ON A MEASURE PROBLEM ARISING IN THE THEORY OF NON-PARAMETRIC TESTS By Henry Scheffé Princeton University 1. Introduction. While the contents of this paper have broader statistical implications, they were motivated by the following problem: Given two samples, (Y_1, Y_2, \dots, Y_m) and (Z_1, Z_2, \dots, Z_n) from univariate populations with cumulative distribution functions (c.d.f's) F(x) and G(x), respectively, and given furthermore that F and G are members of a certain class Ω of c.d.f's, to test the hypothesis that F = G. We shall refer to this as "the problem of two samples" [8]. It is an example of what Wolfowitz has called problems of the non-parametric case [8]. For the theory of non-parametric problems the following classification of c.d.f's is appropriate: Let Ω_0 be the class of all univariate c.d.f's, that is, the class of all monotone non-decreasing functions F(x) for which $F(-\infty) = 0$, $F(+\infty) = 1$, and F(x) = F(x+0). For every $F \in \Omega_0$ we may conceive of a corresponding random variable X such that $Pr\{X \leq x\} = F(x)$. For some purposes we may desire to rule out the class $\Omega^{(0)}$ of degenerate c.d.f's given by the formula F(x) = 0 for $x < x_0$, F(x) = 1 for $x \geq x_0$, where x_0 is any real number. Let then Ω_1 be the class of non-degenerate c.d.f's, $\Omega_1 = \Omega_0 - \Omega^{(0)}$. Let Ω_2 be the class of all continuous F(x), and let Ω_3 be the class of all absolutely continuous F(x), that is, all F(x) for which there exists a probability density function (p.d.f.) f(x) such that (1) $$F(x) = \int_{-\infty}^{x} f(\xi) d\xi.$$ Finally, let Ω_4 be the class of all F(x) which may be expressed in the form (1) with f(x) continuous. Various solutions of non-parametric problems have been given under the restriction that the c.d.f's belong to one of the classes Ω_i . For example, Kolmogoroff [2] has indicated how a confidence belt for an unknown F may be formed with no assumptions on F, that is $F \in \Omega_0$. Wald and Wolfowitz earlier gave a more general solution of the same problem [5], and also of the problem of two samples [6], under the restriction that the c.d.f's are members of Ω_2 . The latter problem was considered by Dixon [1] for the c.d.f's in Ω_3 . Wilks' theory of tolerance intervals [7] assumes $F \in \Omega_4$. The class Ω_1 has been defined above because it is ordinarily the largest class of statistical interest. We note $$\Omega_0 \supset \Omega_1 \supset \Omega_2 \supset \Omega_3 \supset \Omega_4.$$ ¹ See, however, a still earlier paper by Kolmogoroff [11] in which he gave the distribution theory required for his solution. It is to be understood throughout that the word "region" (also the symbol w) always denotes a Borel set in a k-dimensional (k > 1) sample space W (Euclidean). A "null set" will always mean a Borel set of measure zero. Returning now to the problem of two samples, let m+n=k, $X_i=Y_i$ $(i=1,2,\cdots,m)$, $X_i=Z_{i-m}$ $(i=m+1,\cdots,k)$. Denote by E the point (X_1,\cdots,X_k) . Proceeding along the lines of the usual parametric theory, we may seek a region w (the "critical region") such that $Pr\{E \in w\}$ is the same constant α ("significance level"; $\alpha \neq 0$ or 1) for all F in a particular class Ω_i if F=G. This raises the following question: Define $$P(w \mid F) = \int_{w} dF_{k}(x_{1}, \cdots, x_{k}),$$ where $$F_k(x_1, \dots, x_k) = \prod_{i=1}^k F(x_i).$$ We shall say that a region w has the property π_i if for all $F \in \Omega_i$, $\alpha = P(w \mid F)$ is independent of F and $0 < \alpha < 1$. The question then is, for a fixed i, how can we characterize regions w with the property π_i ? Partial answers to this question are given in the next section. In the language of measure theory the question is this: Let μ be any measure on the real line, such that the measure of the whole line is unity, and form the "power" measure μ^k in Euclidean k-space—that is, the product measure obtained by using μ on each axis. For certain large classes C_i (corresponding to the Ω_i defined above, i = 1, 2, 3, 4) of measures μ , what can we say about the existence and structure of sets of points in the k-space which have the property that their "power" measure is the same for all measures μ in C_i ? **2. Theorems.