ON A CERTAIN CLASS OF ORTHOGONAL POLYNOMIALS

By Frank S. BEALE
Lehigh University, Bethlehem, Pennsylvania

Introduction. E. H. Hildebrandt has demonstrated the following theorem’:
If y isa non~identically zero solution of the Pearsonian Differential Equation,

ldy _ aw+amx _N Y
o Y& T hofbm D O biredl then
D”—k'dn

2) = (D*y) = P.(k,z), n,kintegers,n > 0,1sa
polynomial in x of degree n at most. Hildebrandt has obtained various relations
connecting the P,(k, ) and their derivatives as well as a recurrence relation.

If in (2) we set k& = n there results from a proper choice of N and D in (1),
the classical Hermite, Laguerre, Jacobi and Legendre Polynomials. Many
properties of these classical polynomials have been obtained by numerous
investigators.?

One of the most important of these properties is that of orthogonality which
can be stated as follows: Consider a sequence of the classical polynomials ®:(x) =
z' — 8" + .... There exists an interval (a, b) finite or infinite and a unique
wetght function (x), monotonic non-decreasing over (a, b) such that,

@) f " B (2)Bu(x) dp() = 0, for n 5 m.

In the future we will refer to the type of orthogonality given by (3) with ¥(x) mono-
tonic non-decreasing as orthogonality in the restricted sense. In order to determine
whether a given system of polynomials is orthogonal in the restricted sense we
have the following theorem:®

TaeoreMm 1. In order that the sequence of polynomials ®:(z) = =* — Siz*™ +

1 E. H. Hildebrandt, ‘‘Systems of polynomials connected with the Charlier expansions,
ete.,” Annals of Math. Stat., Vol. 2(1931), pp. 379-439.

2 For an account of these properties as well as an extensive bibliography the reader can
refer to one of two treatises viz.: J. Shohat, Théorie Générale des Polynomes Orthogonauz de
Tchebichef, Memoriale des Sciences Mathématiques, Fascicule 66, Paris, Gauthier Villars,
1936.

Gabor Szegd, Orthogonal Polynomials, Am. Math. Soc., Colloquium Publications, Vol.
23, 1939.

3 J. Shohat, ‘“The relation of the classical orthogonal polynomials to the polynomials of
Appell,” Am. Jour. of Math., Vol. 58(1936), pp. 454-455.
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98 FRANK S. BEALE

<oyt =1,2,3, ... with real coeffictents be orthogonal in the restricted sense it is
necessary and sufficient that there exist a recurrence relation,

4) Six) = (x — c)Pia(®) — APia(z), D=1 & =z-—q¢,

Ci, \i const. with all \; > 0,2 > 2.

With Shohat* we will say that a system of polynomials ®:(z) = z* — Siz™™ +
ceeyt=1,2,3, ..., with real coefficients is orthogonal in the general sense if
there exists at least one weight function Y(x), of bounded variation over (a, b) such
that (3) is satisfied. In connection with generalized orthogonality we have the
following theorem :*

THEOREM 2. In order that the system ®,(x), i = 1, 2, 3, - - be orthogonal in
the general sense it is necessary and sufficient that relation (4) be satisfied with all
A # O

It is the purpose of this paper to investigate the orthogonality properties of
the general polynomials P,(n, z) given by (2). In Part 1 a general recurrence
relation is derived which applies to all the polynomials P,(k, ). In Part 2 all
the different types of orthogonal polynomials P,(n, x) are determined by making
use of the general recurrence relation derived in Part 1. We also show, follow-
ing lines laid down by Hahn®, that the only systems of polynomials with simple
zeros which are orthogonal in either the restricted or the general sense and whose
derivatives are orthogonal in either sense are the systems considered in Part 2.

1. The general recurrence relation. From (2) we can write,

Dn-—k——l dn-—l X Dn-—k—l dn-—l

1
dzn1 y dx1 [D-D""g1.

(5) Pk, z) =

Apply Leibnitz Formula to the right side and make use of (2). There results,
Pn—l(k; x) = Pn—l(k - 17 x) + (n - I)D,Pn—2(k - 17 $)

(6) (n -1 —2) "
+ 2= V% =2 prpp, ok - 1, 9).

