ON A TEST OF WHETHER ONE OF TWO RANDOM VARIABLES
IS STOCHASTICALLY LARGER THAN THE OTHER

By H. B. ManN anxp D. R. WHITNEY
Ohio State University

1. Summary. Letz andybe two random variableswith continuous cumulative
distribution functions f and g. A statistic U depending on the relative ranks
of the 2’s and y’s is proposed for testing the hypothesisf = g. Wilcoxon proposed
an equivalent test in the Biometrics Bulletin, December, 1945, but gave only a
few points of the distribution of his statistic.

Under the hypothesis f = g the probability of obtaining a given U in a sample
of n 2’s and m y’s is the solution of a certain recurrence relation involving n
and m. Using this recurrence relation tables have been computed giving the
probability of U for samples up to n = m = 8. At this point the distribution is
almost normal.

From the recurrence relation explicit expressions for the mean, variance, and
fourth moment are obtained. The 2rth moment is shown to have = certain
form which enabled us to prove that the limit distribution is normal if m, n go to
infinity in any arbitrary manner.

The test is shown to be consistent with respect to the class of alternatives
f(x) > g(x) for every z.

2. Introduction. Let z and y be two random variables having continuous
cumulative distribution functions f and g respectively. The variable x will be
called stochastically smaller than y if f(a) > g(a) for every a. We wish to test
the hypothesis f = g against the alternative that x is stochastically smaller than
y. Such alternatives are of great importance in testing, for instance, the effect
of treatments on some measurement. One may think of = as the values of
certain measurements in the control group and of y as the values of the same
measurement in a group which received treatment. In a particular instance
the protective effect against infection by certain bacteria was investigated.
Two groups of rats were used in the experiment. The first group receiving no
treatment, the second group receiving the drug. Both groups were then infected
with supposedly equally diluted cultures of the bacteria under investigation.
Most of the rats in both groups died, but the time of survival was measured and
it was desired to test whether the drug had the effect of prolonging the life of the
rats. It was desired to make inferences from the effect on rats to the effect the
‘drug would have on humans. Thus, the only relevant alternative to the hy-
pothesis that survival times are not influenced by the drug is that the survival
time of those rats which received treatment is stochastically larger than that
of the control group.
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3. The U test. Let the quantities 21, -+ ,%n, ¥1, - -+, Ym be arranged in
order. This arrangement is unique with probability 1 if P(z; = y;) = 0 and
this follows from our assumption of continuity. Let U count the number of
times a y precedes an . If P(U < U) = « under the null hypothesis, the
test will be considered significant on the significance level a if U < U and the
hypothesis of identical distributions of z and y will be rejected.

This test was first proposed by Wilcoxon [1]. His statistic 7 is the sum of the
ranks of the y’s in the ordered sequence of #’s and y’s. In general

m(m + 1)
——2——T

and this gives a simple way of computing U. Wilcoxon, however, treated only
the case m = n and in this case he tabulated only 3 points of the distribution of
T. Since the test seems of great utility it seemed worthwhile to compute the
variance, the moments and the limit distribution of U and to investigate the
class of alternatives with respect to which the test is consistent.

Although this paper is written in terms of U and the probabilities of U are
tabulated the results can be easily interpreted in terms of 7 if so desired.

U=mn+

4. The distribution of U. Consider now ordered sequences of n z’s and
m y’s. Since it is only the relation between z and y that matters we replace
cachz by a0and eachybyal. Let U count the number of times a 1 precedes a
0. Let Pnm(U) be the number of sequences of n 0’s and m 1’s in each of which a 1
precedes a 0 U times. By examining a sequence with the last term omitted we
arrive at the recurrence relation:

pnm(U) = ﬁn—lm(U - m) + i)nm—l(U))
where p;(U) =0 if U <0 and Pi(U), posi(U) are zero or one according
asU #0or U = 0.
Under the null hypothesis each of the (m + n)!/m!n! sequences of n 0’s and
m 1’s is equally likely. Consequently if p,.(U) represents the probability of a
sequence in which a 1 precedes a 0 U times then
n m

(1) Prm (U) = n + m oy + m pnm—l(U)-

Using the recurrence relation (1) the probabilities p,.(U) have been tabulated
form < n < 8(see TableI). Form = n = 8 the distribution of U — 3(nm + 1)
differs only a negligible amount from the'normal distribution. We shall, in the
following, derive the mean, the variance, and the fourth moment of U, and
prove that the limit distribution of U is normal if n and m both approach infinity
in any arbitrary manner.

