ON THE UNBIASED CHARACTER OF LIKELIHOOD-RATIO TESTS
FOR INDEPENDENCE IN NORMAL SYSTEMS

By JosepH F. DaLy

1. Introduction. In the statistical interpretation of experimental data, the
basic assumption is, of course, that we are dealing with a sample from a statistical
population, the elements of which are characterized by the values of a number of
random variables ', - - - , 2°. But in many cases we are in a position to assume
even more, namely, that the population has an elementary probability law
f(z!, ...,z 61, .-, 64), where the functional form of f(z, 6) is definitely
specified, although the parameters 6; , - - - , 6, are to be left free for the moment
to have values corresponding to any point of a set & in an h-dimensional space.

Under this assumption, the problem of obtaining from the data further infor-
mation about the hypothetical distribution law f(z, 6) is considerably simplified.
For it is then equivalent to that of deciding whether or not the data support the
hypothesis that the population values of the 6’s correspond to a point in a certain
subset w of 2. For example, we may have reason to believe that the population
K has a distribution law of the form

Ay P T ZAsiEte) @imal)
f(xl, x2§ al, (12, Ay, A, Ap) = | 4] e M
27
Here the set @ is composed of all parameter points (@', - - - , Ag) for which the

matrix || 4;; || (7, 7 = 1, 2) is positive definite and for which — « < a' < .
We may wish to decide, on the basis of N independent observations (zh , 22)
drawn from K, whether A;; has the value zero for the population in question,
without concerning ourselves at all about the values of the remaining param-
eters; in other words, we may wish to test the hypothesis H that the parameter
point corresponding to K lies in that subset of € for which 4;2 = 0. One way to
test this hypothesis is to select some (measurable) function g(z) whose value can
be determined from the data, say

() = agl (zo — &) (% — 2
N [Ze-or][ e ]

a=1

Now g(x) is itself a random variable, so that it has a distribution law of its own

when its constituent 2’s are drawn from any particular population K. Suppose

then we choose a set of values of g(z), say S, such that the probability is only .05

that g(z) will lie in the set S when the z’s arc drawn independently from a

population K for which the above hypothesis H is true. Ordinarily we would
1
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2 JOSEPH F. DALY

take S to be of the form | g(z) | > go , and the test would then reject H at the .05
probability level if the computed value of g(z) came out too large. But for all
that has been said so far, we are perfectly free to choose a different critical
region S, and even a different function g(x). The essential elements of this
type of test are then a critical region S, a function of the data g, and a probability
level ¢, such that the probability is e = .05, say, that ¢ C S when H is true; in
employing the test we reject H at the given probability level whenever the
sample value of g falls in the critical region.

By the very nature of the problem, any inferences we make from a sample are
subject to possible error. In the kind of test under consideration, the only error
we can commit, strictly speaking, is that of rejecting H when it is true (an error of
Type I in the terminology of Neyman and Pearsen [9]). The risk of such an
error is thus known in advance; for if we use the test consistently at, say, the .05
level, we know that the probability is .05 that we shall be led to reject a given
hypothesis when it is true. On the other hand, it is quite conceivable that the
test may be even less likely to reject H when it is false, or more precisely, when
the true 6’s correspond to a point of @ which is not inw. In this event the test is
said to be biased. Let us make this term more definite by proposing the follow-
ing definitions:

DeriNiTION 1. A test ¢s said to be completely unbiased if it has the property
that for any probability level ¢ (0 < ¢ < 1) the probability of rejecting H s greater
when the 6’s correspond to a point of @ — w than when they correspond to a point of w.

DerFinNiTION II. A fest is said to be locally unbiased if the set Q contains a
neighborhood U of w such that for any probability level e (0 < e < 1) the probability
of rejecting H is greater when the parameter values correspond to a point of U — w
than when they correspond to a point of w.

It is the purpose of this paper to consider the question of bias in connection
with the Neyman-Pearson method of likelihood ratios [8] as applied to the
testing of what may well be called hypotheses of independence in multivariate
normal populations. The likelihood ratio method is undoubtedly a very familiar
one, since the vast majority of tests in present statistical practice are based on
this method. But for the sake of completeness we shall outline it briefly. Let
the distribution law of the population K be of the form f(z', - . , z*; 6;, - - . ,6,)
where the 6’s may correspond to any point in a set €, and let the hypothesis H
to be tested be that the 6’s actually belong to the subset w of 2. Form the
likelihood function

N
Py(z;0) = Hlf(xi,‘---,x'ﬁ.;@x, )

i.e., the elementary probability law of a sample of N elements drawn inde-
pendently from K. Denote by Py(z) the maximum of Py for fixed z where the
6’s are allowed to range over Q; and denote by Px(x) the corresponding maximum
value when the 6’s are restricted to w. The test criterion is then

= P°@)

A= =8
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Evidently A depends only on the observable quantities z&, and has the range
0 < X < 1, with a definite probability law depending on that of the basic popula-
tion K. In this method the critical region S is taken to be 0 < XA < A, where
Ae is so chosen that the probability P{A < A} is e when the parameters of K
correspond to a point in w. (It may be noted here that in all the cases with
which we shall have to deal the probability that A lies in S when H is true is
independent of the particular values of the 6’s as long as they correspond to a
point of w.) The reason for taking the critical region to be of the form 0 < A <
Ae and not, say, mM<a<NMord. <A <1 may become clearer when we examine
the resulting tests for bias.

The recent work of Neyman and Pearson [10] has led them to lay considerable
stress on the importance of unbiased tests. And though their attention has been
directed mainly to the broader outlines of the theory of testing hypotheses,
they have stimulated other writers to study particular tests of great practical
importance. P. C. Tang [11] has obtained the general sampling distribution of
1 — A" for what we shall call the regression problem with one dependent variate,
and has given tables for P{A < A.}—essentially proving the unbiased character
of the test—which should be extremely useful. His article also contains an
excellent discussion of the manner in which this test is related to the well known
tests of linear hypotheses [7] and to the ordinary analysis of variance. P. L.
Hsu [6] has shown that this same distribution is fundamental in the study of
Hotelling’s generalized T test [5] (a special but important case of what we shall
call the general regression problem), and has proved that (locally) this test is
not only unbiased but “most powerful” in a certain sense. On the other hand,
it is not true that all likelihood ratio tests are unbiased [2]. Consequently, the
knowledge that in a rather wide class of problems which arise in normal sampling
theory the method of likelihood ratios furnishes tests which are either locally or
completely unbiased would seem to be of some value, even when the exact
sampling distribution of the criterion is too complicated to tabulate.

2. The regression problem with one dependent variate. Suppose that y is

known to be normally distributed about a linear function of the fixed variables

z', ..., 2’, so that the family of populations under consideration is characterized

by a distribution function of the form

e y-—éb;z‘ ?
@D Sl o) = ey =R

where the set of admissible values of ¢ and the b’s is
w0<’ <o, —ob<w,

Let H be the hypothesis that the point (¢%, by, - - - , b,) lies in the subset of @
defined by

we bq+l=bq+2= ) =bf=0.
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The likelihood ratio appropriate to testing the hypothesis H on the basis of N
(N > r) independent observations drawn from such a population is then

N LI 2)iN
Z(ya—zbix2>

_ Ja=1 i=1
A= N q B 2 )
70
Z Ya — Z bkxa>
a=1 k=1

with the understanding that the values of the fixed variables Th, -, T asso-
ciated with the a-th observation have been so chosen that the matrix || a” || =

Zxaxa

a=1

is positive definite. (The expression in the numerator is the mini-

mum of Z (ya Z bizh for variations of the b’s over @, while the denomina-

a=1 =1
tor contains the corresponding minimum for variations of the b’s over w).
In order to show that the test is unbiased, we shall make use of the exact
sampling distribution of the quantity

£=1— ",

first pubhshed by P. C* Tang [11]. Writing || A, || for the inverse of the
matrix || @ || composed of the first ¢ rows and columns of || a “||, let us put

T q
G = L Z (a“ - E a"A,,;,a“) bkbz.

