ASYMPTOTIC DISTRIBUTION OF RUNS UP AND DOWN'

By J. WoLrowitz

Columbia University

1. Introduction. Let a;, a2, ---, a, be any n unequal numbers and let
S = (b1, he, -+, h,) be a random permutation of them, with each permutation
having the same probability, which is therefore 7% Let R be the sequence of
signs (4+ or —) of the differences hiyy — hs ¢ = 1,2, ---,n — 1). Then R
is also a chance variable. A sequence of p successive + (—) signs not imme-
diately preceded or followed by a + (—) sign is called a run up (down) of length p.
The term “run” applies to both runs up and runs down. As an example, if
S =(46235),thenin R = (+ — + +) there are three runs, one up of length
one, one down of length one, and one up of length two.

The purpose of this paper is to establish several theorems about the limiting
distributions of a class of functions of runs up and down. These results are
applicable to certain techniques which have been employed in quality control
and the analysis of economic time series. They are also shown to apply to a
large class of “runs.”

2. Joint distribution of runs of several lengths. Let r, be the number of runs
of length p in R and 7}, the number of runs of length p or more in R. Then 7,
and 7, are chance variables. The expectations E(r,) and E (r',,), the variances
o*(rp) and ¢°(r,), and the covariances a(rp,rp,) are given by Levene and Wolfo-
witz [1]. They are all of the order n. Let

_ T2~ 1'2("'1:)
Yo \/ n ’
/= rh, — B(r})
p ’\/7—2 .
Our first results are embodied in the following theorem:
THEOREM 1. Let I be any non-negative integer. The joint distribution of
Y1, -, Y1y Yasn, approaches the normal distribution as n — .
We shall give the proof for the case [ = 1, but it will easily be seen to be
perfectly general. .
Let z,; = 1 if the sign (4+ or —) of h;41 — h; is the initial sign of a run of
length p, and let z,; = O otherwise. Let w,; = 1 if the sign of h;y; — h; is the

1 Part of the results of this paper was presented to the Institute of Mathematical Statis-
tics and the American Mathematical Society at their joint meeting in New Brunswick,
N. J., on September 13, 1943.
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164 J. WOLFOWITZ

initial sign of a run of length p or more, and let w,; = 0 otherwise. Let 2, =
Wpn = 0. Then

n
rn = qu,

i=1

' n
T = szi.

=]
Now write a« = n!, 8 = n!, and consider the 8 sequences
Biivasr, Mvasz, oy bhia G = 1,2, <=+, B).

(Strictly speaking, we should employ the largest integer in «. Since what is
meant is clear and since we are dealing with an asymptotic property, we shall
omit this useless nicety.) Let z,: and wh; have the same definitions relative to
each of these sequences that x,; and w,; have relative to the sequence S. The
accented and unaccented z’s and w’s are not always the same, because the
partitioning of the sequence S sometimes breaks up runs and creates others.
Thus we might have 2, = 1, but z,, always = 0.
It is easy to see that there exists a positive number d such that

leh’—x;i| <d6y

tm=]

ZII’U)Q.' —w;.l < dﬁ.
If, therefore, we define
_El [2;.' - E(x;.)]
V'n ’
, g [wé‘ - E (’w;.)]
V'n ’

2 =

we have
2 d,
|2 — | < \75
2 dp
|25 — ys| < ‘\‘/‘1—1
and
ﬂ6:«-»0.

V'n
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Hence, if the joint limiting distribution of 2, and z, is normal, so is that of
and y; .
The chance variables
ja

’
Ty = E L1
i=(j—~1)a+1

ja
r;j'_—. Z ’w;i (j=1)2,"'3/3)

1=(j—~1)a+1
have the same joint distribution for all values of j. For z1; and wa;, ((j — 1)a <
¢ < ja), depend only on the relative magnitude of the elements of the sequence

h(i—l)a+1 y T hfa ’

not upon the particular values which the elements take, and all permutations
of the sequence have equal probability. Clearly r1; and r;; are independent, in
tlie probability sense, of 71, and 5, (j # j'), because of the definitions of x1;
and wy; . (However, r1; and 73 are not independent, because z1; and ws; cannot
both be 1.) From the results of [1] it follows that for sufficiently large n the
absolute value of the correlation coefficient between r;; and r3; is less than a
number smaller than 1. By the methods of [1] it can easily be shown that the
ratio of the fourth order moments of 7;; and r3; about their means to the square
of the variance of either, is bounded for sufficiently large n. Hence by Lia-
pounoff’s theorem (see, for example, Cramer [2], Uspensky [5]), z and 2, are
jointly normally distributed in the limit. Hence so are y; and y; and the theorem
is proved.

