ON THE DISTRIBUTION OF WILKS’ STATISTIC FOR TESTING THE
INDEPENDENCE OF SEVERAL GROUPS OF VARIATES

By A. WaLp! anp R. J. BROOKNER!
Columbia University

1. Introduction. We consider p variates z;, 22, -+ , 2, which have a joint
normal distribution. Let the variates be divided into & groups; group one con-
taining 1, 22, - - - , ,,, group two containing z,,41, T4z, - -+ , Ty, etc. We
are interested in testing the hypothesis that the set of all population correlation
coefficients between any two variates which belong to different groups is zero

Wilks® has derived, by using the Neyman-Pearson likelihood ratio criterion, a
statistic based on N independent observations on each variate with which one
may test this hypothesis. Let || ri;|| be the matrix of sample correlation
coefficients; Wilks’ statistic, A, is the ratio of the determinant of the p-rowed
matrix of sample correlations to the product of the p;-rowed determinant of
correlations of the variates of group one, the (p: — pi1)-rowed determinant of
correlations of the second group, etc. That is

| i |
l Tayy I * I rﬂzﬁz-

where | 74,6, | is the principal minor of | r;; | corresponding to the sth group.

In order to use the test, the distribution function of A must be known. Wilks
has shown that in certain cases the exact distribution is a simple elementary
function; in other cases it is an elementary function, but one which is rather
unwieldy and which does not lend itself readily to practical use, It is our
purpose in this paper (1) to show a method by which the exact distribution can
be explicitly given as an elementary function for a certain class of groupings of
the variates, and (2) to give an expansion of the exact cumulative distribution
function in an infinite series which is applicable to any grouping.

A=

coo | Taysy |

2. The exact distribution of \. By the method to be described, the exact
distribution of A can be found when the numbers of variates in the groups are
such that there are an odd number in at most one group. If the number of
variates is small, say at most eight, the method will increase only slightly the
list of distribution functions that Wilks gives in his paper.

! Research under a grant-in-aid of the Carnegie Corporation of New York.

2 8. 8. Wilks, “On the independence of k sets of normally distributed statistical vari-
ables,” Econometrica, Vol. 3 (1935), pp. 309-326. Other references to Wilks in this paper
except where otherwise noted are to this publication.
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138 A. WALD AND R. J. BROOKNER

For purposes of deriving the distribution of A we may assume that E(r,) =
0, (wu=1,2 ..., p); that there are n = N — 1 independent observations
Zua (@ = 1, 2, ..., n) on each variate z, ; and that the sample covariance

between x; and z; is given by s;; = J_ ZiZja/n. We define w’ (a function of u)
a=1

to be the total number of variables in all the groups which precede the group in
which z, lies. The complete theory is independent, of the ordering of the groups
and of the ordering of the variates within the groups; hence without loss of
generality, we may assume that if any group contains an odd number of variates,
it will be the last group, hence u’ is always an even integer.
P
Wilks has shown that A is a product J] 2. where each z, is distributed

u=p+1

independently of the others, and that the distribution of z, is
zi(n—u—l)(l . zu)i(u’-‘.’)

Bli(n —u+1), ¥'/2]

Now let y. = log 2, , then the characteristic function of y, is

™

% .

1 f L log s A (n—u—1) \Hu'—2)
u(t) = e “ 2 1—2z, dz,
*O = e —w D, w2l b S
— 1 fl zf‘(n-—u—l)+t(1 _ zu)i(u’—-2) dzu
Blitn —u+ 1), u'/2]

where t is a pure imaginary. It is known® that this integral, even with complex
exponents, is the Beta-function so long as the real parts of both exponents are
greater than minus one, so

Bl}(n — u+ 1) 4+ ¢, u'/2]
Bli(n — u 4+ 1), w'/2]
T3(n —w+ 1) + ¢ I0[3(n — u + 1 4+ )]
Il3(n —u + 1+ o) + {]-TlHn — » + 1)]
But here u’ is always an even integer, hence by the well known recursion formula
of the Gamma-function, which is valid for complex arguments excluding only
negative integers
¢u() = culli(n —uw + 1) + dl3(n — v + 3) + ]
B —utw = 1)+

o) =
@)

I

where

o= —u+ D —u+3)] - B — u+ ' — D).