20? k,i=g+1 gh=1

Since the critical region 0 < A < A, corresponds to the region 1 — NIV — g <
£ < 1, it can then be shown that the probability of rejecting H when the popula-
tion parameters have specified values o, b', ..., b is expressed by the series

e ) gj' 1 E#(r—q)+v—1(1 _ E)i(N—r)—I.
=0 vl Je BI30r— @) + v, (N — 1))

(22) 1@, &) = ds,

where

T'(w)T() f g o1
B = = 1— de.
(u, v) T(a 1) | (1—2)""dz
Now G is a positive definite quadratic form in the parameters b, ... b, s0
that it vanishes if and only if the hypothesis is true. And if 0 < e < 1, then
I(G, &) is a monotone increasing-function of G. For by differentiating (2.2)
we obtain

1(G g) =¢° »@

6 v=0 V'

el Eé(r—q)JrV(l )A}(N—r)*l
f { Bor—q +v+1, 3N —1)
Yr—g)tv—1r1 __ g\ l(N——1
_ & (-9 } .
B[3(r — ¢) +», 3(N —1)]
And from a property of incomplete Beta functions, which we shall demonstrate

in the next section, it follows that each term in the series (2.3) is positive. Ac-
cordingly we have

2.3)




LIKELIHOOD-RATIO TESTS FOR INDEPENDENCE 5

TuroreM 1. The likelihood ratio test for the hypothesis that in a population of

type (2.1) certain of the regression coefficients are zero, i.e., the hypothesis that y s

independent of the fized variables 21, - - . , a', is completely unbiased.

Wilks [15] has noted that the ordinary analysis of variance and covariance
amounts essentially to testing hypotheses of this nature by means of the function

1 — ¥
¢ = A2V

Consequently such tests are also completely unbiased, since the region of rejec-
tion is then taken to be of the form ¢ > ¢. .

3. An inequality relating to incomplete Beta functions. Let us write
1
B(u, v;t) = f 271 —2)" Vde o<t
t

Now,

! o »™1 1
f 271 —2)°de = ZM] + f’_f 21 — 2"z
u u Ji

t t
The integrated term on the right is non-positive, so that

(3.1) Bmv+h0§%Bw+Lm0

in which the equality holds if and only if ¢ = O or ¢t = 1. Again, since
zu(l _ z)v—l + zu—l(l _ z)v = zu—l(l _ z)v—l’

we have

(3.2) B(u + 1,v;t) + B(u,v + 1;t) = B(u, v; i).
Combining these results, we find that

(3.3) LBt 1,00) 2 Blu,050)

with equality only when ¢ = Oor¢ = 1. Hence we have
Lemma 1: If0 <t < 1, then
Blu 4+ 1,v;t) _ B(u,v;t)
B(u + 1, v) B(u,v)

4. The multiple correlation coefficient. Suppose the distribution law of the
underlying population is known to be of the form

3
1 t) t+1 my IBii| —B;i(zt—a’—CizP) (zi—ai—Ciz9)
(41) f(x,...’;clx ’...,x)_ve i) p3 [ i
The indices appearing in this expression take the values ¢, j = 1, ---, t and

p,g=1t+1, ..., m The summation convention of repeated indices will be
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used, for example, . C4Lz”will be denoted by C5z”. We shall also have occa-
p==t+1

sion to use indices r, s with the ranger, s = 1, .. ., m. The set of possible values
of the a’s, B’s, and C’s is

Q: || B:; || positive definite; — © < a' < w;—0 < C} < .

We shall consider the A test for the hypothesis H that z' is independent of the
remaining variables 2%, - .. , 2™, i.e., that the parameters belong to that subset of
Q defined by

w: By =0, k=2 ...,0; C;:O

N
Let us write o™ = D (z, — &) (z% — '), and assume that the values of the

a=]
fixed variables zz have been so selected that the matrix ||»™ || is positive defi-
nite. The likelihood ratio can then be expressed in the form

\ = Ivrel iN _ (1 _ R‘Z))N
- oy - ’

where %y, is the complement of " in the determinant | o™ |. If N > m + 1,
the general sampling distribution of R® (the multiple correlation coefficient
between z' and m — 1 other variates), for this case in which % ... , z* are sub-
ject to sampling variation and the remainder are fixed, is

(1 _ p2)}(N—l) e—iyz(l _ R2)§(N—m)—l(R2)}(m—l)—l

F(RY) d(RY) =
gy A THE — m)]
. y i Za: %(y2)“(1 _ pz)“(pz)v(R2)“+vF2[%(N — 1) +u+ V] d(Rz)
it =0 wWITBW — 1) 4+ pJT50m — 1) + p + 4] ’
where
B,',' i 5 -
—p= Bl R, 1B = B
11

This distribution was first obtained by Wilks [13], although Fisher [3] had
previously treated the two extreme cases in which (1) all independent variables
are subject to sampling fluctuation, and (2) all independent variables are fixed.

To simplify the presentation, let us put s = p’, § = 3y°and R = R’, and note
that § = Oif and only if C, = 0 (p = t + 1, - .-, m) while 5 = 0 if and only if
Byi=0k=2,...,t),s0thatg = 5 = 0 means that the hypothesis H is true.
On any alternative hypothesis, one or the other or both of these quantities will
be positive. Let the region of rejection be taken to be

R.<R<L1,
which corresponds to
0< A< (1 — Ry
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The probability of rejecting H is then

5 i R i3 3 7 S\ N—1)+ + »]
T ) = ¢ 7 1 — )i @—D+uP T3 ( B
5, 9, R) = e ‘Z‘%g}#!( p) A TR = 1)+ 4]
1 53 (m—1)+u+v—1 _ HN—m)—1 _
X f IR {1 R)l dR.
#Blz(m — 1) + p + », (N — m)]
We shall show that I(5, §, R.) is a strictly monotone increasing function of 5
for each §, and that I(0, 7, R.) is a strictly monotone increasing function of .