From Hildebrandt’s paper we have,’
(7) Poa(k+1,2) = [N + (k + 1)D'|P.(k, x) + n[N’ + (k + 1)D"'1DP 1 (k, ).

Decrease k and n each by one in (7) and obtain a relationship which we number
(8). Again decrease n by one in (8) and get a relation which we number (9).

4 J. Shohat, ‘“Sur les polynomes orthogonaux généralisés,”” Comptes Rendus, Vol. 207
(1938), p. 556.

5 Wolfgang Hahn, “Uber die Jacobischen polynome und zwei verwandte polynomklas-
sen,”” Math. Zeits., Vol. 39(1934-35), pp. 634-638.

¢ E. H. Hildebrandt, loc. cit. p. 407.
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From (6), (7), (8) and (9) eliminate P,_;(k, x), Pn2(k — 1, x), and P,—s(k —
1, ). There results,
(10) 2N’ 4+ (2k — n + 1)D"][N’ 4 kD"|Ppnu(k + 1, z)
= {[2N’ + (2k — n + 1)D"]I[N’ + kD"]IN + (k + 1)D'}
+ n[N’ + (k + 1)D"][2N’'D’ 4+ kD'D"" — ND"]}P,(k, x)
+ nlN' + (¢ + 1)D"]{2(N’ + kD")’D
— (N + kD"Y@2N'D’ 4+ kD'D"” — ND")} P,k — 1, z).

In (10) decrease n and k each by one and replace N and D by their values from
(1). Thus we get,

(11) a1 + (2k — n)balar + 2(k — 1)ba]Pu(k, 2)
= {la1 + 2k — 2)bo)la; + 2kb.)la, + (2k — 1)b.]x
+ (a1 + 2k — 2)bo]lar + (2k — n)by)[a0 + Kby
+ (n — D)lay + 2kbo)[aibs + (K — 1)bibz — o]} Pas(k — 1, )
+ (0 — Dlas + 2kb]{bolar + (2k — 2)boJ*
— [ao + (& — 1)bJlaibs + (B — 1)bib: — acbe]} Puse(k — 2, 7).

In this recurrence formula the P,(k, x) have in general a coefficient of z" dif-
ferent from one. Polynomials which have one for the coefficient of x™ we will refer
to in the future as normalized. Let us now transform (11) for normalized P,(k, z).
Theorem 1 deals with polynomials normalized in the above sense. Let us write,

Pk, 2) = Gnpz” — bz 4+ ... In (4) set, D) = Pk, 2)/Cns .
Thus we get,
(12) Pu(k, ) = (Awx — Bp)Pua(k — 1, 2) — vaPus(k — 2, 2)
where

— Qn,k _ Onx A,k
Yo = An, A, = , and B, = C..
Qn—2, k—2 Op—1, k—1 Op—-1, k-1

Relation (12) is essentially of the same form as (11). Each of these is to be
reduced to form (4).
From a previous paper by the author’ we have,

(13) Pon(k, ©) = (n + DIN' + 2k — n)D"]Pu(k, 2).

n — 1 successive applications of this relation give us, [Po(k, ) = 1], that the
coefficient of 2" in P,(k, ) is,

7 Frank S. Beale, ““On the polynomials related to Pearson’s differential equation,””
Annals of Math. Stat., Vol. 8(1937), p. 207 (2).



100 FRANK 8. BEALE

n—1

(14) O,k = H [as + 2k — n + 1 + 9)b,].

1=0

By employing (14) in (12) we see that (12) or (11) reduces to form (4) where,
_ lai + (2k — n)bollas + kb

Cn =
(15) la1 + 2kbs][a: + (2k — 1)bo]
—(n—1) la1bs + (b — 1)bibs — aobs]
lax + (26 — 1)b]lar + (26 — 2)bs]
lar + (2k — n — 1)bal{bolas + (2k — 2)b]*
(16) M= — (0 — 1) = lao + (& — D)bllarby + (b — 1)bibs — aobs]}

[0 + (2% — 3)bsllas + (2k — 2)bal"lax + (2 — )bl

Equation (16) together with Theorems 1 and 2 can now be applied to the poly-
nomials P,(k, x).