3 See Whittaker and Watson, A Course in Modern Analysis, Fourth edition 1927, Chap. 12.



WILKS’ STATISTIC 139

Now set
y=logA =9+ Y+ - -+,

and the characteristic function of y is

80 = II alli—u+ 1)+ 0B — u+3) +4

u=p+
o B—wtw = 1)+ )
From the characteristic function, we can obtain the distribution function,
9(y), of y by the relation
g9y) = 2. [w e dt
2t Lo [Ifpi B —w+ D+ - Br —u+ & — 1) + 4

en [
- 2_-1"&. ‘[c'eo q)(t) dt,

where

b4
= ]I ec.
u=p;+1
The integration can be carried out by the method of residues; since y is always
negative (the range of A is from 0 to 1), on a half circle with center at the origin
in the negative half of the complex t-plane, the integral of the function ®(¢)
converges to zero as the radius of the circle becomes infinite. Since ®(¢) is
analytic except for a finite number of poles on the negative real axis, g(y) is ¢,

times the sum of the residues at these points.
—yt

Now &(t) is of the form I%Tt) where P(t) is a polynomial in ¢ as follows:

suppose that the groups contain ry, 73, - .., r; variables respectively, then let
(k; + 1) be the number of these r’s which are greater than or equal to j; then

P(t) = [§(n — 2) + t"[3(n — 3) + t1*[4(n — 4) + ™M1 [3(n — 5) + ]tk
[3(n — 6) + t* ™™ . [4(n — p + 1) + tJfr-rtie-etHeisl- -0

where
_ ¢/2if ois even
/2= (¢ 1)/2if o is odd.
Then
=1 d- 9,+1
gy;r, e, coe 1) = Ca Zl o1 e [+ 300 — a — 1))’ S(O)]ie_t(nav
where

0o + 1 = ka + ka2 + - -+ + kpyatni-tie—ni -
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It can be shown that 6, is = O for a between 1 and p — 2. Thus we have
gly;r1, r2, -+ -, r:) and from it we can calculate f(\; r1, 72, - -+, 74).
Suppose p = 8 and that the variables are divided into two groups of four each,

.then we will calculate the distribution function f(A; 4, 4). Now

100 —ytdt
(4,4) = ¢
9 ) 2w f_,-,,, 3(n —2) 4 tll3(n — 3) + tJ[3(n — 4) + ¢
-B3(n — 5) + t[3(n — 6) + t][3(n — 7) + {]
and
. = (n - 2)<n -3 (n - 4)’(1& — 5)2(11, - 6>(n - 7)
" 2 2 2 2 2 2 :
Then
) — ei (n—2)y YnDy 88}(11—4)1/ Sel(n—s)v
g(yy 4y 4) = 166,,,[ ) +e + 9 - 9
_ e“"")” + el(;(—:)u B yeg(;—m + yei(;——s)v].
Since
y=Ilog), dy= @‘,‘—,
we have
fosea) = M [ LT X T B
X N L)

2 + 30 — (Ri(ﬂ—” + Ai(ﬂ—ﬂ)) log R].

The cumulative distribution function is given by
Ju(4, 4) = Prob A < w; 4, 4]

_ 16¢, ;(H)[ 1 _ v 4n -2 14— 13)w!
3 Bn—7 n—6  3(n— 5 3(n — 4)°

2 {] 3
w w 2w 2w
+n—3_ 15(n — 2) —(n—5+n—4)10gw:|'
Wilks’ expression for the cumulative distribution function appears to be quite
different, but if we substitute n = N — 1 and use the relation

N (N — 2) Ve _
Bya(N — 6;4) = TW—6T®h ° (1 — 2)’dz
=in - 2)(n — 3)(n — 4)(n — 5)

w}(n—ﬁ) _ 3w§(n—4) + 3w§(n—3) _ w}(n—2)]
n—>5 n—4 n—3 n— 2
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it can be shown that the two formulas for the cumulative distribution are
identical.