3. Generalization of Theorem 1. Examination of the proof of Theorem 1
shows that it rests on the following two properties of runs up and down:

a) Partition of the sequence S into subsequences affects at most d runs in
each sub-sequence, where d is a fixed positive number independent of =.

b) After partition the totals of runs of each length in any sub-sequence (the
definition now relates to the subsequence) are independent in the probability
sense of the totals of runs in any other subsequence, and satisfy some condition
(such as the Liapounoff) sufficient to make the components of the sum of the
vectors jointly normally distributed in the limit.

Hence if we adopt other definitions of runs which meet conditions (a) and (b)
above, the total numbers of each of these various kinds of runs will be in general
jointly asymptotically normally distributed. For example, if s, and s, be the
numbers of runs up of length p and of length p or more, respectively, and if
t, and t, are the same quantities referring to runs down, then, with ! and & any
positive integers,

, -
81,8, ,8, S+ tlytfly""tk
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are jointly asymptotically normally distributed. However, if t'(k“) is included
in this set, since

7 ’
st =8+ S+ -+ s+ saq4

and
’

h=t+t+ -+ &+ taw
differ by at most one, the limiting distribution is degenerate, i.e., its covariance
matrix is only semi-definite.

As another example, if we define a bizarre run as, say, the occurrence of a run
up of length 5, followed, 17 elements later, by a run down of length 14, then the
number of runs of this type is asymptotically normally distributed with expecta-
tion and variance of order n.

4. Additive functions of runs of all lengths. Combining the numbers of runs
of all lengths greater than a given length generally involves a loss of information.
The following theorem on additive functions of runs up and down may be of
general intérest and of utility in avoiding this undesirable situation.

TuareoreM 2. Let f(2) be a function, defined for all positive integral values of 1,
which fulfills the following conditions:

a) There exists a pair of positive integers, a and b, such that

f@) L a
1.1 L
&b & b
b) for any e1 > O there exists a positive integer N (e1) such that, for all n > N (e),
t=n—1
(4.2) > |fG@) | e(r) < an

=N (€1)
where n, of course, has the same meaning as in the preceding sections. Let F(S),

a function of the chance sequence S, be defined as follows:
(n=1)

(4.3) F@S) = Z_; f@r:.
Then the distribution of W] approaches the mormal distribution - as
n— o,

As an example, let f(7) = 1. Then F(S) = r;, whose limiting distribution
is normal by Theorem 1.

This theorem is the exact analogue of Theorem 2 of [3] and the proof of the
latter carries over without difficult changes except in one important respect. A
- difficulty in the proof of the theorem in [3] lay in proving Lemma 4, and this
lemma, has to be proved completely anew. We shall limit ourselves here to doing
just that. Lemma 2 of Theorem 2 of [3], whose only role was to help in proving
Lemma 4, has no analogue in our present problem, but all the others do. It
will therefore be sufficient if we prove the following:
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LeEmMA. There exists a constant ¢ > 0, such that, for all n sufficiently large,
(4.4) a[F(8)] > cn.

Condition (a) of the theorem is imposed simply in order that the result be
not trivial. For, if (a) does not hold, we have that

f@) =4 ),
and
F(S) = fQ1) Z ir;
= (n — 1)f(1) = a constant.
Suppose that
f@) = wi + v,
with-« and v constants, and » % 0. Then by Theorem 1
F(8) = u(n — 1) + vy
= vr{ -+ a constant

is asymptotically normally distributed with variance of order n. Without loss
of generality we may therefore assume that

(4.5) f@) # ui + ».
From this it follows that there exists an integer A > 2 such that
(4.6) flA — 1) + f(4 + 1) = 2f(4).

“Our object is to prove that o’[F(S)] is at least of order n. The basic idea of
the proof will be to construct two sets, say L; and L, , of sequences S, such that
the (same) probability of each is not less than a positive lower bound independent
of n, and such that there exists a one-to-one correspondence between the se-
quences of L, and those of L, so that, if S, is a member of L; and S, the cor-
responding sequence in L,

[F(S) — F(S)| > gv/n,

where ¢ is a positive constant independent of n. It is easy to see that such a
construction would prove the lemma.

We shall call the subsequence (h;, hig1, -+, hiyes) of S, a run of type T
or simply a run T; (the notion will be used only for the proof of this lemma)
if the following conditions are fulfilled:

(4.7) each of the signs of (hiy1 — h;) and (hiys+1 — hipa) is the initial sign of a
run of length 4.