(4.4)

ol
First consider 5}_‘) . We can write (4.4) in the form

v

- _ s 1 S~ P (1 \hv—D+u
I(P, Y, Re) € ; I-'- [i_(—N_— 1)‘_+ #] go | (]- P) Pu,vy

where
Bl3(m — 1) + p + », 3(N — m); R.]

our = T = D 4w e = T 73 = )

Then, formally,

a 0 =V _
(S 2a-p ‘““%)

0p \,=o0 ¥

o _y 1
ZO vp — piuh _ Z p (1 YVIVTLN — 1) + e,

v=0 V

Taking out the factor (1 — )™ ™! we have left

—1 0
vp’ '
E T e T 2y ,w» Zj N — 1) 4 pleus
<

v=0

I
ol"ls

i')“ {‘Pu,v+1 - [%(N - 1) + M + V]¢unV}‘

—o v!
And the expression ¢u+1 — [3(N — 1) + u + v]e,,, is the same as

) IB Bm — 1) 4+ p+v+1, 3N —m), R]
TEW =D 4wt N\ Sy = 1w b 1, 3V = m)]

B['lf(m - 1) + M + v, %(N - m); Re]\
B[i(m — 1) + 4 +v, 3V — m)] |

and is therefore positive, by Lemma 1. Consequently

i} -
— I(p, 4 >
p I(Py Y, Re) = 0:

with equality holding only if 5 = 1, or if the critical region is taken as the whole
interval or the null set.
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0 —
We have yet to investigate a—g I1(0,7, R.). In thiscase (4.4) becomes

g i 7 Bli(m — 1) + 4, §(N —m), R]
(4.5 10,4, RB) = 7 > L. 22 12 ) el
) v & ul BEm— 1D+ w3 = m)]
(Note that this agrees with (2.2) if we make use of the relations r = m, ¢ = 1,
and B" = 25°.) We then obtain

B o g Blim — 1) + u+ 1, 5N — m); Rl
6171(0’y’R‘)”e Z_'{ Bi(m — 1) + p + 1, 5(N — m)]

u=0 p!
_B3(m — 1) + 4, 3(N —m); RJ}
B[3(m — 1) + 4, 3(N — m)]

which the lemma shows to be positive when 0 < R, < 1.

This concludes the proof of

TueoreM II. If the underlying population has a distribution law of the form
(4.1), then the likelihood ratio test for the hypothesis that ' is independent of 2°, - - -,
a™, where ', ..., 2™ are fizred and 27, - - - , x' are subject to sampling variation,
is completely unbiased.

5. Mutual independence of several sets of random variables." Let the dis-
tribution law of the m-variate population be of the form

| Bii ' 5 (eimat) imai
(5.1) W (4 1 .

Here Qis the set || Bi; || positive definite; — o < a’ < ». Suppose we wish to

test the hypothesis H, that the variates {z', .- , ™}, ..., {™'*, ... | 2™}
are mutually independent in sets [14], where 0 = my < my < -+ < mp = m.
Then the w set is that defined by

Bl = I Bii [l + -+ + 1B [l = I Bull + -~ + | Bo ],

that is, we have B;; = 0 unless the indices ¢ and j both relate to the same set of
variates.
Associated with the population of random samples Oy (N > m + 1) drawn
from a universe characterized by (5.1), we have the distribution function
N
| B 1Y = 2P teimen Gl

a=1

P(xyB: a) =

W%N m

The maximum of P with respect to variations of the parameters B;;, a’ in  is

. iNm
Py = | |_*N (%;) e’“’,

! In this and in subsequent sections an index occurring both above and below indicates
summation in accordance with the usual convention.
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where
.. N . . . .
W = 3 (@h — 2k — 7).

a=1

And the maximum when the parameters are restricted to o is

iNm
Po= - o™ (%r) o,

where v, stands for the determinant of the #’s connected with the u-th set of z’s.
Thus the appropriate likelihood-ratio is given by

)\2/ N o_ l”ijl
d Uy ooo vp'
It is easy to see that the value of A; is unaltered if we replace z* — a° by z°,
so that we can express the probability that A; will lie between 0 and A, in the form
g -
iN - Bijzizl
I(B,\o) =—B—'——f e *7! dxy - .. daiy.
wm i,
Furthermore, A; is invariant under the operation of replacing any x by a linear
combination of 2’s belonging to the same set. And since the assumption that
|| Bij||is positive definite implies that the matrices || B;,j, || have the same

property, we can transform the ’s in each set among themselves by orthogonal

transformations in such a way as to reduce each of the expressions
1Ty

Bt,,,-“:v

to sums of squares. Thus we have

N
B*iN - g B;ixiz.{; .
(5.2) IB,N) = G J, ¢ day - .- day = I(B*\),
where
(5.3) B:'k,.i, = a?tBh,.k.a?: (s By Gy bow = Myumr + 1, o+, my),
(5.4) B, =0 o # Ja,

and the subscripts on the indices indicate the sets of values over which they
range; e.g., 72 runs over the numbers corresponding to the columns of the matrix
|| B:||. From (5.3) and (5.4) it is clear that || B}; || reduces to a diagonal
matrix when H is true.

In order to show that the test is locally unbiased, we may consider the deriva-
tives

0 9%
* —_— *
(an“,-, I(B ! ke))o’ (aB:‘"i,aB:,kr I(B ! )‘E))O’ (“ * i * T)
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for the B*'s are linear functions of the B’s; and the positive definiteness of one
matrix of second partials implies that of the other. We have at once

aB* 62 B*
(aB'#71> 0’ (aB u'v thdkf)o _‘ 0’ (u # v’ 7 ;é T)

unless the second derivative is taken twice with respect to the same B*. Thus

BI(B* e) *;N _aZ)lB”ozazg
zirzlze dzx,
1r*”"‘ A<A, a—l

1”1.

where the By indicates that the B’s have the dlagonal form associated with H.
And since whenever the pomt i, aq; ,+++,%y ;< , Ty is in the region
X < A, so also is the point i, -+ ; —i, -+, —2k; --- , 7w it follows that

aBz,.:, I(Bo ,A) =0, (u 5 »).

Similar considerations show that the non-repeated second derivatives

52 B*iN N - “ N b b a? BY 7z
33,“,,83:,1;, I(B7, \) = 4 wivm j;<x. (agl e xa)<§ i ) dz
must vanish.

Finally, we must show that the repeated second derivatives are positive when
evaluated at a point in w, except of course in the trivial cases A, = 0, A, = 1,
when they must be zero. In order to do this, we shall make use of the fact that
the ¢’s which go to make up A have the Wishart distribution [17]

BQ(N—I)

w0 T {3V — )]
t=]

-U“N—m)_l e_B""”” dvu 0. dvmm.

(5.5)

(Because of the relation v* = v” only m(m 4 1) of the v’s appear as differen-
tials). It will be useful to have the notation

Bi(N—l)

GB,N —1,m) = — - ,
=) T P3NV — 9)]
[

V(B, N — 1’ m) — v!(N—m)—le_B‘.i”;,'
With the aid of (5.5) we shall now compute the moments

E[(sz)h], h = 01,...,
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for the case in which the matrix || B;; || has the form

By +++ Bim, 0 +.. 0B,

0
Bug -+ Bum, 0 oo 0
(5.6) 0 ... 0 ,
(:) : | Bl
B0 .-« 0

where || B || stands for || By || 4+ -+ 4 || B, ||, and all other B’s, except those
indicated, are zero. Let us designate by (#) the set of v’ which correspond to
the rows and columns of B, and by (v — 7) the remaining v’'s. We then remark
that the result of integrating (5.5) with respect to the »’s in (v — ) is to reduce
it to the corresponding distribution for the variables in the set 7, thus:

5 GBN—Lm f VB, N — 1, m)d(v — )

=GB,N—-1,m —m)V(B,N — 1,m — my)

?

where || By || is the inverse of the matrix obtained by inverting || B:; ||, and
striking out the first m; rows and columns, that is

B* = B, kl=m+1, ... ,m).
Then,

vh
6B, N = 1,m) [ 55 VBN — 1,m)d — 9)

h
. vp
can be written as

G(B,N — 1, m)
G(B,N — 1+ 2k, m)

G(B,N = 14 2h,m) [o5" .. 05"

(5.8) X V(B,N —1+4 2h,m)d(v — 9)

__ GB,N-1,m)
G(B,N — 1+ 2k, m)

GB,N — 1+ 2h,m — my)

