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NON-PARAMETRIC TESTS
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1. Introduction. While the contents of this paper have broader statistical
implications, they were motivated by the following problem: Given two samples,
Yy, Y2, -, Y and (Z,, Z,, -, Z,) from univariate populations with
cumulative distribution functions (c.d.f’s) F(z) and G(z), respectively, and
given furthermore that F and G are members of a certain class € of c¢.d.f’s, to
test the hypothesis that F = G. We shall refer to this as “the problem of two
samples” [8]. It is an example of what Wolfowitz has called problems of the
non-parametric case [8].

For the theory of non-parametric problems the following classification of
c.d.f’s is appropriate: Let Qq be the class of all univariate c.d.f’s, that is, the class
of all monotone non-decreasing functions F(z) for which F(—») = 0,
F(+ ) = 1, and F(z) = F(z,+ 0). For every F eQ we inay conceive of a
corresponding random variable X such that Pr{X < z} = F(z). For some
purposes we may desire to rule out the class 2 of degenerate c.d.f’s given by the
formula F(z) = Oforx < z,, F(z) = 1for z > x,, where x, is any real number.
Let then @ be the class of non-degenerate c.d.f’s, @ = Q — Q.  Let @, be the class
of all continuous F(z), and let Q; be the class of all absolutely continuous F(z),
that is, all F(z) for which there exists a probability density function (p.d.f.)
f(z) such that

1) F@ = [ 5@ e

Finally, let Q4 be the class of all F(x) which may be expressed in the form (1) with
f(x) continuous.

Various solutions of non-parametric problems have been given under the
restriction that the c.d.f’s belong to one of the classes ©;. For example, Kol-
mogoroff [2] has indicated how a confidence belt for an unknown F may be
formed with no assumptions on F, that is F ¢Q. Wald and Wolfowitz earlier'
gave a more general solution of the same problem [5], and also of the problem
of two samples [6], under the restriction that the c.d.f’s are members of Q.
The latter problem was considered by Dixon [1] for the c¢.d.f’s in Q5. Wilks’
theory of tolerance intervals [7] assumes F e Q,. The class ©; has been defined
above because it is ordinarily the largest class of statistical interest. We note

#)) QDO DWL DY D,

1See, however, a still earlier paper by Kolmogoroff [11] in which he gave the distri-
bution theory required for his solution.
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It is to be understood throughout that the word “region” (also the symbol w)
always denotes a Borel set in a k-dimensional (k > 1) sample space W (Euclidean).
A “null set” will always mean a_Borel set of measure zero.

Returning now to the problem of two samples, let m +n = k, X; = Y;
C=1,2--,m),Xi=2Zimw(@=m+1,---,k). Denote by E the point
(X1, -+, X&). Proceeding along the lines of the usual parametric theory,
we may seek a region w (the “critical region”) such that Pr{E ¢ w} is the same
constant « (‘“‘significance level”; & = 0 or 1) for all F in a particular class Q;
if F = @. This raises the following question: Define

Pw|F) = fwdn(xl, —

where
k
Fr(, -+, 2) = H; F(x)).
oo

We shall say that a region w has the property =; if for all F €¢Q;, o = P(w | F)
is independent of F and 0 < a < 1. The question then is, for a fixed 7, how
can we characterize regions w with the property =,? Partial answers to this
question are given in the next section.

In the language of measure theory the question is this: Let u be any measure
on the real line, such that the measure of the whole line is unity, and form the
“power’’ measure u* in Euclidean k-space—that is, the product measure obtained
by using u on each axis. For certain large classes C; (corresponding to the Q;
defined above, 7 = 1, 2, 3, 4) of measures x, what can we say about the existence
and structure of séts of points in the k-space which have the property that
their “power’” measure is the same for all measures u in C;?

2. Theorems. Our first theorem tells us that if we want regions w with the
desired property, we must restrict F to a smaller class than @, .

TueoreM 1: There is no w with the property , .

To prove the theorem, suppose the contrary. Then there exists a w for which
Pw|F) = aforallF ejand « # Oor1. Let Lbethelinez; == --- =z,
and suppose first there is a point Eq of L in w. Let By = (a, a, - -, @), and
let Fi(x) be any F e such that Pr{X = a|Fy} = h (0 < h < 1). Then

a=Pw|Fy) > P(E|Fy)'= Pr{all X; = a| Fi}

k
=[] PriX; = a| Fs} = K.
7=1
By hypothesis « is independent of k. But & may be chosen arbitrarily close to 1.
Hence a = 1, a contradiction. If no points of w lie on L, the above reasoning
applies to w’ = W — w, since o = P(w’' | F) = 1 — aisindependent of F € 2, ,
and w’ contains an E, on L, therefore o/ = 1, a = 0.
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In order to see what kind of structure might yield a w of the desired type,
let us.for the moment consider the class 2; of ¢.d.f’s. Then there exists a p.d.f.
over W, namely f(z))f(zz) - - - f(zx). For any f(z) and any pont® E, this p.d.f.
has the same value at all points E’ whose coordinates are permutations of the
coordinates of E. This suggests that suitable regions w can be built up by
considering points E for which no two coordinates are equal and putting a fixed
fraction of the set {E’} in w in such a way that w is a Borel set. Our next
theorem justifies this process for the wider class Q, .

