THE COVARIANCE MATRIX OF RUNS UP AND DOWN

By H. LEvenE anp J. WoLFowITZ
Columbia University

1. Introduction. Let a,, - - -, a, be n unequal numbers and let the sequence
S = (h,hs, -, h,) be any permutation of @, , --- ,a,. S is to be considered
a chance variable, and each of the n! permutations of a,., - - - , a, is assigned the

-ame probability. Consider the sequence R whose " element is the sign (4 or
—~)of hiyp — hi, (1 =1,2,--- ,n — 1). A sequence of p consecutive + signs
not immediately preceded or followed by a + sign is called a run up of length
p; a sequence of p consecutive — signs not immediately preceded or followed by
a — sign is called a run down of length p. The term “run’ will denote both
runs up and runs down. The usage of the term ‘“length’ varies; most quality
control literature attributes the length p + 1 to the runs which we say are of
length p.
As an example of our usage, the sequence

S=28131347
gives the sequence

R=++—+++,

which has a run up of length 2, followed by a run down of length 1, followed by
a run up of length 3.

Runs up and down are widely used in quality control and have been applied
to economic time series. The purpose of this paper is to obtain their variances
and covariances and to correct some erroneous notions prevalent in the literature
about their application.

2. Notation. If the sign (4 or —) of (hiy1 — k) is the initial sign of a run
defined as above, we call h; the initial turning point (i. t. p.) of the run. Then
hy is always an i. t. p., and we adopt the convention that h, is never an i. t. p.
We define new stochastic variables as follows:

(2.1) 20 = {1 if h; is an i. t. p.,

0 otherwise,

2.2) = {1 if h;is .the i. t. p. of a run of length p,
0 otherwise,

1 if h;is the i. t. p. of a run of length p or more,
23) Vs = {O otherwise, P ’ .
fori =1,2,---,n. Also
(2.4) r = the number of runs in R,
(2.5) r, = the number of runs of length p in R,
(2.6) 75, = the number of runs of length p or more in R.

n n n
. /
Evidently r = Z Ti, Tp = }:\ Zpi,and r, = Z Wei .
ta=l = faml
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RUNS UP AND DOWN 59

If X and Y are stochastic variables, let E(X) denote the mean of X, o(XY)
denote the covariance of X and Y, and ¢°(X) denote the variance of X, if they
exist. By the distribution function of X we shall mean a function f(x) such that
P{X < z} = f(x), where the symbol P{ } denotes the probability of the re-
lation in the brackets.

3. Preliminary formulas. Let Y’ be a stochastic variable with any continuous
distribution function f(y). Let Y = (y1, 2 ---, ¥») be a sequence of n inde-
pendent observations on Y’. Since P{y; = y;} =0,(¢ #j;¢,j=1,2,---,n),
the distribution of runs up and down in Y is‘evidently the same as that in S.
Now choose f(y) to be

fy) =0, (y<L0),
)=y, @O0O<Ly<,
=1 (@@=

1
1
Plyis < 4 > yin} = L [f“ (f dy._1> du] dyin = 3.
s+1

By symmetry
E(@) = P{yia < 4s > i) + Plyia > ¥ < yin} = 4,
=23 :,n—1).

Then

Also E(x;) = 1, and E(x,) = 0.
It will be necessary hereafter to evaluate expressions of the types

p+l y2 k+
(3.1) v=[ @) gy, - ay, = ey
and
1 k
(yn)
3.2 V= .. d .
( ) ‘/1.1,,“ ]I;z h Yr

From the fact that

Vp+1 P
'[ f dyl oo dy, = f, f dvl o e p = (v;ﬁ"l_)_
Yp+1 V2 p:

wherev; = (1 — y;), (G =1, ---, p + 1), it can easily be shown that
V — i (_1)a+1 (vp+l)P—. + ( )p (yP+1)

(3.3) o=t &+ s)lp — 9)! &+ p)!
| I
r=0 P+k—=ntr"

1 1 Vp+2
We shall also need L V dy,+1 and f f ’ V dypi1 dyp+2 . Now
o Jo

1 k
_ —1)ktr 1
3.4) _/0. dep+1-§)( 1) P+Ek—r+Dlrl"
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Making use of the relation,