X v 0" V(B,N — 1 + 2h, m — my).
It can be seen from (5.6) that
Bl =Bl 4+ -+ FIBoal| + || Bs ]

since of all the rows and columns of || B;; || which are involved in || B || it is
only the last in which a non zero element appears outside of the blocks || Bz ||,
«++, || Bpl|]. Consequently, the v’s corresponding to the determinantsvz, - - - ,
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v, are independently distributed, so that if in (5.8) we integrate out all the
remaining v’s but these, we shall be left with a product of factors

GB,N —1,m) 7 GB,N~142hk)
G(B) N-1+ Zh) m) t=2 G(BH N - 1; kt)
X G(Bt, N - 1, kt)v?hV(Bt, N -1 + 2h, k;)

GB,, N — 142k 5 b
1 -G(B,, N — 1,k)03"V(B,, N — 1 + 2h, k),
X G(B,,,N— 1 kp) ( ? r)v ( ? + p)

where k,, stands for the order of || B, || . And this, when integrated with respect
to the v’'sin vy, - - - , v, , yields
GB,N—1,m) FTGB,N—1+2hk),  GBy N —1+2hk)
G(B! N-1+ 2h) m) t=2 G(Bli N - 1, kt) G(Bp, N — 1, kp) ’

which, because of the definition of the G’s, reduces to

TRV — @) + k] {4 ke T3V — )] —h ph B Bh
U=tgw—ar Ul g —gsm X BB BBy

Denoting the product of ratios of I'’s by K , and recalling the form of || By; ||,
we therefore have

[~ h
(5.9) Bl > ,.] - K.B"B™
| V2 - Up
with
By ««. By, 0 ... 0By,
0
’ — Bmll . Bm.lml 0 0
1Br|| = | Bt oo B
; 12,1
B0 ... 0

But it is not difficult to see that under the condition (5.6), the matrix || B, ||
is also the inverse of the matrix obtained by striking out the first m rows and
columns in the inverse of || B’ || . Making use of this relation, we can apply the
Jacobi theorem to (5.9), and put that expression in the form

Bl 21— kB
vh vh - rDO1

g e Up

where || B || is the matrix in the upper left hand corner of || B’ ||, namely
| By ] -
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Let the subscript 8 on a B stand for the result of replacing B;,;, by Bi,;, +
Bii,- For sufficiently small values of the §’s the matrix || Bijg || will still be
positive definite, so that we shall have

BY¥-D P (W)l —Bisg0ii N
: f 2 X WP Yy = KhBl—,g,

_ kil . Vg oeo ¥
Ll § Sy ETO ) R
=1
which we can put in the form
) v* —m)—1 —Bisapii K,
(5.10) Kf AT TR gy = A
. Ug e v}; B;bﬂBé(N 1)

Wilks [13] has shown how to generate moments of determinants by the device
of replacing B:,;, by Bii, + £i,65,, and integrating with respect to the £’s from
— o to . Applying this process 2h times to the left hand side of (5.10) gives

h
t1h y] v _
K f(v v) V(Bs, N — 1, m) db,

1+ Up

which when multiplied by = “*B*¥ yields
B[N
when the 8’s are set equal to zero.

To obtain the value of this expression, we may perform the same operations
on the right hand side of (5.10). But before so doing, we shall put Bs in a
more convenient form. We have

Bs = Bis-B — B},.BB™™.Bj},

where B™™ is the inverse element of B in || B ||, and Bij' is the cofactor of

Bijg in By, the result being obtained by expanding Bg according to minors of
the first row and first column. Similarly,

(5.11) B =B,.B— B:,.BB™™.B".
From (5.11) we have
B{ll

B _ 2 pmm
B——j---Bp—l_BIMB '”B_lr

so that if we put B-Bi" ... B;' = A, we find that
n ny
By = Bm-B{l - B%mBm.Pl.f}Tl.&e}

B: By Bg
_ B B’ll
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Thus the result of multiplying (5.10) through by B!**™ (where no g's are
substituted in this determinant) can be put in the form

B (N- Bl B/u —3(N—1) i
(5.12 <___;~__> {1._ bl § QY| e} B
) B, ... B, A ¥

Expanding the expression in curled brackets, we get

1= piov-n 52 TEWN = 1) + 9] 5y (Bis'Y potsv—n+hin »
A Bi v§=;) VIT[3(N — 1)] B E{TI Bis 1—a).

If we let Bug, stand for the result of replacing By by By — tin Byg, we can write
this as

A%(N—‘l) i P['%(ZV; - 1) + V] (1 _ A)V(BIII)—vBi(N—l)+v
(5.13) = vIT[3(N — 1)]

% 3NV — 1) 4 &) " Brl-D+al
TEN = 1) + h + o ¥
the derivatives being evaluated at ¢t = 0.
Now Wilks’ results show that the operation of introducing B,;, + £:,£;, into
Biyg: to replace B;,;, and integrating with respect to the &’s, when repeated 2h
times on Biad ¥ produces

7I_mlhB—i(N-l) ml I‘[%(N - 'l)]
Yo LTEW —9) F A

when the @’s are finally sct equal to zero. Reversing the order of summation,
differentiation and integration in (5.13), we thus obtain

L ﬁ TN =91 e Z”: rEWV —1) + 4]

=1 T[3(V — 7)) + A] =0 WITR(N — 1)]

TN — 1) 4+ Al <3v B—am-n) .
0

NHEDEYETA

(5.14)
X (1 _ A)V(BI/II)—VBi(Nfl)+v

Now

3 posowv-Y _ TBWNV — 1) + 9] iy petiv-n4o1
(G 25t), = M 2oy,

so that (5.14) becomes

S TRV —9) + k) SN = 1)]

I — 1) + kTR — 1) + 5]
BV =D+ h+s TEW- D]

L ﬁ TN — 7)) A= i 3N — 1)]

xu—M}
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From this it appears that the h-th moment of A}'" is given by

o T[N —12) + ] TN —9)]
s = T2 T ,le_u(N oy
Jv—1 T[Z(N — 1) 4+ 4]
(5.15) X A¥ )Z(:)(I—A) B =T

T[N —1) + 4] .I‘[%(N —1) + A
BN -1 +h+s] THNV-1] -

A considerable amount of cancellation will take place in (5.15), for m is greater
than any k.. Suppose the largest k. is k... Then we can cancel its product
into the first one, with the assurance that there will be at least one factor

WV - 1)]
PE(N —1) + 4] °

to cancel the corresponding factor under the summation sign. Hence we have

X

(5.16)

uvm _ Tr TN —9) + 1], ¥, TRBW —9)]
o = I Sgw—ar W N = w
o & 0 DO = D 4] TBO = 1) 4]
XA R = A =] TG =1 £ h 5]

where II’ indicates that ¢’ has been omitted, and II" indicates that one factor
(5.16) has been cancelled. Then we can take out the factor ¢ = m in the first
product, putting it under the summation sign, where, together with the final
factor in each term of the sum, it gives rise to the combination

(6.17)

W —1) +4] THW —m) + hTE0m — 1) + 4]
P3N — m)IT[3(m — 1) + 4] FGN—1) + h + 4] '
After making this reduction, we obtain
E[(ANN)}.] — ﬁ F[Z(N - ’L) + h] ﬁ P[%(N — 7')]

ikr TN —9)] 2 1=1 P[%(N — 1) + h]