In cases where %’ is not always an even integer, the exact distribution func-
tion of A can still be obtained using this method. However, in such a case, the
gamma functions do not cancel out and the integrand has an infinitude of
poles, so the function is expressed by an infinite series. We will use a different
method to obtain an infinite series expansion.

3. A series expansion of the cumulative distribution function. Let us put
v = —y, and let the density function of » be h(v), then from (2), we have

fo P 1
_ . Cn vt I3(n — u+ 1) + ddt
h(v) dv = dv 2wt [Cm ¢ um=ry+l P[%(n —u+1-+4+ u’) + t].
Since v is a monotonic decreasing function of A, and since the critical region for
testing the null hypothesis is given by the inequality A < Ao, then the critical
region will be defined by v > v, where v, is such that

j; ) k() dv

is equal to a chosen level of significance.
ProrosiTION 1.

h(v) = ha(v)¥(v)
where ¥(v) does not depend on n, and ha(v) = cae .

Proor: Let
U =t+4+ 3(n — p).
Then
_ e [CHOP e 77 T — w4+ 1) + 1dY
h(v) = 2mi -[o'eo+i(w-—p) ¢ I:I[ Me—-u+v+1) 4+

Now the area in the complex plane bounded by the vertical line through }(n-— p),
by the vertical line through the origin, and by ares of a circle with center at the
origin of arbitrary radius is one in which the integrand is everywhere regular.
Furthermore, the integral along the arcs approaches zero as the radius of the
circle approaches infinity, hence the integrals along the vertical line through
i1(n — p) and along the vertical axis are equal. Then we may write

¢ _ 1 ey TBO — v+ 1) + ¢]dtf

= ¥(v).
Therefore
h(v) = c.e PP (v).



142 A. WALD AND R. J. BROOKNER

ProrosiTiON 2.

0 —3v r—1.
I = lim cne ¥ dv=1

n—o JO I'(r)

where we define
ko k=l

T P>
j=iH i=m 2
so that
r=43rr i)+ ooe b F et oo F 1)l
—iTw
Proor: Let
g'v = p¥
then
f Cal 0 Ny = f Cne " (g> WM™ do*
) o n
= ¢, (g ) (7).
n
Hence
I=1limec, (2_)
n—o | \7
but

_1y il —wu+ T+ )
e =1II Ti(n — u + 1)

and therefore

I. =

i TH0 —u + 1 + W) (2)“"’ -1

e Tm—u+tD \n
by an application of the Stirling approximation. Therefore

I=]]1.=1

We then write

ANQ)

1

y) =
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hence
_cae Ty ()
3) h(v) = B T

ProrosiTioN 3. For any posttive integer s,

lim {n‘-Prob (v > \_}—ﬁ)} = 0.

Proor: Since v = —log A, the inequality v > 1/4/7 is equivalent to the in-
P
equality A < e¥v#, Since A = ] 2., the inequality A < e~2/v/# implies that
u=pi+l

there exists at least one value of u for which
2e < e—ll(z?—m)\/'—"

Hence
P /
> Pley < VT PVY) > PO\ < V) = PO > 1/4/7).
uw=pi+4l
Hence in order to prove Proposition 3 we have only to show that for each » and
any arbitrary positive integer s

lim {n'.P(z, < e—ll(p—m)\/;)} = 0.

n-*o0

From (1) we have

P(z, < e-U@—p)V/7)

6~/ (p— n
-se—eroeal e - g,
Over the range of integration, we have z, < e~1/@-p1)Vs 50
etn—u—1)/(p—~p1)V/n U -pVn
Bli(n — u + 1);u'/2] b
_ e—tn—u—1/(p—p1)V/n [_ 2 - z“)u,ﬂ].—u@-m)ﬁ
Bli(n — u + 1);4'/2]L o o
_ 2e—t(n—u—1)/(p—p1) V7
Bl — u + 1);4/2]
It follows from the Stirling formula that
lim <7—")“'/2 Bli(n —u + 1); 4'/2]

n—sco \2

(1 - zu)“. - dzu

P(z, < e Vo2 Va) <

[1 = (1 — e1e-pov7) R,

. Ti(n —u + 1)TW'/2) (n\*'"?
b m—u W + D (“)