3 P 1 IRV 1
2 (-1 W!_( 1) Py ey S YPTE t <m),

r=0
we have
1
1
(3.5) fo Vidgorr = G e ¥ Dplkt-
Similarly

fl fv,,n v d d 1 1
SR A Yrar ot = TR T TR (p TR 2)(p F DR

4. Covariances of runs up and down. We first compute E(r,) and E(r,).
We define the symbol
P{—, 4% =) = Plyia > ¥ <¥i1 <+ + <Yivp > Yirpt}.
The value of the right member is independent of ¢ whenever it is defined (.e.
i—1>1,i14+p+1<n). Now

E(xm) = P{—'r +p7 "'l + P{+r _pr +l = 2P{_r +p7 _}

1 pl i+ vi+1 pl 2
® 3p +1
=2ff f f dyiy -+ dy; —oP +
0 Juirper o J f Yot Wi ®+3)! ’

(i=2’37 L, — P — 1)'
E(z,) = 2P{+", —} and E(zpn-p) = 2P{—, +7}.

By symmetry E(z,1)) = E(x;.n—p), the common value being 2 ;:—+—1— . Also

E(@p) =0, (¢ > n — p).
Thus

n

By) = B (3 ) = 28 + (0= p = 2B

fam

+3p+1_,p+3p—p—4

(» + 3)! (» +3)! ’

Besson [1], Kermack and McKendrick [5], and Wallis and Moore [6] gave the
exact value, although Besson proved it only for special cases. R. A. Fisher [3]
gave lim Et,) .

n=w E(r)

It is clear that E(Wpi) = E(xp.n—p)) (7‘ = 27 N — P), while E(wpl) =

2P{+?} = 2/(p — 1).. We then have

pt1l _,p+p—1
(@ + 2)! @+’

(4.1) = 2n (p<n-2).

4.2) E(ry) = 2n (< n—1).
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Setting p = 1 we have
(4.3) E(r1) = E(r) = 3(2n — 1).

Formula (4.3) was given by Bienaymé [2].
We now obtain o(r,r,). Let (zpi — E(%pi)) = 2pi. Then

= .Z E(zpizu) + 2.302 E(2si2p) + Z‘:QE E(zpizy;).

Forj > ¢ + ¢ + 3, z, and z,; are independent and hence E(z,2,;) = 0. Omit-
ting zero terms from (4.4) we have

o(rp1y) = {Z E(zpizy) + E Z E(xthm) + ZZ E (i 7,5)

I<i<it 1<i<t+p+3
(4.5) - [Z E(zp)E(zs) + g Z Z ‘E(xci)E’(xpi)
+ Z Z E(xm)E(xw)]}
i<i<itp+

Since TpiZqi = 8po(Tps)’ = pepi , We have for the first term of the right member
of (4.5)

«6) 3. Bta) = 550 E(),

where the Kronecker delta §,, = {é’ Lftlz:e:vig;

Since zqix,; = 0 for 7 < j < ¢ + g, the second term in the right member of
(4.5) is

n—p—q n—p—g—1 n—p—g—2

2 E@uzyig) + ,;1 E@yizpirerr) + '2_:1 E (s Tp.ivq2)

={(n—p—q¢—=20E@uTpird + (0 — P — ¢ — E(TeiTp.irer1)
+ (0 —p— qg— DE@iTp.irq42)
+ E@aTp.e+1) + E(Ta Tp,042) + E(TaZp,e43)
+ E@qn—g-2Tpn-p) + E@on—-p-1%p.n—p) + E(Tqn—g-p—2Tp.n—p)}-

4.7)

Now E(zei%p,ivq) = 2P{—, +% =%, +} = 24, where

1 Yitp+g+1 1 1 Yitq Yi+1 1
a= [ L ]
0 0 Vitp+g Vi+q+1 LYO 0 vi

“AYirq * *AWirprast -
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The expression within the square brackets is easily evaluated, and applying
(3.6) to the result, we have

1 1
(p+q¢+Dplgt (p+g+2)(p+1lg!
3 1 + 1
P+qg+2pie+ 1! +ag+ 3+ g+ D!

Similarly, E(xqixp»f-i II-H) = 2P{ ) +q, B +p, - }’ and E(xqfxpvi+q+2) =
2P{—, +% —, —, +%, =} + 2P{—, +% —, +, =7, +}. The other terms
in the right member of (4.7) are obtained in like manner. The right member of
(4.7) is symmetric in p and g; hence the second and third terms of the right mem-
ber of (4.5) are equal.