-y § y BN —1) + 2] B3N —m) +h, §(m — 1) 4]
A}(N 1) 1—A F[Z( 2 )2 .
XA R = A S =] BEW — m), 3om = 1)
The products of ratios in the first part of (5.18) are of the type discussed by

Wilks in connection with integral equations of type B[12]. It follows from his
results that A\7'" is distributed like the product

2:0; -+ Oy (m'=m—ky — 1),

(5.18)

where z and the 6’s are independently distributed, with the distribution of the
@’s given by

f(01, ceey em') _ ﬁ P(C‘)

;-—1 ei—be—1
=i P(b,)r(c. — ’) (1 0‘) )
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where the b; and ¢; arc constants which depend on N, m, and the sizes of the
blocks, but not on A, and the distribution of z is given by

_ D ¥ » B —1) +]
PG = N R = A =T B =), S =) 1"

Conscquently, the probability that A lics between zero and A, is

_ gy [ § v TBWV —1) 4 4]
J(A,N) = A fs;(l A) STE =D

zv‘;(N—m)-—l(l _ z)%(m-—l) +v—1

zi(A’—m)—l(l _ z)%(m~1)+v—l
B[3(N —m), 3(m — 1) + 4]
where the integral is to be extended over the region

S:0< 26+ 0 <AV 0<06,<1, 0<z<1.

X f(6) dz db,

Let us integrate first with respect %o z and then with respect to the 6’s; we have

— 10 S g ay TEWNV — 1) 4 4]
J(A,\) = fsoA( ;(1 A) SO =1

BIEWN —m), 3(m — 1) + ;0
BZ(N —m), 3(m — 1) + 4]

where Sy is the set I16; < AV 0 < 6, < 1, and

(5.19).

X 1(0) do,

(4
B'(u,v, ¢) = f 27— 2)" Vdz
0

1
= 271 = 2)"dz = B, u, 1 — o),

1—¢

(5.20)

¢(6) being the upper limit for z for fixed 6. It is clear that the subset of sy for
which ¢(6) < | will not be of measure zero in the 6-space, since we assume that
0 <A <L

The relation between (5.19) and the corresponding expression for the multiple
correlation coefficient without fixed variates—-the case § = 0 in (4.4)—may be
clearer if we put

(5.21) p=1—A= B, B"BY},

where B™™ is the inverse of B, in || B || ; and Bi'is the inverse of By in || By || .
Then the required probability of rejection when p has any fixed value is

I(5,1 — )\EIN) _ -/;0 V:ZO:Z: (1 - ﬁ)é(N—l) I:Li%%)—f—;—_]l]

B(m — 1) + », 3(N — m] 1(6) de,

X

where we have used the relation (5.20) between the incomplete Beta functions.
Differentiating with respect to p before performing the integration with respect
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to the 0’s, we find by a computation similar to that in section 4 that each term
in the series is positive except where () = 1; so that we have

ol
5(5, 1=A¥% >0 (e % 1,0).

And by (5.21), we then have
2
KERNYY
9Bim
Since the argument is clearly independent of which B;,;, (v 5 v) we take, it
follows that the test is locally unbiased. We have therefore proved:

Tueorem III. If 2!, ..., z™ have the joint normal distribution (5.1), then the
likelihood ratio test for the hypothesis that the x's are independent in sets s locally
unbiased.

In certain types of statistical material it may be important to consider, not
the independence of the z’s themselves, but of their deviations from regression
functions. For example, in the case of several related time series, it may be
desirable to eliminate the trend of each z* by means of, say, a second degree
polynomialin {. Consider then in general a population whose distribution func-
tion is of the form

1

B _pii—cimm@i-ci
7:{’;‘6 B”(z’ C“I“)(z cyIV) (”'; vV=m + 1, .. ';m + Q)

with unknown B;; and C& . The likelihood ratio for testing the hypothesis H;
that the sets of deviations

1 1 —1+1 ~1+1 m
o — Cuxt, . 2™ = O XY T = O T, L 2T = O

ij N
o (1]
dy - dy

d¥ = 2@zt — Ciat) (@l — Cixl,

are independent is

where

and C. is the usual least squares estimate of Ci , given by
Cia” = a”
with
a” = Zx.xy r,s=1,...,m++ q).
An examination of the characteristic function of the d¥ shows that their
distribution law is the same as that of the »* of the preceding discussion, except
for the fact that N — 1 is replaced by N — ¢q. Consequently the above results

on freedom from bias, and also those of the next section, apply equally well to
the A; test for the independence of deviations from regression functions.
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6. On the moments of A\}'”. Although we have succceded in proving the un-
biased nature of the preceding test only in the local sense, we can show that the
moments of the criterion A} " have a property which seems very closely related to
that of furnishing a completely unbiased test. For it can be shown that each
of the quantities

E[()‘le)h] h = %: 1; 1%; ttt
is greater, when H, is true than when any alternative H' holds. It will perhaps

be sufficient to prove this statement in detail for the case where » = 1 and
where H;is the hypothesis that the matrix || B;; || has the form || Bo || 4 ||Bi, ] ¢

Bll Blz
0
B21322
B Bss
Bys By
0 0 “ Bisia ”

in the notation of the preceding section we then have
ilyj1=1)2y; i2yj2=3;4; i3aj3=5r"'1m-
Even when H is not true we find that

b1 dads 1= GB,N —1,m) GB,N—1+42h,m— 4)
61 E 17 |k 1373 h — ) ) . y~ 3 ,
©1 BITI™ T = g N =152 m BN - Lm- 9

where B*® = B"% Using the definition of the G’s in section 5 and the Jacobi
theorem, we can write (6.1) in the form

B[ o7 [o"* [ = KB~

where B is the determinant of the matrix composed of the first four rows and
columns of || Bi; || . In the general case we therefore have

Bu Bu B Bu
Bu Bm Bxs Bu
By Bz B Bu|
Bu Bs Bs Bu

B =

Thus if we set & = 1, and replace Bi,;, and Bi,;, by Bij, + V60 4 ¢2e®
and Bi,;, + EDED 4 DD respectively, indicating this replacement by a

prime, we obtain

(6.2) E[0YM] = K, f BY-D gt 1 dt.
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Treating B’ as a bordered determinant, we can reduce it to
B’ = Buaw(1 + Bt e
= Ban(1 + BEBEDED)(1 + BUihEHE)
= Bw(1 + BE'ePeD)(1 + BUBER ) A + B ER)
= B(L + B8 + BAPEE)) (1 + BABEDED) (1 + BaibhED ),

where the subscripts on the B’s indicate the sets of £'s still contained in the
determinants, and || B¥ || = || Bi; ||™*. Similarly,

(6.4) B’
= BQ + B*06))(1 + BUaPED) (1 + Bubede) (1 + Baiben's,),

the inverse now being taken with respect to || B
But between, say, Biiz; and B(i;}, there is the relation

(6.5) Bl = Bl — BU5BansiBUE
where || Bagi,i; || = || Bds} ||, that is, the inverse of the matrix obtained by
deleting the first four rows and columns of || Biy || Consequently

BB < Bl
with equality holding only for those values of the &'s for which
EDBE =0 Ga=5,...,m.