Let us say that w has the structure S if for every point E := (x1, - -+, xz) with
no two coordinates equal, M points (0 < M < k!) of the set {E'}, obtained by
permuting the coordinates of E, are in w and the remaining k! — M are not.’

THEOREM 2: A sufficient condition that w have the property m is that it have the
structure S.

In proving the theorem it will be convenient to separate the k! points of
every set {E’} by means of regions u; ( = 1, - - - , k!), such that each u; contains
one and only one point of {E’}. Order the k! permutations of the integers
1,2, ---, kin any manner so that (1, 2, -- -, k) is the first. Let (pa, ---, D)

be the ¢th permutation (i = 1, 2, -- -, k!) and define u; as the region x,,, <
Zp,y < -+ < Zp,. The collection {u;} is disjoint and covers all of W except
the set H of points on hyperplanes x; = x; (i # j). The transformation T :
Tpy — L1, **, Ty, — Ty MAPS u; onto u; in such a way that Fj remains in-
variant.

Suppose now that w satisfies the conditions of the theorem. The removal
of H N w from w does not* affect P(w | F) for any F ¢Q,. Hence

k! k!
> PwNuw|F) = Ef dF,
1=1 wNUy

P(w | F)

i=1

k!
> [ conu® ars,

where cg(E) denotes the characteristic function of a set S, that is, ¢s(E) = 1
if £ € S, 0 otherwise. Next map each of the regions u; onto u; by means of T';.
Fy is invariant, while ¢ynu;(E) — hi(E) such that 3%, hi(E) = M for E ew, .
Then

Pw|F) = kg,l f h(B) dFy = [ 3 h(B) dFy = M [ dF..

1 =1

2 Previously E denoted a random point (X, --- , X&), now it denotes an arbitrary point
(z1, -+, zx) in the sample space W. This will cause no confusion.

3Regions of structure S may be regarded as the result of applying R. A. Fisher’s
randomization process [10] in the most general possible way to the problem of two samples.
Special cases of regions with structure S have been considered by Feller [9] and Neyman
[12{, and are implied by all writers [e.g., 6] who have attacked the problem of two samples
by the method of ranks.

4 This may be seen by writing P(H | F) in the form of an integral over W of cy(E) dF: ,
where ¢y (E) is the characteristic function of the set H, and applying the Fubini theorem [4].
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But

k!
1=pPW|F) =Y [ dr,

f==l s

and by use of T; we find

dek=f dF; @=1,---,k!.

%)

Hence
[ ar=m,

and
Pw|F) = M/k!

for all F ¢eQ. Thus w has the property .

H is an example of a set :n the class N, of regions w for which P(w | F) = 0
for all F Q. Since if regions w; and w. differ by a set w e No, P(wy | F) =
P(w; | F) for all F €Q,, we have

CoROLLARY 1: It zs sufficient that w have the property ms if it differs from a region
with structure S by a region in N, .

Defining similarly the class N; as that class of regions w for which P(w | F) = 0
for all F €Q;, we see that N; is precisely the class of null sets.

CoROLLARY 2: A sufficient condition that w have the property ms is that it have
the structure S except for a null set.

The mildest restriction under which the writer has been able to concoct a
necessity proof is that the boundary of w be a null set. This class of regions w
includes (to the best of his knowledge) all critical regions heretofore used in
practice.

TaEOREM 3: For a w whose boundary is a null set, a necessary condition that
w huve the property ms ts that it have the structure S except on a null set.