2
T'(w'/2).
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Since
lim o e~ Vrre—) = 0
n—+00°

and
lim (1 — (1 —eUVr)) =1,

n=>0

the proposition follows.
ProrosiTiON 4. The function y(v) of formula (3) can be expanded in a power
series, i.e.

YO) = a0+ o + at® + .-+
with a finite radius of convergence.
Proor: Wilks' has considered the following integral equation:

¢ D1+ 8) . Te+8) -+ T(bg + 8
Tl +t)-Tlee+1t) - T(eg + t)’

-L- ’ w'g(w) dw = CB

I(e1)-T(cs) - - - T(co)

‘ T(by)-T'(bs) --- T(d,)’
(t2=1,2 ...,¢). Wilks has shown that the solution of the integral equation,

g(w), is given by the following expression:

kb (1 - 12)"«"«‘1 1 a1 1
B —1 cq-bg— by g
g(w) = i 'L fn fo Pzt | easiemit

where C = B and g(w) are independent of ¢, and b; < ¢;

X (1= st e (1 g g
@ X [1 —n (1 - g)]bm[l — {0n + 0a(1 — )} (1 _ g)]b""
X [1— for + (L — 9) + -+

+ 21l — (L — 1) -+ (1 — vo0)} (1 _ g)]b«-t-e.

X dvidys - - - dvgy

where
. T'(c:)
k= —_
‘I_Il T'(b:)T(c; — bi)
and
-1 i—1
Y= 2 Cei  Bi= 2 be
=0 =0

4 8. S. Wilks, ‘““Certain generalizations in the analysis of variance,”’ Biometrika, Vol. 24
(1932), pp. 474-5.
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the range of w being 0 < w < B. Wilks has furthermore shown that

) (ol —o) 4 e o — o)A =2 -er (1 —v.-_x)}(l —}-;)<1

forw>0and0=v;<1(:=12...,q—1).

We denote the left hand side of (5) by ¢;. The factor (1 — £:)*™*** can be
expanded in a power series, i.e.
(6) a- g-',)bo""‘o‘-i-l =1 - g-i)—(l-'.'+1_b.‘)

=14 (con — ba)¢i + 3easr — B)(Copn — bi + )87 + -+

with a radius of convergence equal to ope. Since we will show shortly that for
the choices we make for the b/s and ¢,’s, ¢i;41 > b;, then all coefficients in this
last expansion are non-negative. Substituting this series expansion (6) in (4),
and ordering it according to powers of (1 — w/B), the expression under the inte-
gral sign (in 4) becomes

00(”1, vﬁ, o vq—l)

- + 6:(n1, ...vq_l)(l —g>+02(vl, -.-,v¢_1)(1 —g)"F

This series is uniformly convergent over the domain defined by the inequalities
0=0=1(¢=12...,9—1and|1 — w/B| <1l. We caneven say that
(7) is uniformly convergent for |1 — w/B| < 1 if we substitute for each 6;
the maximum of 6; with respect to v;, v;, -+, v,1. Hence we may integrate
the series (7) with respect to v;, vz, - - - v,; term by term, i.e.

1 a1 1 2
(8) j;jo ----[(7)d1)1dvgu-dv,,_1=ao+¢1(1—g)-!-tm(l—g)+"'

and the series (8) is uniformly convergent for | 1 — w/B | < 1. The coefficients
oy, 01, -+ are non-negative.

The case of the A statistic which we are considering is a special case of this
integral equation which we obtain by making the following substitutions:

w=\ B=1 u=r+p, ¢=p—pn

b, = %(n_u'l' 1)7 c,=%(n—u+u’+1), (7‘= 1’2r”’;p—pl)
Note that then

i1 — by = M + 1) — 1] = 0.