And this set of ¢s will not make up the entire ¢ space unless || Bi; || =
| B|| + || Bisis || Applying the same kind of reasoning to the other quad-
ratic forms in (6.4), we can therefore show that

j B}(N—l) Bl—l(N—l) B’_l ds

B_lf(l + B“”E(I) (:))—)(NH) e (1 + B'(ﬁg) '(:) (4))—;(N+1) df

The last form can be reduced to a sum of squares with unit coefficients by’a
linear transformation of the £*’s; thus

fBi(N—l) B/“i(N—l) Bl—l df
(6.6)
< B [ Bitly [+ B g g0)00 (1 s g0 g,
i) 11
4
And by making use of the fact that
Bah = Baw | Baniyia |,
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we can express the right-hand side of (6.6) as

B fBazs) | Baniyiy |71 4 B ) (1 6T dg
This in turn becomes [c. f. (6.4)]

B fIB(12>t1:1 (L B 0 D)L 4 Bl g® @)
X (1+ 2%%% (3) (3))‘%1‘/(1 +ZE(4) J(4) —H(N+1) dé
= le(l2)1171 |21 + B e )V 4 Bl P D)
X (142 )W+ 2 )T .

At this stage we can write
|B(12)1171 I = |Bnu I(l + B*'”l‘f(l) 1))(1 + B( ”15(2)&( )’

where || BEY! || = || B, ||, and apply the relation
B = B - Bd'BwwnBE*, || Bounll = || B 7
Therefore,

*1171 £(2) (2) ull (2) £(2)
By & < B e &Y,

unless ES?F&? = 0 (i = 3, 4). We can thus continue as follows
fBQ(N—l)BI—i(N—l)BI-l d£

< lBuu l—lf (1 + B*u:ng(l)é’(f))—%(ﬂﬂ)(l + B*,lusm (2))—i(N+l)
X (1 + 2553) (3))—§N(1 _|_2£(4> (4))—;(N+1) df

Transforming the §*’

s, we get
| Bi, i, I-lf IB;"lz)m l—%(l + B*nns(l)eﬁ))—%mﬂ)(l + 22(2) (z))—;(zv+1)
X (14 ZEQ e + ZePE) T g
Since | B |™ = | By, |, this becomes
IB ; rif (1 +B*1111£(1) (1))—§N(1 +2£(2)£(2))—}(N+1)
1171 iy
X (1+ 25(3)55?)_”(1 + 25(4) (4>)—}(N+1> dt
f 1+ EE(I) (1))"§N(1 + EE@’ (2))—§(N+l)

X (14260 6)) 70 + 20 )7 g



LIKELIHOOD-RATIO TESTS FOR INDEPENDENCE 21
Collecting these results, we finally obtain
Kl f B"i(N-—l) B/"%(N—l) Bl—l dE

©7 <K [ (1430 4 3P )

(1 +2£(3) (3) —%N(l +2£(4) :))—§(N+l) dE

with equality only in case H; is true. But the right side of (6.7) is the first
moment of Y'Y computed under the hypothesis H;, while the left side gives
the corresponding moment in the general case.

The possibility of carrying out this reduction for the case in which the matrix
|| B || has more than two blocks, or blocks of unequal size, seems sufficiently
clear. And to obtain higher moments, we have only to introduce the proper
number of ¢s into each set. We then have:

TueoreM IIIa. Let \; be the likelthood ratio appropriate to testing the hypothests
H; that the normally distributed variates z*, - - - , ™ fall into the mutually inde-
pendent sels &', --.,x™; .. ;2™ L0 2™ Then the expected value of
Y™ b= 1,1, 1%, - .., is greater under the null hypothesis H; than under any

alternative hypothesis in SZ.
7. The general regression problem. Let the variates ', ..., 2‘ be dis-
tributed according to the law

71 l Bu I —B;i(zi—c";x“—cg:c’) (zi—-cﬁz"—cf_zr)
(1) 18,1 .

Throughout this section, let the ranges of the indices be

i)jzlr“'yt p;q=l+1y"‘)m
rns=1...,m rys =1,...,t+¢q
wy=t+1 ... ,t4+gq gr=t+q+1,...,m

In (7.1) we therefore have ¢ random variates, and m — ¢t fixed variates. Con-
sider the hypothesis H that the z* are independent of the last set of 2’s, namely
z°. We have

Q: || Bij || positive definite, — 0 < C% < o,
while for w we impose the additional réquirement
C; = 0.
Thus in general we have for the distribution of random samples Oy, N > m,

N
| By |%N ~ 2, BiiG=ci) (af—cjel

N

(7.2)
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while when H is true, we have

N
_ IBs'i IAN _..21 By j(z5—CLah) (zi~cizy)

(73) P =20

Differentiating (7.2) with respect to the B’s and C’s and setting the derivatives
equal to zero gives us the conditions

N N
(7.4) > Chatzl = Y zhal,
a=1 am=]
‘ o9 & . . :
(7.5) B =2 Z; (zh — Ch22) (h — Cizd).

As in section 2, we put
N 3
a” = ) 1Lz,
as=]l

and assume that the fixed values 2% have been so chosen that || a™ || is positive

definite. Then (7.4) and (7.5) can be combined to give

B = % (@ — a®ap.a¥) = %d”,

where || ape ||”* = || @*||. It‘then follows that
e NIV
Pq = |&7 ™ (_> 2l
o =|d"| I €
Similarly,
e N\
P,,, = ~t) 4N v iN
Ia'o | 27l' (4 )
where
@' = a’ — a*aua”,  |law | = [la”|l.

The matrix || a™ || will be positive definite except for a set of probability zero,

so that we can consider || @ || as the inverse of the matrix obtained by removing

the last m — ¢ rows and columns of the inverse of || a™ ||, and || &’ || as the

inverse of the matrix obtained by removing the last ¢ rows and columns of

[a”* || Then by the Jacobi theorem
_ I aPQl

@it = A=

|a” |

1y
lam’]

so that the appropriate likelihood ratio is given by

YN = IG"I Ia'"l
~ [a"| [are]’




LIKELIHOOD-RATIO TESTS FOR INDEPENDENCE 23

It will be advantageous to complete the matrix || B;; || in (7.1) by defining
Bi, = —By;C5,
By, = C3B;;Ci.

(Evidently By, = 0 for ¢ = 1, ... ,t and fixed p, if and only if C} = 0,
J=1,...,t). We can now write (7.2) as

(7.6)

N
| B PY = Z, Bii (it B Bapal) (ait B Brgad)
2

77) Pz, B) =

”}Nt
We next notice that X is invariant under the transformations
' — alz’, 2’ — B2,
so that if we put
I(B,\) = fs P(z, B) dai - - - dz¥,

where the integral is extended over the region
S: 0 A<,
it turns out that
I(B, \) = I(B* \)),
provided
Bi; = ofBua}, B, = ofB,, B} = ofB.g.

To prove the locally unbiased character of the test, we may therefore consider
the derivatives

21BN,
aBH? aBioaBi‘r

and assume that || BY; || and || ¢* || are in diagonal form. ‘We also observe
that M is unaltered by the transformation

z' — 2' 4+ B*B, 2"

I(BJ, ),

We therefore have

N
* AN - % . (234 B*ikB* 20)(zlapeilg®
B| 2 BY%; (z3+B*ikB},23) (zl+B*i B14%])
I(B*’ Ae) —_ I i a=1 x.
INt
ks 8
Thus,
N
* N N - * 1.7
) % |BO l k El Bj0%a%s
s [BON) = =200, le.,x‘;e " da,
ko a=
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which is easily seen to be zero.  Again, consider a non-repeated second partial
derivative, say

62
I(BO; A )
aBloaBl'r

I’ ixizl

¥ v
QIBTNE f(B*‘”a’—2ZT - Zmﬁs) .
e d

a=1i

itaz

This plamly vanishes if ¥ 4 [; but it is by no means easy to sec what happens
when £ = [, even when ¢ 5 7. Let us thercfore study the distribution law of
AY¥ for the case,

Buw =0, i1

(We shall not, however, assume that the transformation B — B* has been
made on the B’s.)