From (14) 1t is seen that P,(k, x) vs of degree n provided that none of the factors
of the product vanishes. This condition we assume to hold here for all n.

We can now obtain a recurrence relation for the gth derivatives of P.(k, ).
A repeated application of (13) leads to,

q q—1

a7 L Pk, 2) = Puil, ) I — 9 lon+ @ = n 44+ Db
where P, (k, ) is not normalized in the above sense. By considering the right
side of (17) together with (14) we see that (17) can be divided by

q—1
Cnguk g (n —19) [an + 2k — n + 5 + 1)by)

and thus normalize the polynomials on both the right and left sides of (17).
Consequently the recurrence relation for normalized d’[P.(k, x)]/dz?, n =
0,1,2, ..., is identical with the recurrence relation for normalized P,_,(k, x)

as given by (4), (15) and (16) when we replace n by n — ¢ in these latter.

2. The different types of orthogonal P,(n, ). Suppose first that b, = 0 in
(1). A transformation on z with real coefficients can be affected which changes
(1) into either,
1dy _(a—6) + (—a—p

or
ydz 1—2?

(18)

Ly _ —2me —g
ydx a? + z?
(A) Equation (18) together with (2) for ¥ = n defines the generalized Jacobi
Polynomials (normalized in the above sense),
—a - dn nta n
Ta(@, 0 ) = = (L 271 =27 21+ 9™ (1 — 2]

nn

(19)
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where 1/a,,, is given by (14). If in (16) we set k£ = n and make proper replace-
ments for constants as (18) and (1) show we have,

A =4 — 1) (@t+B+n—De+rn-—1)B+n-1
0) @FB+om—atb+rm—2Patp+m—1
n > 2.

From Theorem 1 and this value of A\, we conclude that if « > —1,8 > —1,
the sequence {J.(z, «, 8)} is orthogonal in the restricted sense—a well-known
result. From Theorem 2 we can similarly conclude that if neither «, 8, nor
(a + B) equals —j, j a positive integer, the sequence {J.(z, «, 8)} is orthogonal
in the general sense.

(Ay) If in (18) we set « = B = 0 we obtain a differential equation which
together with (2) for k = n leads to the Legendre Polynomials, (normalized in

above sense), Pa(z) = (2%'), g;. @ — 1)". Setting @ = 8 = 0 in (20) leads to
)\ — (n - 1)2
" (2n —3)(2n — 1)
Legendre Polynomials are orthogonal in the restricted sense, a result well known.
(B) Equation (19) together with (2) for k = n leads to a class of polynomials

(normalized in above sense), mentioned by Romanovsky.®

_ 1 2 2m q -1z a’ 2 2\ n—m _9q —1Z
R,.(x,m,q,a)—a——(a + 2% exp(&tan a)Jx_" (" 4+ 2)" ™ exp (-Lta,n -

n,n

,n > 2. Thus from Theorem 1 we conclude that the

where again 1/a,,, is given by (14). In (16) set k¥ = n and make the proper
replacements of constants and,

)\_n—l @2m — n + 1) {4d’(m — n + 1)* + ¢*} "> 9
T4 2m—-2n+3)(m—n+122m —2n+ 1)’ ="

From Theorem 2 it now follows that the sequence {R.(z, m, ¢, a)} is orthogonal
in the general sense if m 5 j/2, j a positive integer. There is no set of parameters
m, ¢, @ which assures orthogonality in the restricted sense.

In connection with Romanovsky’s note there appear to be several discrepan-
cies. For the weight functions given there under types IV and V, the nth
moments for sufficiently large » do not exist over the intervals there considered.
Type V is the special case of type IV for a = 0. Type VI is none other than
Jacobi Polynomials so that the orthogonality relations given there for this case
are incorrect. In all three types listed certain of the recurrence relations for
the polynomials are in error.