Hence, according to (4)

g d\ = kAT — )P MHa 4+ el — N + o(l — N) + .-} dA
where the infinite series converges for |1 — A | < 1.

Now v = —log A\, or A\ = ¢ °, hence
1—¢"

v

r~1
h(v)dv = k-e‘*‘""”“’”v’"‘( > {eo + av + v + --.}dv
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where the series {e + ew + e’ + ---} is obtained from the series {00 +
o1(1 — A\) + ...} by substituting for (1 — \) the Taylor expansion of (1 — ¢ ).
The series {& + ev + ev’ + - .-} has a finite radius of convergence.’

Hence the function y(v) can be written as

—ov\ r—1
gp(v) = A.ei(P-l)‘ﬂ(l_—vi_) {50+€1v+521)2+ ‘.‘}

X 1 _ e—v r—1
where A denotes a constant factor. Then since ¢’ (-——v— can be

expanded in a Taylor series around » = 0, Proposition 4 is proved.

4. Evaluation of the coefficients in the expansion of ¥(v). Let the series
expansion of ¥(v) be

YO) = ao + aw + a’ + .-
Then we have

Y —3nv  r—1
f @Y (ot av+at + --)dy =1
0

()
Now let v* = gv, then
“(2Y c.e” vt 2o v* | dao*’ . _
[ m Yo

r
Suppose that the asymptotic expansion of (g) clis given by
B, B
Bo + —ﬁ + o + ...

On account of Proposition 3, we have that the asymptotic ~xp ion in powers
of 1/n of

\/; —p* *r—-l

must be equal to the asymptotic expansion of (g) 1 . Since we may integrate

in (9) term by term for sufficiently large n, we easily obtain

ap = f3 o =§l cee Qp = Be
o= Fy 1Ty F = g+ 1) -t k—1)

8 See A. Gutzmer, Theorie der Eindeutigen Analytischen Funktionen, 1906, pp. 91-2.
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The asymptotic expansion of (g) 1 can be calculated in the following manncr:

n

B B2
<n+2>'ﬁ Pttt
" o gt By g

and

<n+2>r—°"—= (+o/my [ Lo vt

n Cni2 wan—u+u +1°

Equating the right hand members of these last two equations, and taking
logs, we obtain

B B: -1
log[ﬁo+n_'f2+(n+22)2+ ---]=rlog(1+2/n)+zu)10g(1 _71_7;_)

- I{Z}log(l —t%’———l)+10g<ﬁo+%+g—:+ )
Then we expand each term in a series of powers of 1/n and equate coefficients
of 1/n’ for each i. We obtain the following formulae for the first five g’s:
Bo=1
ﬂl=r+%§:(u—1)2—-1~zu2(u—u'— 1)*

_ Bf_&' 1 e 1 1)
32—/31+'2— 3-[-1—22';(1& 1) Ezu:(u u 1)

Bs = —4B1 — B1 — 361 + BiB + 26: + 3
+a D w—1 - w—w -1

4
Bo= 26 + 288 + B + -‘;—‘ — 3818y + Bifs — BiBr — 4B

2
+%2+3/33—§—r+116§;(u— 1)“—%};@—1{— 1)°%

5. Practical use of the series. In practical applications, the value of the
statistic, say Mo, is calculated, and it is desired that we determine whether or
not this value of the statistic falls into the critical region. That is, for a partic-
ular grouping of the variates, for a particular number of degrees of freedom, and
for a chosen level of significance a, there is determined from the distribution of
A, a value A* such that

Prob A < M = a,
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and if Ay < A* we reject the hypothesis that in the population from which the
sample is taken all the correlation coefficients between variates in different
groups are zero.