We now consider the remaining terms in the right member of (4.5) for p > g¢;
the result obtained also holds for p < q. We write them as

A=

{ "E_q E@s)E(p,i-ip+2) + Z E(24:) E(Tp,i-p+1)

i=p+3 1=p+!
n—g—1
+ -+ =;+ E(2s)E(Tp,i-p—0) + -5;:_41 E(2y) E(rp,i—(p—g-1))

(4.8)

n—p—1

+ e+ Z E(zu)E(xy) + Z E(zs)E(2p,i41)

n—p—(g+2)

+ o+ ; E(xq;)E(xp.i+(q+2))}-

o+2
The (p + ¢ + 5) sums in (4.8) comprise in all {(n —p)p+qg+5) —2 ; k}
k=1
terms. Remembering that E(z, n.-p) = E(zn), (4.8) becomes
—{lnlp+ g+ 5 — @ +pg+ ¢ + 7o+ 7qg + 16)E(z:)E(z,))

4.9)
+ [2p + 4]E() E(xp1) + (2 + 4]E(xa) E(25,) + 2E(x0)E (x)} -
Adding the right member of (4.6), twice the right member of (4.7), and (4.9),
we have
o(rpry) =
{ P@+q+ 6@ +3¢+1) .
2y _, _ +pB¢’ + 20" + 40¢ + 19) + (¢" + 9¢" + 29¢ + 26)
@+ 3dip + 3!
+2 —ptqg+1 1
®+a+3)@+ 2!+ D (p+q+5)(q+3)!(p+1)!
o+ '+ 90+’ +230p +q) +14
(»+ g+ 95!

1 p’+3P+1}

2 5
MR R i R O
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p'(¢* + 3¢+ 1) + p°(¢" + 9¢° +19¢ + 6)

(4.10) v 9 + p'(¢" + 9¢° + 28¢" + 35¢ + 11)
@+ 3+ 3!+ p@q¢' + 204" + 40" + 29¢ + 10)

| + (¢ + 94" + 27¢" + 32¢ + 10)

yo PratA@—g—1 pt+qgt4

ETEDIEDICE NI ESY

o @+ o'+ 10(p +¢)* +29(p+9)* + 16(p +¢) — 19
(» + g + 5)!

o Pte o P43 -—p—4
@+g+Dalpt 7 @+ ’

J

where 8,, is the Kronecker delta. Formula (4.10) is valid for p + ¢ <n — 4.
It is symmetric in p and g. Setting p = g we obtain

2 — 2p + 15p* + 41p® + 55p° + 48p + 26
7 (o) 2"{ EEICEE)]

2p' +9p+ 12 4p' +18p" + 23p + 7

2 T I E eIl T @+
42 1 p+3p+ 1}
(2p + L)p!p! (p + 3)!

3p° + 24p° + 69p' + 90p® + 67p° + 42p + 10
4.11 2<2
w2 ® T o + 9!
4 2p° + 11p° + 19p + 9
@2p+3)2p+ 5+ 3!+ D!
P 16p* + 80p® + 116p° + 32p — 19
(2p + 5)!
— 4 p _P3+3P2—P"'4}
(2p + Dp!p! (»+3)!
We next evaluate o(r,r,). Since w,; and w,;are independent forj > ¢ + ¢ + 2,
we have, corresponding to (4.5),

V("prq) = E E(wpiwg) + Z E E(wc"wm) + E Z E (wp; wg;)

<i<it+ <ji<it+p+2

(4.12) - [Z E(wy)E(we) + Z %2 E (wg) E(wy;)
+ E E E(w)E (wm)]

I<i<itpt+2
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Let G = Max (p, q). Then wyw,; = we: and we have for the fist term of the
right member of (4.12)

(4.13) g E(wyiwg) = E(rg).
The second term in the right member of (4.12) may be written
(n—p—q— DEWewp,ire) + (n — p — ¢ — 2)E(woip,isq+1)
+ E(wawy,e41) + EWawy,e42).

Now E(wq"wp-"-l-q) = 2P{_, +q’ _P}v E(wqiwp.i+q+l) = 2P{_7 +q7 ) +F} +
2P{—, 4", —?}, and the other terms are obtained similarly. The third term
in the right member of (4.12) will be equal to (4.14) with p and ¢ interchanged.
The remaining terms in the right member of (4.12) become
—{lne+q¢+3) — @+ pg+ ¢ + 4p + 49 + 5)Ewu)E(w,))
+ [p + EwWe)E(wn) + [g + 1E(wa)E(w,;) + E(wa)E(wp)].
We can now write the formula for ¢(r,ry), valid for p + ¢ < n — 2,

_Pg+2) +p27 +8+5 + (2¢+ (g +2)
@+ 2 + 2)!