(4.8) if ¢ 5% 1, the sign of (h; — h;_1) is not the final sign of a run of length 4.

(4.9) if ¢ + 24 = n, the sign of (hip2441 — hiy24) is not the initial sign of a
run of length A.
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(4.10) after the transformation H, which interchanges h;y4_1 and h;ys, has
operated on the run, the sign of (h;11 — h;) is the initial sign of a run of
length A — 1, and the sign of (hixs_1 — hiya), in the new ordering, is the
initial sign of a run of length A + 1.

Thus, with A = 2andn = 7,if § = (7145326), then R = (— + + — — +),
and (1453 2)isarun 7y, for after the transformation H has been applied we
have (1 5 4 3 2) which gives (+ — — —). The result of the operation H on a

run T, will be called a run T, .

The number 7* of runs T, and the number r** of runs 7, each have expected
values and variances of order n, by considerations similar to those of [1]. Hence,
for an arbitrarily small positive e there exists a positive constant ¢ such that, for
all nsufficiently large, the probability P {r* + r** > ¢n} of the set L* of sequences
S which satisfy the relation in braces, is not less than 1 — e.

The set L* can be divided into disjunct sets (families) as follows: Let S(0)
be any sequence S in L* which has no runs 7T, (any doubt about the existence
of such sequences will be soon removed) and let 7*[S(0)] = m. Hence m > ¢n.
Operating with the transformation H on each of the m runs T of S(0) we get a
set S(1) of m different sequences for each of which »* = m — 1,7** = 1. Operat-
ing again with H on each of the pairs of runs 7 of the sequence S(0) we get a
set S(2) of (2) distinet sequences for each of which r* = m — 2, r** = 2, ete.
The process stops with S(m), which contains a single sequence, for which r* = 0,
r** = m. The set S(¢) contains (}) different sequences for each of which r* =
m — 4, r** = {. The union of the sets S(z) (: = 1,2, - -+, m) will be called the
family whose generator is S(0). The sets S(z) are obviously disjunct. Any
sequence S in L* belongs to one and only one family. For if we operate on all
of its runs T, with H (which is its own inverse), we obtain the generator of the
family to which it belongs. This also proves the existence of sequences in L*
for which r** = 0.

Consider any family F whose generator is a sequence for which r* = m > g¢n.
It is easy to see that, when n is sufficiently large, the ratio of the total number of
sequences S in the sets Ly and L; , where

i=}(m—v/m)
Li= XY 806,
i=0
and
Li= > 8@,
1=} (m++/m)

to the total number of sequences in F is greater than a fixed positive constant K’.

We are now ready to construct L; and L, . The set L, is the union of the sets
LT of all the families in L*, and the set L, is the union of the sets Ly of all the
families in L*. The probability of L; and of L, is therefore not less
than 1K’(1 — ¢). The one-to-one correspondence is effected as follows: The

subset S(-;il - —\/2——"; - j) of the set LT of any family is to correspond to the
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subset S( \/m + ]) (j =012 - ’;n — ﬂn) of the set Ly of the same
family. The 1nd1v1dual sequences of either of the two subsets may be made
to correspond to those of the other in any manner whatsoever. Any sequence
81 in L; and its corresponding sequence S, in L, thus differ only in the numbers
of runs T; and T., but are identical in the numbers of all other runs. They

differ in at least v/m runs. Hence,
[F(8) — F(8) | 2 vVm|2f(4) — f(4 — 1) — fA+ 1) |
>Vgn|2f(4) - f4 - 1) —f4+ 1.
This is the required result with
9=vVql2f(4) —f4 -1) —fA +1].

Hence the lemma and the theorem are proved.
The remarks of section 3 also apply to Theorem 2.

5. The distribution of long runs. Certain tests in use in quality control of
manufactured products are based on the occurrence of long runs. Since the
mean and variance of 7, , for any fixed p, are of order =, it follows that the prob-
ability that r, ¥ 0 approaches 1 (with increasing n). In order to base a test
on the occurrence of a run of length p in long sequences it is therefore necessary
to make p a function of n. This function must be a suitable one, because if p
is, for example, of the order n, the probability that r, = O approaches 1; p
should, therefore, be neither too short nor too long.

The following theorem will help give the answer to this problem:

TueoreEM 3. Let p vary with n, so that

p+DI_1
n K
with K a fixed positive number. Then
lim P(r, = j} = ¢ ‘2;’? G=01,2-)

i.e., 7, has in the limit the Poisson distribution with mean 2K.