** Our first theorem tells us that if we want regions w with the desired property, we must restrict F to a smaller class than Ω_1 . THEOREM 1: There is no w with the property π_1 . To prove the theorem, suppose the contrary. Then there exists a w for which $P(w \mid F) = \alpha$ for all $F \in \Omega_1$ and $\alpha \neq 0$ or 1. Let L be the line $x_1 = x_2 = \cdots = x_k$, and suppose first there is a point E_0 of L in w. Let $E_0 = (a, a, \dots, a)$, and let $F_h(x)$ be any $F \in \Omega_1$ such that $Pr\{X = a \mid F_h\} = h \ (0 < h < 1)$. Then $$\alpha = P(w \mid F_h) \ge P(E_0 \mid F_h) = Pr\{\text{all } X_i = a \mid F_h\}$$ $$= \prod_{i=1}^k Pr\{X_i = a \mid F_h\} = h^k.$$ By hypothesis α is independent of h. But h may be chosen arbitrarily close to 1. Hence $\alpha = 1$, a contradiction. If no points of w lie on L, the above reasoning applies to w' = W - w, since $\alpha' = P(w' \mid F) = 1 - \alpha$ is independent of $F \in \Omega_1$, and w' contains an E_0 on L, therefore $\alpha' = 1$, $\alpha = 0$. In order to see what kind of structure might yield a w of the desired type, let us, for the moment consider the class Ω_3 of c.d.f's. Then there exists a p.d.f. over W, namely $f(x_1)f(x_2)\cdots f(x_k)$. For any f(x) and any point E, this p.d.f. has the same value at all points E' whose coordinates are permutations of the coordinates of E. This suggests that suitable regions w can be built up by considering points E for which no two coordinates are equal and putting a fixed fraction of the set $\{E'\}$ in w in such a way that w is a Borel set. Our next theorem justifies this process for the wider class Ω_2 . Let us say that w has the structure S if for every point $E := (x_1, \dots, x_k)$ with no two coordinates equal, M points (0 < M < k!) of the set $\{E'\}$, obtained by permuting the coordinates of E, are in w and the remaining k! - M are not.³ Theorem 2: A sufficient condition that w have the property π_2 is that it have the structure S. In proving the theorem it will be convenient to separate the k! points of every set $\{E'\}$ by means of regions u_i $(i=1,\cdots,k!)$, such that each u_i contains one and only one point of $\{E'\}$. Order the k! permutations of the integers $1, 2, \cdots, k$ in any manner so that $(1, 2, \cdots, k)$ is the first. Let (p_{i1}, \cdots, p_{ik}) be the *i*th permutation $(i=1, 2, \cdots, k!)$ and define u_i as the region $x_{p_{i1}} < x_{p_{i2}} < \cdots < x_{p_{ik}}$. The collection $\{u_i\}$ is disjoint and covers all of W except the set H of points on hyperplanes $x_i = x_j$ $(i \neq j)$. The transformation T_i : $x_{p_{i1}} \to x_1, \cdots, x_{p_{ik}} \to x_k$ maps u_i onto u_1 in such a way that F_k remains invariant. Suppose now that w satisfies the conditions of the theorem. The removal of $H \cap w$ from w does not affect $P(w \mid F)$ for any $F \in \Omega_2$. Hence $$P(w \mid F) = \sum_{i=1}^{k!} P(w \cap u_i \mid F) = \sum_{i=1}^{k!} \int_{w \cap u_i} dF_k$$ $$= \sum_{i=1}^{k!} \int_{u_i} c_{w \cap u_i}(E) dF_k,$$ where $c_8(E)$ denotes the characteristic function of a set S, that is, $c_8(E) = 1$ if $E \in S$, 0 otherwise. Next map each of the regions u_i onto u_1 by means of T_i . F_k is invariant, while $c_{w \cap u_i}(E) \to h_i(E)$ such that $\sum_{i=1}^{k!} h_i(E) = M$ for $E \in u_1$. Then $$P(w \mid F) = \sum_{i=1}^{k!} \int_{u_i} h_i(E) dF_k = \int_{u_i} \sum_{i=1}^{k!} h_i(E) dF_k = M \int_{u_i} dF_k.$$ ² Previously E denoted a random point (X_1, \dots, X_k) , now it denotes an arbitrary point (x_1, \dots, x_k) in the sample space W. This will cause no confusion. ³ Regions of structure S may be regarded as the result of applying R. A. Fisher's randomization process [10] in the most general possible way to the problem of two samples. Special cases of regions with structure S have been considered by Feller [9] and Neyman [12], and are implied by all writers [e.g., 6] who have attacked the problem of two samples by the method of ranks. ⁴ This may be seen by writing $P(H \mid F)$ in the form of an integral over W of $c_H(E)$ dF_k , where $c_H(E)$ is the characteristic function of the set H, and applying the Fubini theorem [4]. But $$1 = P(W \mid F) = \sum_{i=1}^{k!