2 @+ D@+2)+ @+ D +2
(p + g+ 1)g!p! @P+qg+3)(g+ 2+ 2)!

_ g Ptg+?2 +(G+1)}
+q¢+3)! (G+2!

42 {p3(2q +2) +p'(2¢" + 8¢ +5) +p(2¢" +8¢" + 69— 2) + (2¢° +5¢° — 20— 6)
@+ 2)lp + 2)!

_9 p+g +(p+q+2)[(p+l)(p+2)+(q+1)(q+2)}
(p 4+ g+ 1)g!p! @+ q+3)(g+2)(p +2)!

+2(z>+q)’+3(p-i-q)+I_G’+G—l}
» +qg+3)! G+ 2) )

where G = Max (P, q)- Setting P = qwe obtain
2
() = 2n {_ QP+ DEF AP+ L, 1

(4.14)

(4.15)

a(ryry) = 2n{

+
(4.16)

(» + 2)!(p + 2)! (2p + 1)p!p!
_ g 1 _4 P+l L+t 1}
w1 @+ + P! @+ (2!
‘ +2{2(,,+1)2(3,,2+4,,_3>_4 P
@+ 21 + 2)! @p + Dp!p!
p+1 4p’+6p+1_p’+p—1}
T @+ | G+
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Setting p = 1, we have

(4.18) ) = o*r) = @50_29 .

The value of ¢*(r) was given by Bienaymé [2].
Finally, we evaluate

U'(Tprq) = E E(xpiwg) + Z Z E(wthm) + E Z E(xpiw,;)

i<ji<it 1<j<i+p+3
(4.19) Z E (xm)E (wg:) + E Z E(wy)E(z,5)
1<i<itq+2
+ 22X E(@)Ew,).
iI<i<itptd
Let the symbol 5;; = {(1)’ : z ;} . Then ,; wgi = 1pq Zpi , and

«20) 3 Blepn) = mal ).

The remaining terms of (4.19) introduce no new difficulties, and for p + ¢ <
n — 3 we obtain

p’(2g + 2) + p’(2¢" + 13¢ + 12) )
no_ + p(6q" + 229 + 23) + (2¢° + 6¢ + 15)
olrpre) = 20 | = »+3)1(@ + 2!
»+q+ l)p'q' (p+qg+2)(p + 1lig+ D!

P—-g+D@@+2 @+ 2)p+3)+ (g+ 1)(g+ 2)
(p+q+3)(p+2)'(q+2)' @+aq+ 9+ 3)g + 2)!

g+ +50+ 9 +5 ?i;"_ﬁ’l’ﬂ}
(»+q¢+ 9! " (p+3)!
p'(2¢ + 2) + P’(2¢" + 13¢ + 12)
(4.21) o { 1 + &2’ + 13¢" + 26¢ + 24)
(» +3)g + 2)'[+ p(6¢° + 224" + 19q + 27)
+ (2¢° + 6¢° + 10q + 25)
p+g _P+2—-d+2
(p +q+Dplgt @+ ¢ +2)@+ Dig+ 1!

_ @+ 2lp+2)(g+3)—1] —qlg+ g+ 2)
@+ q+3)p+2)g+2)!

_(p+g+3)@+2)p+3)+ (¢+ g+ 2)]
@+ q+ @+ 3 + 2)!
2@ ¥+ +80+ —1_ p’+3p’—p~4}
®+q+ M (e +3) ’
where 7,, is defined as in (4.20).
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6. The use of runs up and down in tests of significance. Certain miscon-
ceptions about the application of runs up and down have appeared in the litera-
ture, and it is the purpose of this section to clarify them.

Since E(r,), ¢°(rp), E(r) and ¢°(r) are all of the order n, it follows that r,/r
converges stochastically to

T E(r,)
A = '}52 Q)
Let
¢ E(r)
Ay = 31_1: )
From (4.1) and (4.2) we have
M= 2 = 6250
11
)\2 - 1—0 = .2750
19
A3 = 240 — 07917
29
A = 630 — 01726
M= on = 00357
T 280
Let
N, = E(1s)
"R