(B:) We note here one special sub-class of B.. Takem = ¢ =0anda =1
in (19). We obtain from (2) and (14) a system of normalized polynomials
analogous to the Legendre Polynomials namely, ¢.(z) = (—2%, dé::_" (@ + 1™

8 V. Romanovsky, ‘“‘Sur quelques classes nouvelles de polynomes orthogonaux,’’ Comptes
Rendus, Vol. 188(1929), pp. 1023-1025.
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It is easy to verify for these that,
.[' $n(@)pm(2) do = 0, m #= n, 1= \/?1.

(C) Suppose that in (1), b, = 0, by % 0. A linear transformation with real
coefficients changes (1) into, % % = ‘f%’?. This equation together with (2)

and (14) for k = n defines the generalized Laguerre Polynomials, (normalized
in above sense), Ln(x, @) = (—1)"z %" (;—l; [#""%"]. Setting k = n and making

proper replacements in (16) we get, \, = (n — )(a + n — 1), n > 2. From
Theorem 1 we see that if « > — 1 the L, are orthogonal in the restricted sense,
a well-known result. From Theorem 2 we can say that if « % —j, j a positive
integer, the polynomials are orthogonal in the general sense.

(D) Ifin (1), by = by = 0, by = 0 we can perform a linear transformation on

z with real coefficients and get, ;;Z—‘z = hx. This differential equation together
with (2) and (14) gives a set of normalized polynomials G,(x) = k—ln g et c_g_" Pak

Taking £ = »n and making proper substitutions for constants in (16) we get
M= —(n—1)/h,n > 2. If his negative it follows from Theorem I that the
sequence {G,(x)} is orthogonal in the restricted sense. Infact, G.(z) = H,(z) =

Hermite Polynomials.
On the other hand, if & is positive we have from Theorem 2 orthogonality in
the general sense. In fact, it can be easily verified for this case that,

f G, (1)Gn@)de =0, mEn, ©=+/—1

$00

(E) The only remaining possibility for (1) not so far discussed occurs when
N = constant and D is linear. In this case it has been shown that P,(k, x)

of (2) reduces to a constant.’
E. H. Hildebrandt has shown' that the polynomials P.(n, z) of (2) satisfy
a differential equation of the form,

&'y dy
@1) (bo + bz + be2®) b + [ao + b1 + (a1 + 2b2)x]£

— nla; + (n + Dbsly = 0, n=123,.--.
Moreover with the coefficients of d”y/dz* and dy/dx in (21) he has shown that
for (21) to have a polynomial solution of degree n the coefficient of y must be
of the form given in (21).

? Frank S. Beale, loc. cit. p. 209, Theorem I .
10 Loe. cit. pp. 404-405.
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From (16) we can say that for k = n and an orthogonal sequence P,(n, ),
n=20,1,2, .- we have,

(22) a + (n — )by # 0,
(23)  bolay + (2n — 2)b2]2 — a0 + (n — Dbillasbs + (n — 1)bibe — aobs] # 0,
where n is an integer > 2. Considering for (21) a solution of the type y =

2) e’ we readily show that if (22) and (23) are satisfied, (21) possesses for
=

each n a single polynomial solution of degree n. Two solutions which differ
merely by a constant factor are regarded as the same solution. This polynomial
solution of (21) must be P.(n, ).

By employing theorems from a previous paper by the author” we can show
that if (22) and (23) are satisfied, the zeros of the polynomials of section II are
simple whether these zeros are real or complex.

Hahn has shown' that if a set of normalized polynomials and their deriva-
tives satisfy a relation of the form (4) with A; ¢ 0 and if the zeros of the poly-
nomials are all simple then the polynomials must necessarily satisfy an equation
of form (21). Since in this paper we have considered all possible values of
a:, 0 = 0, 1), and b;, ({ = 0, 1, 2), which lead to orthogonal polynomials, it
follows that the only systems of polynomials with simple zeros and orthogonal
in either restricted or general sense whose derivatives in turn are orthogonal in
either sense are the systems of section 2.

1 Loc. cit. pp. 207-209, Theorems I; to I .
12 Loc. cit. pp. 634-636.