Suppose then that w has the property =, and its boundary B is a null set.
Let B: be the transform of B under 7;. Let the null set H' be the union of H
with all B;and let w;, = w — H', w, = (W — w) — H’. Then w; and w, are open
sets and P(w, | F) = P(w|F) for all F ¢Q . Furthermore for any E either
all or none of the points of {E’} are in w; Uw,. Now consider any E, e w;
and let M, be the number of points of {Eo} in w; , so that k! — M, of {Es} are
inw,. Let By = (&1, -+, &), and 26, = min | § — &;| for ¢ # j. Since w,
and w. are open, cubes with sides parallel to the coordinate hyperplanes (z; =
constant) and edges of length 28, may be centered on the points Ej so that each
cube is entirely in w; or entirely in w. , by choosing &, sufficiently small. Choose
§sothatd > 0,86 <& ,8 <. Theset {Eo} is a subset of the set {Eq} of
k" points whose coordinates are in the set & , - - -, & allowing repetitions. For
each point Eo = (£&,, -+, £,) in {Eq} construct a cube Ci,,...;, as above
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with center at Eq and edge 25. These cubes are disjoint. Let fi(z) be a p.d.f.
such that the corresponding ¢.d.f. is in @, and fi(z) = Ofor [z — & | > 6 (i =1,
-+, k). Define the p.d.f.

%) = s filz) (s=1,---,k).
=1
Then the corresponding c.df. F* is in @;. We have

Pu|F) = | ﬁlf"’m) aw

w

a

Y ) o fan aw,

g eatge=

where dW = dz; - - - dx . Bring the last summation sign outside the integral
sign, and note that f; (z1) - - - fi(xx) = O outside C;,,....;, . Then

3

(3) Z Il'u‘“-"k = Ska,
$100 c e ipeml :
where
@) Lvoiv= [ Jule) -+ falm) W,
WACK, -y ig

Our argument depends on certain sums of I;,....,;, having the property that
the sum is equal to « times the number of terms in the sum. In order to save
space we shall say that if = is such a sum, then = ¢ R, R being the class of such
sums. Clearly all sums (3) are in B. Let {S,,} be the subsetsof » (r = 1, -+,
k) different integers in the set 1,2, --- k(v = 1, -+ -, xC,), and let Z,, be the
sum of all I;...,;, for which the index %,, ---, 7 consists only of integers in
S, and such that all the integers of S,, appear in the index. We wish to prove
that =i , the sum of I for cubes centered on the points of {Es},isin R. To ac-
complish this we make an induction on r: If we assume all Z,, ¢ R for r < s, then
we can show all Z,, e R (s = 2, ---, k). No generality is lost in taking S,, as
the set of integers 1, 2, --- , s. Now consider the left member of (3). Some
thought will show® that it may be broken down into 2. plus a sum of Z,, where
r < s. But the left member of (3) is in R, and by hypothesis so are all Z,, with
r < s. It follows that Z,,is also in R. Toseethat £, eR (v =1, -, k), let

8dT'o illustrate the reasoning, suppose s = 4. If Syr is the set of (different) integers a,
b, -+, h, denote Z,r by <a, b, -+ , h>, that is, <a, b, --- , > is the sum of all I whose
indices contain a, b, -+ , k and no other integers. Then the right member of (3) contains
terms from <1, 2, 3, 4>; <1, 2, 3>, <1, 2,4>, <1, 3, 4>, <2, 3,4>; <1, 2>, <1, 3>,
<1, 4>, <2,3>, <2,4>, <3, 4>; <1>, <2>, <3>, <4>. Every term of the right
member of (3) is in one of these sums < >. No term can appear in 2 sums < >. Every
term of each sum < > appears in the right member of (3). Thus the right member is the
sum of all sums < > listed above, and by hypothesis, all but the first sum < > arein R.
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8y, be » and note that Z, consists only of I,,,...,. Puttings = 1 in (3) we
have I,,...; = a, and likewise 2y, = I,,..., = a. Thus =, ¢ R.

We have at this stage that Z;; = kla. But as we already noted, of the cubes
(" associated with the integrals I in the sum 2, , M, are entirely inside w, and
k! — M, entirely outside w; . For the set of M, terms in Z;; corresponding to
the cubes C in w; the region of integration w N C in (4) is actually C, and for the
remaining set of terms in 2, the region of integration is the empty set. Further-
more if w C = C in (4), the corresponding I is unity. Hence =iy = M, = kla.
a = Moy/k!l. If we now repeated the process with any other point E; e w; in-
stead of Ey, and let M, be the number of points of {E1} in w,, we would get
a = M,/k!. Therefore My = M,. From0 < « <1, we conclude 0 < M, < k!.
Thus w, has the structure S.

The exceptional null set allowed for in the statement of Theorem 3 entered
the proof when we removed w N H’ from w. Had we assumed that the boundary
B € N2, then the exceptional set would be in N». As a corollary to the reasoning
used in the proof we thus get

CoROLLARY 3: If the boundary of w is in N, a necessary condition that w have
the property w4 is that w have the structure S except on a subset in N .