Define
qu = By, — BpiBijBiq;
@ = 0 — aud
where || a, || now stands for the inverse of || a*||. These expressions will

arise when we adapt Wilks’ method of moment generating operators [13], based
on the identity

(7.8 fe_B““”dx} oo dak = PV B exp (= B,,a")

to the problem. We shall understand from now on that B = | B;;| and
IBY|| = ||B:|I™". Let us rearrange the form in the exponential on the
right, thus:

B,a* = (B,a” + 2B 300" + Bea”" — 2B,;BYB;,a"
— B.iBYB ;0™ a,,a"") — B,:B"B;d"

It

Q — B,BB,d”

= Q — B'%;;.
A subscript 8 will denote the result of replacing B, by By + B ,and a
prime will indicate that each B, has been replaced by Brs + & &-. Consider

now the result of integrating the right hand side of (7.8) after these replace-
ments have been made:

% [ B oxp (= Bhpa®™) dbs - dfdbens - - dEure

= 7tV ./‘BéaiNeBt""'ﬂfi(f e_%d&) d&:,

(7.9
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Let us integrate first with respect to the £ . Wilks has shown how to write
Qs in the form

BB v 15 _pv
Qs = —Qis + Bypa™ + B! @ tuk, — 2Bis By a” £,
where
Qis = BusBs” Bjysa® + 2B, Bs” Bioa" + BoiBi Bj,a™a,a”.
This latter expression is thus free of the £, . Consequently,
N\ 1a
fe~Q,§ dt, = (%8) |a* l—%T%qe—quaaW eol'ﬂ"'oﬁﬂ,
8

where
!

’ B [%} v
Q25 = 2F 0,u(a"” Byig Bs£;) (@’ Bus Bs*' £1),

Bg
which can be written
B,; B IijB B/kz ma B BlijB Blkl o
E{ wis Bg” BugBg £i£10"” + 2B,is Bg” Bax Bg' §;£1a

+ Bai BéijB-rk Békl E;’EZ a”a,w a”} .

The method of reduction used by Wilks can now be applied to Qis and Qss,
and gives

’. ’ 'l 1) 7
Qis + Q2 = BuigBs'Bsa” + 2Buis By’ Bj.a” + B.iBg'Bjra™aua”,

an expression which does not involve the &s. Thus
(7.10) fe—Q,é dt, = i l a |—£BEM e—QB-Bék.

Now the quantity

. 0 B »lij\v
GBI = Z (?/uBﬂ ) Bé—v’

y=( V!

where BY stands for the cofactor of By; in || By; ||, can be expressed in terms
of Bs, provided we use our assumption that Bi, = 0, ¢ # 1, whereupon y.;Bs"
reduces to the single term yBs". In fact, we have

¢
Blggla* ' = R IV —m 41+ 14, 28) | o '™ B4+
(7.11) j = (yBY)
X exp (—Bpga®) = KE gt a? P Bylte 3 y,,f By

ye=0
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where, following the notation used by Wilks [13],
gs = e—'-ﬁna", K= w_*N‘BM exp (_Bmam),

_ Tl(a + )]
'/’(a) b) - I‘[‘;‘a] .
And (7.11) can be written as

¢t
Elgs|a™ '] = Ra*"* Hlﬁ-la" A
(7.12) =i il
v .t —(H(N—g)+h]
% v;)l"l‘[a(N—q)+h+u] (B Ju-a,

where B, stands for the result of replacing By; by By — . Changing 8., into
Bws + ErvEs and integrating, we then find that by virtue of (7.10)

Elgsla™ "] Y] = R« Hw |a™ |"| @ | B5*e0
71 T3V — ¢) + Al
y 2 —4q I—[}(N—q)+h]
X guvr[ (N—q)+h+v]au’fB ds] o
Now

fBézli(N—q)+h] d& = BEP(N_I—GHM ﬂ_it ﬁ V’(N —q +2n+4+1— ,,;’ _1)’
il

so that (7.13) becomes

Elgsla”["|a”* |7 = K« H YN —m+t+1—i,2h)

¢ .
(7.14) X 1Ty — g+ 20+ 1 =4, —D]a™ ["|a”[?

~ha ,—05 Y TBWN —q) +h 8 piw-1-p+n
x B VZO v! I‘[%(N - q) + h+ V] ou v(Bp“ )u=0-

Comparing (7.14) with (7.12), and making use of the fact that
lﬁ(a, —1)'l/(1 - 1) _1) tt '/’(a — 2h + 17 —1) = '/’(a) —2h))

we thus have

t
Elgsla” o™ [ = Ba* IT9V —m + ¢ + 1 — i, 28)

¢

X II1 Y(N — g+ 2h + 1 — i, —2h)|a™|*|a” | Bs*te %
~y TN —q + 4] —1(v—9)

XX [1(N—q)+h+v]au"[ B lumo
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Setting the 8’s equal to zero, performing the differentiation, and recalling the
definitions of K and Qg , we then find

E[(\M)M = I_Il¢(N—m+t+1 — 4, 2h) _I=II¢(N— q+2h+1—4,—2h)

(7.15) o ot e L
X ¢Vt 3 (yB”) T[N —¢q) + 1k THBWN —9q) + v]'

= v TBEWN —¢ +h+] TEN — @)

Taking the first factor from each product, we can convert (7.15) into

v —m+t+1—4,20) ITo(N — g+ 20 + 1 — i, —2h)
=2

fu=2

¢ ¢ VM Z": @B") TN —m+1t) + b THW — ¢) + ]
=0 vl IEN —m+ 9] THEWN—¢ +h+y]

This last product of ratios of I's is equivalent to

TEWN — q) + 4] Thm—t—q) +ITBWN —m+¢) + A]
T[E(N — m + §)]T[3(m —t — ) + v] TEWN —q) + h + 4] )

A2/ N

Thus the moments of are connected with an integral equation of type B
[12] and A¥” is distributed like the product

2.0z ... 0, 0<2<51,0<L£46;,<1,
where the joint distribution of the ¢’s is
J(6)
t o
I‘IN— +1— —m- —)— m—t—q)—
1I [3( q P i mmbeH— =1y g,)Hm—t=0 v

TS TEN —m+ t+ 1= )ITEm — ¢ — ¢)]
and z is distributed independently of the #’s with the distribution

S @BY P
@16 F6 = L W = F 0, i = 1= 9

The probability that 0 < A < A, is therefore

Iy, \) = fs FO)F(z) dzdb; - - - do,

(N—m+t) —1(1 _ z)i(m—t—q) +v—1

where S is the region 0 < 6, - .- 6;, 2 < \¥". Putting ¢(6) for the upper limit
of zin 8 for fixed 6, and S, for the projection of S into the 8 space, we then have

_ _yatt (an)v @ zi(N—m+t)—1(1 __z)}(m—t—q)—H-. }
I(y, M) —f&f(o){e Z} = /;B[%(N—m+t),%(m—t—q)+v]dz ds.