Since » is a monotonic decreasing function of A we make the test by computing
vo = —log Ao and we reject the hypothesis if vy > v* where v* = —log A*. But
this is equivalent to computing Prob [v > v] and if this value is less than a we
reject the hypothesis. Now

Prob [U > Uo] = Jvo(rly Tay o+, r")

= 1%") L ey 4 v + at F o) dv

Settmg 3=

Prob [v > v) = (12;)1—% f;/z T "‘[1 + al— + az( ) £+ ]dz

On account of Proposition 3 we obtain an asymptotic expansion of Prob [v > v]
by integrating the right hand member of the above equation term by term.
This can be expressed by means of the incomplete gamma function, which is
tabulated® in the form
VA
f P e dy
I U = ,_o____._______.__ .
We obtain

(el 1]
+BI[I_I(2x/n%+1 )]+ [1—1(2\/ +2”'+1)]+"'}'

The values of the constant K = (72—1’) ¢» and the values of 81, B2, Bs, B4 are

herein tabulated for any grouping which might be made on six or fewer variates.
Some cases, such as groupings (1, p — 1), in which case the distribution of A
is the distribution of the multiple correlation coefficient; and as the groupings
(2, p — 2), the exact distribution for which was given by Wilks as an incomplete
Beta-function, are superfluous here. These cases are included only for the sake
of completeness.

¢ K. Pearson (EdltOl‘), Tables of the Incomplete Gamma Function, Biometric Laboratory,
London, 1922.
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Table of the First Four 8’s
Grouping r B B2 Bs B4
2,1 1 2 4 8 16
1,1,1 1.5 2.75 6.28125 13.38281 27.57568
3,1 1.5 3.75 12.03125 36.91406 111.55225
2,2 2 5 19 : 65 211
2,1,1 2.5 5.75 23.53125 83.97656 279.50538
1,1,1,1 3 6.5 28.625 ' 106.9375 366.39844
4,1 2 6 28 i 120 496
3,2 3 9 . 55 i 285 1351
3,1,1 3.5 9.75 ¢ 62.53125 i 334.10156 1615.91163
2,2,1 4 11 77 | 439 2229
2,1,1,1 4.5 | 11.75 86.03125 | 506.16406 2628.23974
1,1,1,1,1 5 12.5 95.625 | 580.6875 3085.52344
5,1 2.5 8.75 55.78125 315.82031 1690.65282
4,2 4 14 i 125 910 5901
3,3 4.5 | 15.75 | 154.03125 | 1205.03906 8277 .55226
4,1,1 4.5 | 14.75 | 136.28125 | 1015.50781 6693 . 45068
3,2,1 5.5 | 17.75 | 189.53125 | 1584.10156 | 11445.75538
2,2,2 6 19 214 1866 13947
3,1,1,1 6 18.5 203 .625 1740.9375 12797.27344
2,2,1,1 6.5 | 19.75 | 229.03125 | 2042.16406 | 15530.08351
2,1,1,1,1 7 20.5 244.625 2230.1875 17257 .64836
1,1,1,1,1,1 7.5 | 21.25 | 260.78125 | 2430.49219 | 19139.02892

!
i
i
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10
11
12
13
14
15
16
17
18
19
20
22

26
28
30
35
40
45
50
55
60
65
70
80
90
100

21

.800
.818
.833
.846
.857
.867
.875
.882
.889
.805
.900
.909
.917
.923
.929
.933
.943
.950
.956
.960
.964
.967
.969
971
.975
.978
.980

A. WALD AND R. J. BROOKNER

Tables of the Constant K = (

111
.738
.761
.780
.796
.810
.822
.833
.843
.851
.859
.866
.878
.888
.896
.903
.910
.922
.932
.940
.946
.950
.954
.958
.961
.966
.970
.973

31

.646
.676
.702
724
743
.759
774
787
.798
.808
.818
.834
.847
.859
.869
877
.894
.908
918
.926
.932
.938
.943
.947
.9563
.959
.963

22

.560
.595
.625
.651
.674
.693
711
727
741
754
.765
.785
.802
.817
.829
.840
.862
.879
.892
.902
911
.918
.924
.930
.938
.945
.951

