8. S. Wilks and Catherine M. Thompson: The Sampling Distribution of the Criterion
Az , when the Hypothesis Tested is not true. Biometrika, Vol. XXIX (1937 ), pp. 124-132.

(72) 0 = 6o +
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where #, the standardized error in 6, , is kept constant. We shall assume that
in each situation S, we test the hypothesis Hy by means of the test unbiased in
the limit and corresponding to the level of significance «. The power function
of this test should be denoted by (6| %®,,,), but to simplify the notation we will
write simply Bn.(8). We shall be concerned with the value of this function
Bn(8n) at the point § = 6., and we shall prove the following proposition.

PropositioN III. If the third logarithmic derivative of p(x:|0) with
respect to 0 vs bounded

(73)

M‘ < C = constant,

and | r| < 1, then

: _ 1 ™ —e—vepz 1 ® —4y?
(74) hmmﬁ—quo'n) - -'\—/—_2:1r [oo {e \—/*fr N2 € dy dx

This proposition is analogous to that' concerning the “smooth” test for
goodness of fit. It could be used in the following manner.

When testing the hypothesis H, and using for the purpose a certain number n
of observations, we find ourselves in a situation which might be considered as
one of the sequence (71). If n is large, we may hope that the right hand side of
(74) will give a reasonable approximation to the actual value of the power
function corresponding to the value of 6 to be calculated from (72) by sub-
stituting in it n, = n.

Proor. Denote

0° log p(z:|6)

@) 908 = x:(6)
We may write

_"l‘..*_% 93x(8{)
(76) p(x; l 0,,,) = p(x‘. I 00)8\/;"—1 2nm e”mih_'

where 0; denotes some value intermediate between 6, and 6,.. Consequently,
taking into account (39), (47) and (48), we have

(77) P(En, |0n) = I_] p@:|6m) = P(En,, |80)(1 + en)e 1

where

(78) Z x(6:)
log (1 + €,) = '\/—— 0 2oy — 2+ ar) + 8 T

m

10 J, Neyman: ‘“‘Smooth” Test for Goodness of Fit. Skandinavisk Aktuarietidskrift,
(1937), p. 186.
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It is seen that, if m — « then e, tends to zero, uniformly in every bounded
region of the plane, S, of z and y. Denote by s any bounded region in S and by
Wa(s) a region in W, of which s is a transformation by means of the formulae
(39), (47) and (48). The probability of E,, falling within W.(s) is equal to
that of the point with coordinates z and y falling within s. The former of these
probabilities is represented by the integral of (77) over W..(s) and the latter
by the integral taken over s of the elementary probability law p.(z, ¥ | 6m) of
2 and ¥, corresponding to the value 6,, of 8. Owing to the formula (77) we may
write

(79) P, 41 0m) = P2, y | 0)(L + ma)e™

where, owing to (78), 7. tends uniformly to zero in s as m — «. Remembering
the connection between u,, v, and z, ¥ and also the inequality (56), which is
valid for sufficiently large values of n, we conclude that

1 e
(80) (@, y|00) = 5 0 4 Q.

where Q. has the property that, whatever be ¢ > 0, for sufficiently large values
of m

(81) ]//: Q,,.dxdyl <e

where s is any bounded region in S. It follows that
1 m —4{(z—00 rdo1—340207
(82)  pale, y]6n) = LI NI o QeI 4y )

and that therefore, whatever be the bounded region s

(83) lim f/ Pz, y|0n) dzdy = 2_17; j[ e-—ll(z—on)?+yﬁldxdy

It is known however, that whenever an integral probability law tends to a
fixed limit uniformly within any bounded region, then it must do so within the
whole space. It follows therefore that the formula (83) is valid for any region s
whether bounded or not. But

89 pu0) = [ [ peaylodsdy
y>M—Nz?
and it follows that
(85) lim B (0 ) = -1_ - {e—l(z—vSnﬂ _1_ /-9-«0 e-—hnd }d:c
o P o ) Vor Juwa© D

which completes the proof of Proposition III.
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It is important to be clear about the exact meaning of the Proposition III.
Suppose for example that in a particular case # = ¢; = 1 and consider a sequence
of situations in which
[n;=100, ng = 100%, oo Ny = 1007, ..

6, = 6o + '1’ 6 = 60 + ‘01) vor O =00+ ('l)m} e

If this were the case, then the Proposition III would be applicable and we
could affirm that the sequence of the power functions B.(6), each considered
at the appropriate point 6., , has a limit, represented by the double integral in
the right hand side of (85) with 9oy = 1. Accordingly, if we were interested
in the value of the power function at 6’ = 6, 4 -02 with » = 10000 and 6, = 1,
then we could hope to obtain its approximate value calculating the double
integral in (85) with
(87) 8= (0 — O)\n =2

These are legitimate conclusions. However, it would be wrong to consider as
proved that, if in the same example we increase the size of n to n’ = 40000,
then the value of the power function at 8 = ¢’ will be represented by its limit
(85) with ¢ = 4 and with about the same accuracy as previously. It is just
possible that to attain the same accuracy at & = 4 a value of n greater than
n’ will be needed. This of course would imply a corresponding change in 6'.