} \int_{u_i} dF_k,$$ and by use of T_i we find $$\int_{u_i} dF_k = \int_{u_i} dF_k \qquad (i = 1, \dots, k!).$$ Hence $$\int_{u_k} dF_k = 1/k!,$$ and $$P(w \mid F) = M/k!$$ for all $F \in \Omega_2$. Thus w has the property π_2 . H is an example of a set in the class N_2 of regions w for which $P(w \mid F) = 0$ for all $F \in \Omega_2$. Since if regions w_1 and w_2 differ by a set $w \in N_2$, $P(w_1 \mid F) = P(w_2 \mid F)$ for all $F \in \Omega_2$, we have COROLLARY 1: It is sufficient that w have the property π_2 if it differs from a region with structure S by a region in N_2 . Defining similarly the class N_3 as that class of regions w for which $P(w \mid F) = 0$ for all $F \in \Omega_3$, we see that N_3 is precisely the class of null sets. COROLLARY 2: A sufficient condition that w have the property π_3 is that it have the structure S except for a null set. The mildest restriction under which the writer has been able to concoct a necessity proof is that the boundary of w be a null set. This class of regions w includes (to the best of his knowledge) all critical regions heretofore used in practice. Theorem 3: For a w whose boundary is a null set, a necessary condition that w have the property π_4 is that it have the structure S except on a null set. Suppose then that w has the property π_4 , and its boundary B is a null set. Let B_i be the transform of B under T_i . Let the null set H' be the union of H with all B_i and let $w_1 = w - H'$, $w_2 = (W - w) - H'$. Then w_1 and w_2 are open sets and $P(w_1 \mid F) = P(w \mid F)$ for all $F \in \Omega_4$. Furthermore for any E either all or none of the points of $\{E'\}$ are in $w_1 \cup w_2$. Now consider any $E_0 \in w_1$ and let M_0 be the number of points of $\{E'_0\}$ in w_1 , so that $k! - M_0$ of $\{E'_0\}$ are in w_2 . Let $E_0 = (\xi_1, \dots, \xi_k)$, and $2\delta_1 = \min \mid \xi_i - \xi_j \mid$ for $i \neq j$. Since w_1 and w_2 are open, cubes with sides parallel to the coordinate hyperplanes $(x_j = \text{constant})$ and edges of length $2\delta_2$ may be centered on the points E'_0 so that each cube is entirely in w_1 or entirely in w_2 , by choosing δ_2 sufficiently small. Choose δ so that $\delta > 0$, $\delta < \delta_1$, $\delta < \delta_2$. The set $\{E'_0\}$ is a subset of the set $\{E''_0\}$ of k^k points whose coordinates are in the set ξ_1, \dots, ξ_k allowing repetitions. For each point $E''_0 = (\xi_{i_1}, \dots, \xi_{i_k})$ in $\{E''_0\}$ construct a cube C_{i_1,\dots,i_k} as above with center at E_0'' and edge 2δ . These cubes are disjoint. Let $f_i(x)$ be a p.d.f. such that the corresponding c.d.f. is in Ω_4 and $f_i(x) = 0$ for $|x - \xi_i| > \delta$ $(i = 1, \dots, k)$. Define the p.d.f. $$f^{(s)}(x) = s^{-1} \sum_{i=1}^{s} f_i(x)$$ $(s = 1, \dots, k).$ Then the corresponding c.d.f. $F^{(s)}$ is in Ω_4 . We have $$\alpha = P(w \mid F^{(s)}) = \int_{w} \prod_{j=1}^{k} f^{(s)}(x_{j}) dW$$ $$= s^{-k} \int_{w} \sum_{i_{1}, \dots, i_{k}=1}^{s} f_{i_{1}}(x_{1}) \dots f_{i_{k}}(x_{k}) dW,$$ where $dW = dx_1 \cdots dx_k$. Bring the last summation sign outside the integral sign, and note that $f_{i_1}(x_1) \cdots f_{i_k}(x_k) = 0$ outside C_{i_1, \dots, i_k} . Then (3) $$\sum_{i_1,\dots,i_k=1}^s I_{i_1,\dots,i_k} = s^k \alpha,$$ where (4) $$I_{i_1,\dots,i_k} = \int_{w \cap C_{i_1,\dots,i_k}} f_{i_1}(x_1) \cdots f_{i_k}(x_k) dW.