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values p; and p, for a given n and ¢ can be calculated, using a table of the
5 per cent points of the F' (variance ratio) distribution. We may take

n = 2(n — ¢
ng = 2(c + 1)
Fl = F(nl,nz)
Fy = F(nz, my).
en p ne + mF
F
d - Nal'2
an pe n1+7'/zF2’

utilizing a property of the F distribution pointed out in [3], page 2.
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ON AN EQUATION OF WALD

By DAvipD BLACKWELL

Howard Unwversity

Let X, X;, --- be a sequence of independent chance variables with a com-
mon expected value a, and let S;, Sz, --- be a sequence of mutually exclusive

events, Sy depending only on X;, ---, X, such that >, P(Sy) = 1. Define
k=1

the chance variables n = n(X;, X2, --+) = k when Si occurs and W = X, +
.-+ 4+ X,. We shall consider conditions under which the equation

(1) E(W) = aE(n),

due to Wald [3, p. 142], holds.

This equation has various interpretations:

A. n may be considered as defining a sequential test on the X;. If a and
E(W) are known, (1) may be used to determine E(n), the expected number of
observations required by the sequential test, [3, p. 142 et seq].

B. n may be considered as representing a gambling system, i.e. it represents
the point at which a player decides to stop. W then represents his winnings,
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and (1), in the special case a = 0, says that, if each play is a fair game, then the
system leads to a fair game.

C. n may be considered as the duration of a random walk. The meaning of
W and (1) is obvious.

More exactly, we shall investigate conditions on X; under which (1) holds
for every test n of finite expected value. Our results, Theorems 1 and 2, are
that (1) holds if the X; have identical distributions, or if they are uniformly
bounded. Theorem 1 is a generalization of a result of Wald [3, p. 142].

The test n may be considered as a test on the variables Y; = X; — a. Then
W' =Y+ -+ + Y, = W — na, so that E(W’) = 0 is equivalent to (1) for
tests of finite expected value. Thus it is no loss of generality to assume a = 0
and to seek conditions under which E(W) = 0. We remark that if E(n) does
not exist, then E(W) need not be zero. For example define X; = 41 with
probability 3, and n as the smallest integer k for which X; + --- 4+ X = 1.
Then E(W) = 1. (It follows from Theorem 1 or 2 that E(n) cannot exist, which
can also be shown directly.)

TaeoreM 1. If X, X, --- have identical distributions, E(X;) = 0, E(n) <
o, then E(W) = 0.

Proor: Define chance variables n; inductively as follows: n, = n. Supposing
ny, + -, to be defined, define nppn = N(Xaj4oogngtrr Xngtoodmgdzs =)
ie. my, mg, --- are the successive values of n obtained by iterating the test.
Then

(2 Py, -+, mp; men = J) = P(8)).

For the event {n; = a,, - -+ ,mx = ax} = Rdependsonlyon Xy, -+, Xu 1. yap
while under the hypothesis R the event {n;;1 = j} coincides with the event S =
(0(Xeys...taps1s --+) = j}. Thus Pa(S) = P(S). Finally P(S) = P(S))
since S is defined by imposing the same conditions on X, 4...4a41, * * + that S;
imposes on X;, .-+, X;. (2) shows inductively that n;, n,, --- are defined
everywhere and are mutually independent with identical distributions. Now
define Wi = X 4. .4npmy 41+ *+* + Xnj4...4n, . Asimilar argument shows that
Wi(= W), Wy, --- are also independent variables with identical distributions.
The strong law of large numbers [2, p. 488] asserts that, with probability one,

3) ’Ezi_;j'vi_&_,o as N — .

It follows that, with probability one,

Wi+t .-+ Wi
ot T —0 ask > 0.
For if Wit .-+ W > € for an infinite number of %,
m—t e+ m
then )—gl—i_——w—_*_—XN > ¢ for an infinite number of N,
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which by (3) is an event of probability zero. Also from the strong law of large

numbers uk—_*_@ — E(n) with probability one. Then
Wit -+ Wi _ (W1+ e+ Wk)(’nl-l- s+ nk)_)o
k mt e+ m k

with probability one. It follows from the converse of the strong law of large
numbers {2, p. 488] that E(W,) = E(W) = 0.

Write 81 + -+ + 8¢ = Ui, C(Ui) = Visothat Vi = {n > k}. Then (a)
Vidependsonlyon X3, -, Xz, (b) ViD VoD ---, P(Vi) — 0. Conversely
any sequence of sets V satisfying (a) and (b) defines a sequential test on X; ;

define n = k on V;,C(Vi). Moreover E(n) < o if and only if (c) X P(Vy)
k=1
converges [1, p. 297]. Now

N N
E(W) =1im2f X1+ -+ + Xi)dP =1im2f X1+ -+ + Xy)dP
N—o0 k=1 V8 N—o k=1 v Sg

= lim Xi+ -+ + Xy)dP = —lim X1+ -+ Xy) dP.
N—o JUN N—w JVy
This establishes the following
LemMma: If E(X;) = 0, then E(W) = 0 for every test of finite expected value if
and only if for every sequence of sets Vy satisfying (a), (b), (c),

X1+ --- + Xy)dP — 0.
VN
From this condition we obtain easily
Tarorem 2. IfE(X:) =0,|X:| < M, E(n) < «, then E(W) = 0.
Proor: If V is a sequence of sets satisfying (a), (b), (c), then

UVN X1+ -+ + Xx) dP| < MNP(Vy).

Now the series = P(Vy) is a convergent series with decreasing positive terms.
It is well known that under these conditions NP(Vy) — 0. It follows from the
lemma that E(W) = 0.

The question of finding sufficient conditions for E(W) = 0 more general than
those given in Theorems 1 and 2 is of interest. The bare condition E(X;) = 0 is
not sufficient, as the following example (which is simply the system of doubling
the stake) shows: X; & 2° with probability %, n is the smallest integer k for which
X: > 0. A simple computation shows E(n) = E(W) = 2. Tt is well known
that the expected amount of capital required for the above system is infinite.
That this is generally true for such systems is shown by the following theorem,
in which no hypothesis is made concerning the existence of E(n).
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TaeoreM 3. If E(X,) = 0, E(W) > 0, then E(Z) = — «, where
Z = min (X; + +++ + X&).

k<n

Proor: It follows from the proof of the lemma that
. X1+ -+ + Xy) dP > —E(W).
N
Now on. Vy, Z < (X1 + +-+ + Xu). Hence

lim ZdP < —E(W).

N—w YVy

Thus E(Z) cannot exist if E(W) > 0,since P(Vy) —0. Since Z < X, Z dP
0

z2
exists; consequently E(Z) = — .
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CORRECTION TO THE PAPER “ON A PROBLEM OF ESTIMATION
OCCURING IN PUBLIC OPINION POLLS”

By H. B. MaxN
Ohio State University
In the paper “On a problem of estimation occurring in public opinion polls”
(Annals of Math. Stat., Vol. 16 (1945), pp. 85-90) the author made the assertion
that, in the notation of the paper, E[(e; — r2)?]is always smaller than E[(e; — e;)’].
This statement is incorrect and its supposed proof contains a numerical error

in the fourth line from above on p. 90.
We have

1 o oo 1 1
E@) = \/—5;-[” fm j:/zmew[—zjg Qz, v, p.-)] dz dy dp;

1 2 M~ - 14
-t T T B R

c= 31T
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