Finally, because of (2), any sufficient (necessary) condition for w to have the
property = is sufficient (necessary) for w to have the property =;if j > i (j < 7).
Hence we may replace m in Theorem 2 and Corollary 1 by 3 or x4, w3 in Corol-
lary 2 by w4, m4in Theorem 3 and Corollary 3 by w3 or v, . This yields

CoroLLARY 4: If the boundary of w is a null set, a necessary and sufficient condi-
tion that w have the property ws (or ms) is that it have the structure S except on a
null set. )

CoRrOLLARY 5: If the boundary of w is a region in N, , a necessary and sufficient
condition that w have the property m; (or ws or ms) is that it have the structure S except
on a subset in N ..

3. Remarks. Wald and Wolfowitz [6, 8] in their work on the problem of two
samples for the case F e 2 have imposed the following restriction on any statistic
used to test the null hypothesis: The statistic must be a function of V only,
where the sequence V of k elements is formed as follows: Rank the X; of the
sample in ascending order of magnitude (ignoring cases where two X ; are equal),
and if the 7-th element in this rank order is a ¥ put the -th element of V equal
to zero, else unity. This means that the resulting critical region always consists
of the union of s of the regions u. defined in section 2, where s is a multiple of
m!nl. The results of our section 2 show that this restriction is not necessary, if
all we require is that Pr{E e w}, where w is the critical region and E the sample
point, be the same constant a whenever the null hypothesis is true. In fact a
valid (but probably not very efficient) solution of the problem of two samples
has been proposed by Pitman [3] in which the statistic is not a function of V only.

Putting further requirements on the critical region will lead to a more restricted
class than the class of regions having essentially the structure S. For instance,
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from section 2 it follows that the significance level « can be any of the values
ikl (¢ =1,---, k! —1). Butif we lay down a symmetry condition to the
effect thatif (y;, - -+, ym, 21, - -+, 2,) isin w, all points obtainable by permuting
the y’s among themselves and the z’s among themselves be in w, then « must be
a multiple of m!n!/k!. Again, if we impose the condition that any statistic
T(X15 - -+, Xx) used to test the null hypothesis remain invariant when all the
X ; are subjected to the same topological transformation of the -eal line onto it-
self, then Wald and Wolfowitz [6] have shown that 7" must be a function of V
only, so that w has the special structure described above. It would seem de-
sirable when the subject of statistical inference in the non-parametric case may
be entering a stage of rapid development, to be clear about the assumptions
necessary to restrict the critical region to a particular class.

In concluding these remarks, we quote with the kind permission of Dr. Wolfo-
witz, from some correspoudence with the writer. Important work has been done
on non-parametric tests under the restriction that the statistic used be invariant
under topological transformation. The following statement as to why this re-
striction might be imposed will therefore interest the reader: ¢ - - - there are
arguments pro and con --- Pro: If the statistic be not invariant, this could
happen: Two scientists working on the same problem and having the same
observations to interpret might come to opposite conclusions if one used one
scale of measurement and the other used a monotone function of that scale.
Con: The criterion of topologic invariance of the statistic is a restriction on our
freedom. Furthermore it cannot be imposed except in the univariate case
(8], p. 270).”

REFERENCES

[1] W. J. Dixon, Annals of Math. Stat., Vol. 11 (1940), pp. 199-204.

[2] A. KoLMoGOROFF, Annals of Math. Stat., Vol. 12 (1941), pp. 461-463.

[3] E.J. G. Pirman, J. Roy. Stat. Soc. Suppl., Vol. 4 (1937), pp. 117-130.

[4] S. Saxs, Theory of the Integral, Warsaw, 1937,

[5] A. WaLp and J. WoLrowi1rz, Annals of Math. Stat., Vol. 10 (1939), pp. 105-118.

[6] A. WaLp and J. WoLrowITz, Annals of Math. Stat., Vol. 11 (1940), pp. 147-162.

[7] 8. S. WiLks, Annals of Math. Stat., Vol. 12 (1941), pp. 91-96.

[8] J. WoLrowirz, Annals of Math. Stat., Vol. 13 (1942), pp. 247-279.

[9] W. FELLER, Stat. Res. Mem., Vol. 2 (1938), pp. 107-125.

[10] R. A. FisHER, Statistical Methods for Research Workers, section 24, example 19; The
Design of Experiments, section 21; J. Roy. Anthrop. Soc., Vol. 66 (1936), pp.
57-63.

[11] A. KoLmoGOROFF, Gior. Ist. Ital. Attuari, Vol. 4 (1933), pp. 83-91.

[12[ J. NEYMAN, J. Roy. Stat. Soc., Vol. 105 (1942), pp. 311-312.