$$ Our argument depends on certain sums of I_{i_1,\dots,i_k} having the property that the sum is equal to α times the number of terms in the sum. In order to save space we shall say that if Σ is such a sum, then $\Sigma \in R$, R being the class of such sums. Clearly all sums (3) are in R. Let $\{S_{rr}\}$ be the subsets of r ($r=1,\dots,k$) different integers in the set $1,2,\dots,k$ ($\nu=1,\dots,k$), and let Σ_{rr} be the sum of all I_{i_1,\dots,i_k} for which the index i_1,\dots,i_k consists only of integers in S_{rr} and such that all the integers of S_{rr} appear in the index. We wish to prove that Σ_{k1} , the sum of I for cubes centered on the points of $\{E'_0\}$, is in R. To accomplish this we make an induction on r: If we assume all $\Sigma_{rr} \in R$ for r < s, then we can show all $\Sigma_{s\mu} \in R$ ($s=2,\dots,k$). No generality is lost in taking $S_{s\mu}$ as the set of integers $1, 2, \dots, s$. Now consider the left member of (3). Some thought will show that it may be broken down into $\Sigma_{s\mu}$ plus a sum of Σ_{rr} where r < s. But the left member of (3) is in R, and by hypothesis so are all Σ_{rr} with r < s. It follows that $\Sigma_{s\mu}$ is also in R. To see that $\Sigma_{1r} \in R$ ($\nu = 1, \dots, k$), let ⁵To illustrate the reasoning, suppose s=4. If $S_{\sigma\tau}$ is the set of (different) integers a, b, \cdots , h, denote $\Sigma_{\sigma\tau}$ by $\langle a,b,\cdots,h \rangle$, that is, $\langle a,b,\cdots,h \rangle$ is the sum of all I whose indices contain a,b,\cdots,h and no other integers. Then the right member of (3) contains terms from $\langle 1,2,3,4\rangle$; $\langle 1,2,3\rangle$, $\langle 1,2,4\rangle$, $\langle 1,3,4\rangle$, $\langle 2,3,4\rangle$; $\langle 1,2\rangle$, $\langle 1,3\rangle$, $\langle 1,4\rangle$, $\langle 2,3\rangle$, $\langle 2,4\rangle$, $\langle 3,4\rangle$; $\langle 1,2\rangle$, $\langle 3,4\rangle$; $\langle 1,2\rangle$, $\langle 3,4\rangle$. Every term of the right member of (3) is in one of these sums $\langle \rangle$. No term can appear in 2 sums $\langle \rangle$. Every term of each sum $\langle \rangle$ appears in the right member of (3). Thus the right member is the sum of all sums $\langle \rangle$ listed above, and by hypothesis, all but the first sum $\langle \rangle$ are in R. $S_{1\nu}$ be ν and note that $\Sigma_{1\nu}$ consists only of $I_{\nu,\nu,\dots,\nu}$. Putting s=1 in (3) we have $I_{1,1,\dots,1}=\alpha$, and likewise $\Sigma_{1\nu}=I_{\nu,\nu,\dots,\nu}=\alpha$. Thus $\Sigma_{1\nu} \in R$. We have at this stage that $\Sigma_{k1} = k!\alpha$. But as we already noted, of the cubes C associated with the integrals I in the sum Σ_{k1} , M_0 are entirely inside w_1 and $k! - M_0$ entirely outside w_1 . For the set of M_0 terms in Σ_{k1} corresponding to the cubes C in w_1 the region of integration $w \cap C$ in (4) is actually C, and for the remaining set of terms in Σ_{k1} the region of integration is the empty set. Furthermore if $w \cap C = C$ in (4), the corresponding I is unity. Hence $\Sigma_{k1} = M_0 = k!\alpha$, $\alpha = M_0/k!$. If we now repeated the process with any other point $E_1 \in w_1$ instead of E_0 , and let M_1 be the number of points of $\{E_1'\}$ in w_1 , we would get $\alpha = M_1/k!$. Therefore $M_1 = M_0$. From $0 < \alpha < 1$, we conclude $0 < M_0 < k!$. Thus w_1 has the structure S. The exceptional null set allowed for in the statement of Theorem 3 entered the proof when we removed $w \cap H'$ from w. Had we assumed that the boundary $B \in N_2$, then the exceptional set would be in N_2 . As a corollary to the reasoning used in the proof we thus get COROLLARY 3: If the boundary of w is in N_2 , a necessary condition that w have the property π_4 is that w have the structure S except on a subset in N_2 . Finally, because of (2), any sufficient (necessary) condition for w to have the property π_i is sufficient (necessary) for w to have the property π_j if j > i (j < i). Hence we may replace π_2 in Theorem 2 and Corollary 1 by π_3 or π_4 , π_3 in Corollary 2 by π_4 , π_4 in Theorem 3 and Corollary 3 by π_3 or π_2 . This yields COROLLARY 4: If the boundary of w is a null set, a necessary and sufficient condition that w have the property π_3 (or π_4) is that it have the structure S except on a null set. COROLLARY 5: If the boundary of w is a region in N_2 , a necessary and sufficient condition that w have the property π_2 (or π_3 or π_4) is that it have the structure S except on a subset in N_2 . 