The proof will consist in showing that the moments of 7, approach the moments
of a Poisson distribution with mean 2K as n — o. This is sufficient (v. Mises
[4].

Let z; = 1 if the sign of k41 — h; is the initial sign of a run of length p, and
z; = 0O otherwise. The probability that z; = 1 is, by [1], Section [4],

2
2(_?(;’-4-__{___“3473;—'1) for all with a fixed number of exceptions.” Write B = m!;
then

P{z; = 1} = B 4 o(B),

2 Since these exceptions (at the ends of the sequence S) have no effect on the asymptotic
theory, they will henceforth be ignored.
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where the symbol o(B) means that lim O(TF) =0. Lety; G =1,2,---,n) be

independent chance variables with the same distribution: P{y; = 1} = B,
P{y; =0} =1 — B. Then it is easy to see that ¥ = Y y, has in the limit the
=1

Poisson distribution with mean 2K and that its moments approach the moments
of the same Poisson distribution. Hence it will be sufficient to show that in the
limit Y and r, have the same moments.

Ifga1,a, -+, aand 4 < 12 < --- < 4, are positive integers, we have that

E(yilys - 938 = E@a,yiy -+ Yi,)

(5.1) q

= ,I=Il E(y;;) = B*
and
(5.2) 0 < E(xflaiy -+ 258) = E(@i, @iy -+ xi)).
Also

(5.3) EGL) = E[Z x.-:ll.

q==

After expansion of the right member of (5.3), we may replace, in accord with
(5.2), each of the non-zero exponents of the ’s by 1. The same operation on the
terms of the expansion of the right member of
n 1
5.4) By = B[ E ]
=1

is valid in accord with (5.1).
Let 41 < 42 < .-+ < 14. In the expression

(5.5) E(xizi, - - - 14),

let ¢ be the “weight.” A subsequence of consecutive 2’s in (5.5) (it may consist
of a single x) which is such that the indices of two consecutive z’s differ by less
than (p + 3), while the subsequence cannot be expanded on either side without
violating this requirement, will be called a ‘“cycle.” Let ¢ be the number of
cycles in (5.5). By [1], Section 4, if z; and z; are in different cycles,
ie., |12 — j| > (@ + 3), then z; and z; are independently distributed. If,
therefore, ¢ = ¢, we have that

(5.6) E(ziy iy -+ 33,) = I];E(x;i) = B* + o(BY).

If ¢ > ¢ = 1, we have, also from [1], Section 4, that
5.7 E(uzs, - - i) < E(xizi,) = o(B).
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If ¢ > c and if there are two indices in the expression (5.5) which differ by less
than p, then

(5.8) E(@ixiy - ;) = 0,
For z; and z; cannot both initiate runs of length pif |7 — j | < p.
Let us now return to the expansions of the right members of (5.3) and (5.4),

in which the exponents have been replaced as described before. Let the weight
and cycle definitions also apply to terms of the type

(5.9) E(@ayi, - - yi,)-

From (5.1) and (5.6) it follows that, in the limit, the contributions to E(r,)
and E (Y:l) of the sums of those terms for which ¢ = ¢, are the same. Let Wand
W’ be the sums of all the remaining terms in E(r%) and E(YY), respectively. If
we can show that

(5.10) im W=1Im W =0
we will have proven that
(5.11) lim E(r}) = lim E(Y?)

and with it the theorem.

Let B = O[f(n)] mean, as usual, that | B | < Mf(n) for all n and a fixed M > 0.
The number of terms in W’ with fixed ¢ and ¢ (¢ < g, by definition of W’) is
O(n’p**). From (5.1) the value of the sum of all such terms is O(B%p*™).
Now

nB = 0(1)
by the hypothesis of the theorem. From t.he definition of p,
p = o(n)
and hence
pB = o(1).
Therefore

Bnp"" = (nB)*(pB)""
= o(1).

Since ¢ < I, there are only a fixed number of such sums. Hence lim W’ = 0.
The number of terms in W with fixed ¢ and ¢ (¢ < ¢) is O(n°p"°). However,

most of these are of the type in (5.8) and therefore vanish. Those which do not

vanish are O(n°) in number. Since ¢ > ¢ we have by application of (5.7) that

each term is o(B°). Hence the value of the sum of these terms is o(n°B°) =

o(1). Since ¢ < I, there are a fixed number of such sums. Hence lim W = 0.
This proves (5.10) and with it the theorem.
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It is possible to generalize this result in a manner similar to that of Section 3.
The author is obliged to W. Allen Wallis who first drew his attention to prob-
lems in runs up and down, and to Howard Levene, who read the manuscript of

this paper.
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