211

.517
.5563
.585
.612
.637
.658
.677
.694
.709
723
.736
.758
77
793
.807
.819
.843
.862
877
.889
.899
.907
.914
.920
.930
.937
.943

2

)
n

1111

477
.b15
.548
.576
.602
.624
.645
.663
.679
.694
.708
732
.752
770
.785
.798
.825
.846
.862
.875
.886
.895
.903
.910
.921
.929
.936

41

.480
.521
.556
.586
.612
.636
.656
.675
.691
.706
.720
744
764
.781
.796
.809
.835
.855
.871

.894
.902
.910
.916
.926
.934
.941

311

.310
.352
.390
.424
.455
.482
.508
.531
.552
571
.589
.620
.647
.671
.691
.710
747
776
.799
.818
.833
.846
.858
.867
.883
.896
.906



10
11
12
13
14
15
16
17
18
19
20
22
24
26
28
30
35
40
45
50
55
60
65
70
80
90
100

221

.269
.310
.347
.381
.412
.441
.467
.490
.512
.532
.551
.584
.613
.638
.660
.680
.720
.751
776
797
.814
.828
.841
.852
.869
.883
.894

WILKS’ STATISTIC

Tables of the Constant K (1)

2111

.248

.288
.325
.359
.390
.418
.444
.468
.490
.511
.530
.564
.593
.619
.642
.662
.704
737
.763
.785
.803
.818
.831
.842
.861
.876
.888

32
.336
.379
.417
.451
.481
.508
.533
.556
.576
.595
.612
.642
.668
.691
711
.728
.764
.791
.813
.830
.845
.857
.868
877
.892
.903
.913

11111
.229
.268
.304
.338
.368
.397
.423
.447
.470
.490
.510
.544
.575
.601
.625
.646
.689
.723
.751
773
.792
.808
.822
.833
.853
.869
.881

51

.323
.369
.410
.445
.478
.506
.632
.5565
.576
.596
.613
.644
.671
.694
714
.731
.767
794
.816
.833
.848
.860
.870
.879
.894
.905
.915

.168
.206
.243
277
.309
.339
.367
.392
.416
.438
.459
.496
.529
.558
.584
.607
.654
.692
722
747
.768
.786
.801
.814
.836
.853
.867

33

.136
171
.205
237
.268
.297
324
350
374
.396
417
455
.489
.519
.546
.570
.621
661
.694
721
743
762
779
793
817
.836
852

151



152

10
11
12
13
14
15
16
17
18
19
20
22

26
28
30
35
40
45

55
60

70
80

100

411

.155
.192
.228
.261
.292
.322
.349
.375
.398
.421
442
.479
.512
.542
.568
.501
.640
.679
.710
.736
.758
776
.792
.805
.828
.846
.860

A. WALD AND R. J. BROOKNER

Tables of the Constant K (v%)

321

.108.

.140
171
.201
.230
.257
.284
.309
.332
.354
.375
414
.448
479
.507
.532
.585
.628
.663
.692
.716
737
.755
77
797
.818
.835

222
.094
.123
.152
.180
.208
.235
.261
.285
.308
.330
.3561
.390
424
.456
.484
.510
.564
.608
.644
.674
.700
722
740
757
.784
.806
.824

3111

.100
.130
.160
.189
217
244
.270
.295
.318
.340
.361
.400
434
.465
.493
.519
.573
.616
.652
.681
.706
.728
.746
762
.789
.811
.828

2211

.087
.114
.142
.170
197
.223
.248
.272
.295
.317
.338
.376
411
442
.471
.497
.562
.597
.633
.664
.690
712
732
.749
777
.800
.818

21111
.080
.106
.133
.160
.186
212
.236
.260
.283
.304
.325
.363
.398
.430
.458
.484
.540
.585
.623
.654
.681
704
.723
.741
770
.793
.812

111111
.076
.099
.125
.150
.176
.201
.225
.248
.271
.292
.313
.351
.385
.417
.446
.472
.528
.574
.612
.644
.671
.695
715
.733
.762
1,786
.806