3. Remarks. Wald and Wolfowitz [6, 8] in their work on the problem of two samples for the case $F \in \Omega_2$ have imposed the following restriction on any statistic used to test the null hypothesis: The statistic must be a function of V only, where the sequence V of k elements is formed as follows: Rank the X_j of the sample in ascending order of magnitude (ignoring cases where two X_j are equal), and if the i-th element in this rank order is a Y put the i-th element of V equal to zero, else unity. This means that the resulting critical region always consists of the union of s of the regions u_i defined in section 2, where s is a multiple of m!n!. The results of our section 2 show that this restriction is not necessary if all we require is that $Pr\{E \in w\}$, where w is the critical region and E the sample point, be the same constant α whenever the null hypothesis is true. In fact a valid (but probably not very efficient) solution of the problem of two samples has been proposed by Pitman [3] in which the statistic is not a function of V only. Putting further requirements on the critical region will lead to a more restricted class than the class of regions having essentially the structure S. For instance, from section 2 it follows that the significance level α can be any of the values i/k! $(i=1,\cdots,k!-1)$. But if we lay down a symmetry condition to the effect that if $(y_1,\cdots,y_m,z_1,\cdots,z_n)$ is in w, all points obtainable by permuting the y's among themselves and the z's among themselves be in w, then α must be a multiple of m!n!/k!. Again, if we impose the condition that any statistic $T(X_1,\cdots,X_k)$ used to test the null hypothesis remain invariant when all the X_j are subjected to the same topological transformation of the real line onto itself, then Wald and Wolfowitz [6] have shown that T must be a function of V only, so that w has the special structure described above. It would seem desirable when the subject of statistical inference in the non-parametric case may be entering a stage of rapid development, to be clear about the assumptions necessary to restrict the critical region to a particular class. In concluding these remarks, we quote with the kind permission of Dr. Wolfowitz, from some correspondence with the writer. Important work has been done on non-parametric tests under the restriction that the statistic used be invariant under topological transformation. The following statement as to why this restriction might be imposed will therefore interest the reader: "... there are arguments pro and con... Pro: If the statistic be not invariant, this could happen: Two scientists working on the same problem and having the same observations to interpret might come to opposite conclusions if one used one scale of measurement and the other used a monotone function of that scale. Con: The criterion of topologic invariance of the statistic is a restriction on our freedom. Furthermore it cannot be imposed except in the univariate case ([8], p. 270)." ## REFERENCES - [1] W. J. Dixon, Annals of Math. Stat., Vol. 11 (1940), pp. 199-204. - [2] A. Kolmogoroff, Annals of Math. Stat., Vol. 12 (1941), pp. 461-463. - [3] E. J. G. PITMAN, J. Roy. Stat. Soc. Suppl., Vol. 4 (1937), pp. 117-130. - [4] S. Saks, Theory of the Integral, Warsaw, 1937. - [5] A. Wald and J. Wolfowitz, Annals of Math. Stat., Vol. 10 (1939), pp. 105-118. - [6] A. WALD and J. WOLFOWITZ, Annals of Math. Stat., Vol. 11 (1940), pp. 147-162. - [7] S. S. Wilks, Annals of Math. Stat., Vol. 12 (1941), pp. 91-96. - [8] J. Wolfowitz, Annals of Math. Stat., Vol. 13 (1942), pp. 247-279. - [9] W. Feller, Stat. Res. Mem., Vol. 2 (1938), pp. 107-125. - [10] R. A. Fisher, Statistical Methods for Research Workers, section 24, example 19; The Design of Experiments, section 21; J. Roy. Anthrop. Soc., Vol. 66 (1936), pp. 57-63. - [11] A. Kolmogoroff, Gior. Ist. Ital. Attuari, Vol. 4 (1933), pp. 83-91. - [12] J. NEYMAN, J. Roy. Stat. Soc., Vol. 105 (1942), pp. 311-312.