Some writers say that A, or A, is “the probability of a run of length p.” If
the stochastic process consists in obtaining a sequence from among the n! se-
quences S, each of which has the probability (n!)™, then the phrase “the prob-
ability of @ run of length p” has no meaning. One can speak of the probability
of at least one run of length p (i.e., that r, > 0), of the probability of no run of
length p (r, = 0), of the probability that the first or fifth run (if there are five
runs) in the sequence S be of length p, et¢. It is possible to give different sto-
chastic processes in which ‘‘the probability of a run of length p” will have
meaning and be A\, , or A, . Consider, for example, the totality of all the runs
in the n! sequences S. There are n!E(r) of them, and among these there are
n!E(rp) runs of length p. Now let the stochastic process consist in drawing a
run from the totality of all these runs, each of which is to have the same prob-
ability, which is therefore [n!E(r)]™". Then the probability of drawing a run of
length p is A, . It is difficult to see how this stochastic process can have rele-
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vance to most of the problems of quality control and economic time series where
runs up and down are now used.
Some writers on quality control and economic time series recommend that

statistical control or randomness be tested by use of dy, « - - , dp—1, d',, , where
d; =1 — E@), =12 ---,(@p—-1)),
dy = 15 = E(ry).

The availability of the covariance matrix M of dy, - - , dp-1, d’,, , which we have

obtained in this paper, will assist in the construction of such tests. Also of help
will be a result recently announced by one of us [7], the early publication of which
is expected. This result states that in the limit with » the joint probability
density function of dy, -+, dp1, d',, , is Ke™*°, where K is a constant and Q
is a quadratic formind; , - -, dpy, d’, whose matrix is the inverse of the matrix
M. Tt follows immediately that Q has in the limit the x* distribution with p
degrees of freedom.

We wish now to make a few remarks about the tests of significance, based on
runs up and down, which are used by some contemporary writers. A descrip-
tion of their method can perhaps be best given by an example. With » = 100
and p = 5, say, suppose the observed values are:

Observed Values

T1=30
7‘2=10
rs = 4
ry = 3
= 3
Total, r = 50

These writers then say that the expected values are:

Ezxpected Values according to some wrilers

E(r)) = v\ = 50 (.6250) = 31.25
E(r:) = v = 50 (.2750) = 13.75
E(r;) = »\; = 50.(.07917) 3.96
E(T4) = 1A = 50 (01726) = 0.86
E(rs) = r\s = 50 (.00357) = 0.18

50.00

The correct expected values are given by (4.1) and (4.2) and are:

Correct Expected Values
E(r) = 41.75
E(r;) = 18.10
E(r) = 5.15
E(ry) = 1.11
E(ry) = 022

66.33
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It should be noted that:
(a) A consequence of the incorrect method of obtaining “expected values”
is that, since

E(r) = E(r) + E(r)) + E(rs) + E(ri) + E(rs),

it implies that the expected number of runs of all lengths is equal to the observed
number! This is obviously erroneous. In fact it follows from (4.18) and the
results announced in [7] that » — E(r) is in the probability sense of orde:s /7.

(b) By using the incorrect expected values for comparison with the observed
values one loses the valuable information furnished by r — E(r). If this is large
(in terms of its standard deviation) it is plausible to question whether statistical
control or randomness exists.

6. Summary. Let S = (b, --:, h,) be a random permutation of the n
unequal numbers a,, - - , @, , and let R be the sequence of signs (+ or —)
of the differences h;y1 — h; (Z =1, -+, n — 1). It is assumed that each of the
n! sequences S is equally probable. A sequence of p successive + (—) signs
not immediately preceded or followed by a + (—) sign is called a run up (down)
of length p. Let 7, and 7}, be the number of runs up and down in R of lengths p
and p or more respectively. In this paper the exact values of o(r,r,), (see
formula (4.10)); o*(rp), (formula (4.11)); o(r,rs), (formula (4.16)); o*(r’), (for-
mula (4.17)); and o(r,r;), (formula (4.21)) are derived. A few numerical
values are:

iy < W50 =347 L 511060 — 73859
! 720 °’ 2 453600  °’
2 16n—29 2 57 — 43 2 21496n — 51269
T =g W= T = g
19n + 11 -
o(rim) = —9_”2;*0—, o(rirl) = —5_"6T3, o7} =
4ln — 99 s 23n 4135 W 11Tn =179
B A A - A G A - R
rurly = — 3030 = 817 and o(nrl) = — 183460 — 49019
oints 5040 ' 7\ Ts 453600

The values of E(r,), (formula (4.1)); and E(r,), (formula (4.2)) are also
given. Certain misconceptions about the applications of runs up and down
are discussed.
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