If we replace z by (1 — z) we then find
1@, = [ 50
3

st 3 YBY) Blim —t — q) + v, 3V —m+1);1 — 4]
X {e ..2:() vl Blgm — ¢t — ¢) + v, (N — m + )] }do'

(7.17)
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As far as y is concerned, (7.17) is essentially the same as (2.8). The computa-
tion which was made there, together with the type of reasoning employed in
the latter part of section 5 in connection with the independence test for several
blocks, then shows that

9
@I(y, A) >0 (0 <e<1).

Remembering that
Yy = dﬂfBalB'rl )

oy 623/ .
(aBal>0 ! aBaI a‘B‘rl “

and we remark that the assumed positive definiteness of || a?® || 1mphes that of
|| @"]|. Hence the relation

o’ (ol ..
(s 100), = (),

together with the fact that we could have obtained the analogue of (7.17)
under the assumption

we see that

Bw:O 7:5£’L.0,

where 4 is any fixed number in the set 1, ... ,¢ shows that the matrix of
second partial derivatives is positive definite when H is true.

Thus we have

TaEOREM IV. Let ', - .. | 2 be normally distributed about means which are
linear functions of certain fixed variates ', ... | z™. Then the likelihood ratio
test for the hypothesis that the distribution of o', - - . | ' depends only on a selected
subset 7, ... | 2" of the fized variates is locally unbzased

The result of thls section has its most immediate application to those problems
in the analysis of variance which require simultaneous consideration of several

interrelated dependent variables z', - .. , 2’ in conjunction with a given set of
independent variables =™, ... | 2™ [15]. For the usual hypothesis to be tested
in this case is that ', ... , 2" are jointly independent of, say, z****, ... 2™

To return to the general case of (7.1), the method of this section can also be
used to test the hypothesis that the regressmn coefficients referring to the z°
have particular values, say

c: = (5 i=1,--,o=t+q+1, ..., m,
the remaining C’s and the B’s being left unspecified. Since we have

' — Cu* — Cor” = 2' — Cpa* — (C. — Cho)x” — Cigr”,
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by the device of replacing z% by z% — Ciz% , we can reduce this problem to
that of testing the hypothesis that

Cl=Ci— Cih=0.

Similarly, the problem of testing whether the linear functions u: = «lC: have
specified values ul comes under the same heading [7].

A particularly interesting case of the general regression problem is that in
which m = t + ¢ + 1, so that the null hypothesis H states that the chance
variables z* are independent of the fixed variate ™, though they may depend

upon z'*', ... 2™’ In this case we are able to find the exact distribution
law of A" without assuming that any of the regression coefficients C* are zero.
For the quantity

(718) zoo: (yijBij)vBﬂ—Ii(N—q)+h+v]’

=0 v!

which would have occurred in (7.11) had it not been for the restriction B, = 0
(¢ # 1), can now be expressed in terms of Bs even without this restriction.
By definition

YiiB” = @""B"Bp:Bn;

and the vanishing of the B, is equivalent to the vanishing of the regression
coefficients C;, associated with ™. And since

| Bij — ua™"BmiBum;| = B — ua""B"BpniBn;,
we can write (7.18) in the form

21 TEN —q) +hl 8 o
; ;'—! I‘[%(N —_ q) + h + y]"a_u"v [Bﬂu ]u=o’

where
| Bou || = || Bijg — ua™"BmiBm; ||

is positive definite provided u is sufficiently small. Thus the moments of A¥¥

can be found from (7.15) if we put "B Bn:Bn; = y:;B” in place of yB".
Moreover, it can be seen that when the value m = ¢ + ¢ -+ 1 is substituted
into (7.15), that expression reduces to

ump _ —vimii 3~ @iBY) BEWV —m4+1) +h,3(m — g — 1) +4]
B = e e A = m 1), 3m — 1= D) ]
so that A¥?¥ is distributed like w, where
w’}(N—m-i—l)—l(l _ w)i(m—-q—l)—l-lhv

_ —yijBi 5 (?/ijBij)y
(@19) - fl) = e N T T )k — g =D
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The distribution law of A¥¥ for this case is thus closely related to that obtained
in the treatment of the regression problem with one dependent variate in
section 2. Applying the argument used there, we can obtain:

THEOREM IVa. The likelihood ratio test for the hypothesis that in a population
of the type (7.1) the yariates =* are tndependent of £™—the case m = t + q + 1
of Theorem IV—is completely unbiased.

If we specialize the problem somewhat further, considering the case ¢ = 0,
Zzw = 1 (so that m = t 4+ 1), we find that the likelihood ratio takes the form

NIV 1 1

- 1+ Nv;,-:i:‘a':" - 1 + T’

N
where v = 2 (zi — )zl — #’), and T is Hotelling’s generalization [5]
a=1
of Student’s ratio. In this case we are testing the hypothesis that the z* are
distributed with zero means. The exact distribution law of

1 —A¥¥

T=—aw

was recently published by P. L. Hsu [6], who obtained it in a very elegant
fashion by means of the Laplace transforni. He has also shown that the re-
sulting test is most powerful in the sense that, of all critical regions S for which

P{z C S} = ¢+ %aB"b:b; + R(b)

(where ¢ and a are independent of the B* and of the means b;, and R is an
infinitesimal of at least the third order as all b; tend to zero), the critical region
defined by

S: T>T.

has the largest possible value of . Tang’s tables [11] make it evident that
this largest possible value of a is actually positive and that the test is in fact
unbiased for all values of the b’s when ¢ = .05 or ¢ = .01. The results of this
section may be used to show that this property extends to all probability levels
other than ¢ = 0 and ¢ = 1.

The application of Hotelling’s T' is by no means confined to the above case.
Other hypotheses which can be tested by means of this statistic are discussed
by Hsu [6]. In addition it is now known that the Studentized D? devised
by Mahalanobis for measuring the ‘“distance” between two normal multi-
variate populations, is proportional to Hotelling’s T. This fact is pointed out
by R. C. Bose and N. Roy [1], who have obtained the exact distribution of D’
for the case in which the two populations from which the samples are drawn
are assumed to have the same matrix of variances and covariances, but are
allowed to have different sets of means; their work, however, is quite independent
of Hsu’s. They also note that D? is proportional to the ratio which arises in
Fisher’s method of multiple medsurements [4].
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8. Summary. The method of likelihood-ratios is of practical as well as theo-
retical importance, because it provides a unified approach to the problem of
testing statistical hypotheses. In this paper we have investigated many of the
tests which this method yields when applied to hypotheses about sets of re-
gression coefficients and covariances in normal populations. By studying the
probability functions of the corresponding A-criteria we are able to show that
these tests are ‘‘good,’” in the sense that they are unbiased even for small samples.

Among the completely unbiased tests which can be based on the likelihood-
ratio method, our discussion includes: the multiple correlation coefficient, with
or without fixed variates [13]; Hotelling’s generalized T' test [6] and the sta-
tistically equivalent ‘‘Studentized D*’ [1]; the ordinary analysis of variance
and covariance for orthogonal or non-orthogonal data [11, 16], as well as related
tests of linear hypotheses in the case of one chance variable.

With respect to the analysis of variance for two or more variables [15] and
certain other hypotheses regarding regression coefficients in multivariate popu-
lations, though there are indications that the tests are completely unbiased, we
have succeeded in demonstrating this property only in the local sense.

Finally, the likelihood-ratio test for the hypothesis that the variates fall into
certain specified mutually independent sets [14] is shown to be unbiased, at
least locally, and has the additional property described in Theorem IIla.

In conclusion, much more than a word of acknowledgment is due to Professor
S. S. Wilks of Princeton University, to whom the writer is greatly indebted for
advice and encouragement.
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