ProrositioN IV. If the conditions of Proposition III are satisfied but
either | r | = 1 or ¥, is independent of x: , then

. 1 [ jemsene
88 lim ,,.0,,.=1——_f g iede0? g
(38) lim po(en) =1 = = [

The proof of this proposition is quite analogous to that of Proposition III.

(86)

6. Examples.
ExamprE 1. Consider the case where it is known for certain that

1_ 1
w1+ (z —6)?
but where the actual value of 6 is doubtful and it is desired to test the hypothesis
H, that § = 6, = 0, the alternative possibilities being both § < 0 and 0 < 6.

Before applying the test unbiased in the limit it is natural to try the unbiased
test of type A. The critical region wo of this test is defined by the inequality

(90) i‘l’s+(§¢i)22.a+b‘z:;w

=

(89) p(z:|6) = for —0 <z < ®

where the constants a and b must be found so as to satisfy the conditions

(91) // p(Enloo)dx1-~-d$n=a
wo

(92) f oo [ ip (B8 das - den = 0

wo t=1
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The technical difficulties involved in this problem are considerable and this
may induce us to apply the test unbiased in the limit. Following the above
theory we have

223.'
93 p=
(93) Al g
4zt 2
94 v, = LA
) (1 +2) 144t
(95) i(6) = 16(z; — 6)° 12(z; — 6)

T+ @=0Y T+ @—0

It is easily seen that all the limiting conditions of the theory are fulfilled and
that, in particular | x;(8) | cannot exceed a fixed limit, approximately equal to 3.
We have further

%) S = 6wy = & [ an -y = ot
Similarly

@) 8%+ o) = § = o}

©9) &) = 0 = 7

It follows that the regions %, , the sequence of which determines the test
which is unbiased in the limit, are defined by the inequality

= 1 = X; 2 5’; n
—_ > w2
(99) 42( +x2)2 2§1+x3+4<§ n ?>_M T " 3

where M should be calculated so as to satisfy (27) with

(100) N = /‘/ 2%7;

In order to test the hypothesis Hy, we have therefore to observe the values
Z,%, --- T, and to substitute them into the left hand side of (99). If the
inequality is satisfied then the hypothesis should be rejected.

Approximate values of the power function could be obtained from the right
hand side of (85) with

(101) day = 0 g

ExampLe II. Let us assume as given that
{p(xelﬁ) = 0e " for0 <

102
(102) =0 elsewhere
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with 6 > 0, the hypothesis to test being that § = 6, = 1, with the alternatives
both 6 < 1and 6 > 1.

In this particular example the unbiased test of type A is easily found" and
moreover” it has also the property of being of type A,. But this circumstance
does not diminish the illustrative character of the example. We have

(103) Qi = 1 — T;
(104) ¥; = —1 = constant

It follows that the regions forming the test which is unbiased in the limit are
determined by the inequality (59). We have further

(105) o = &(p1) = fo (1 =2 "dr =1
and the inequality (59) reduces to

i 1 -z)

i=1

> A7

with X\ taken from the tables of the normal integral according to (60) and to the
chosen value . Approximate values of the power function can be calculated
from, say

(106)

1 e
(107) Bo(®) =1— T /_ e dz
with
(108) ¢ =(—-Dvn

The simplicity of the example considered permits to calculate the exact
power function of the test and it may be interesting to obtain its limit 8,(#) in
another and a more direct way. Write

(109) 2=y
pel
It is known that, if the probability law of each of the X’s is given by (102)
then the probability law of y is
0» yn—l oy
0) = ————e for 0 <
(110) p(y|6) =1 y

=0 otherwise

11 J, Neyman and E. S. Pearson, loc. cit. p. 18 et seq.
12 J, Neyman: Estimation statistique traitée comme un probléme de probabilité class-
ique. Series Actualités scientifiques et industriclles. Paris, (1938). (In the press.)
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It follows that the exact form of the power function corresponding to the test
(106) is

_ on n4+A/n al —
(111) B(ol’wn) =1- (n—__—mﬁ_)‘ﬁ Yy ‘e vydy

For values of n about 100 or more and for the values of # close to unity the
distribution of say

z=02x5—n=0y—n

Vi Va

is practically normal with mean equal to zero and S.D. equal to unity. It
follows that the integral in the right hand side of (111) is practically equal to the
normal integral taken within the limits which are obtained by substituting in
(112) the limits of y in (111). After some easy transformation we have, with a
considerable accuracy

(112)

1 (0= /n+20 et
n) = e — ‘ d
(1 13) B(o l w ) 1 ‘\/21!' /:0—!) n—\@ ¢ a

or, after some further transformations and teking into account (108)
1 /+x(1+o/\/'£) JE—
V21 JA(401/7)

and it is seen that, when ¢ is fixed and n indefinitely increases, then B(6 | ®,)
does tend to B, ().

(114) gO|®w,) =1 —
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