It is obvious that pun(U) = pma(U).

Since the probability of the sth 1 preceding the jth 0 is , we have

(2) Enm(U) = n7n/2.

pn—lm(U - M) +
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TABLE I
Probability of Obtaining a U not Larger than that Tabulated in Comparing Samples of
n and m
n=3 n = 4
AN N
\\"‘ 1 2 2 U\\m 1 2 3 4
v N
0 .250 .100 .050 0 .200 .067 .028 .014
1 .500 .200 .100 1 .400 .133 .057 .029
2 T 750 .400 .200 2 .600 .267 114 .057
3 .600 .350 3 .400 .200 .100
4 .600 .314 171
4 .500
5 .650 5 .429 .243
6 871 .343
7 443
8 .557
n==5 n==06
AN AN
\\"’ 1 2 3 4 5 \\’” 1 2 3 4 5 6
U U \
0 .167| .047| .018| .008| .004 0 .143| .036| .012| .005/ .002| .001
1 .333! .095| .036| .016| .008 1 .286| .071| .024| .010| .004| .002
2 .500| .190! .071| .032| .016 2 .428| .143| .048| .019; .009| .004
3 .667| .286| .125| .056| .028 3 L5711 .214| .083] .033] .015| .008|
4 .429] .196] .095| .048 4 .321; .131| .057| .026| .013
5 .571| .286| .143] .075 5 .429] .190| .086| .041] .021
6 571 .274] 129 .063| .032
6 .393| .206] .111
7 .500] .278] .155 7 .357| .176| .089| .047
8 .607| .365| .210 8 .452| .238] .123| .066
9 .548| .305 .165| .090
9 452 .274
10 .548| .345 10 .381| .214| .120
11 457! .268| .155
11 .421 12 .545| .331| .197
12 .500
13 579 13 .396) .242
14 .465| .294
15 .535| .350
16 .409
17 .469
18 .531
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TABLE I (Continued)
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n=7
PN 1 2 3 4 5 6 7
0 125 .028 .008 .003 .001 .001 .000
1 .250 .056 .017 .006 .003 .001 .001
2 .375 111 .033 012 .005 .002 .001
3 500 .167 .058 .021 .009 .004 .002
4 625 .250 .092 .036 .015 .007 .003
5 .333 .133 .055 .024 .011 .006
6 444 .192 .082 .037 .017 .009
7 566 .258 115 .053 .026 013
8 .333 158 .074 .037 .019
9 417 206 .101 .051 027
10 500 .264 .134 .069 .036
11 583 .324 172 .090 .049
12 394 216 117 064
13 464 .265 147 .082
14 538 .319 183 104
15 .378 223 .130
16 .438 .267 1159
17 500 314 191
18 562 .365 228
19 418 267
20 473 .310
21 527 355
22 402
23 451
24 500
25 .549
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TABLE I (Continued)

n=3_§
.

U\\"‘\ 1 2 3 4 5 6 7 8 ¢ normal
0 J111 | .022 | .006 [ .002 | .001 | .000 | .000 | .000 | 3.308 .001
1 .222 | .044 | .012 | .004 | .002 [ .001 | .000 | .000 | 3.203 .001
2 .333 | .089 | .024 | .008 | .003 | .001 | .001 | .000 | 3.098 .001
3 444 | 133 | .042 | .014 | .005 | .002 | .001 | .001 | 2.993 .001
4 .556 | .200 | .067 | .024 | .009 | .004 | .002 | .001 | 2.888 .002
5 .267 | .097 | .036 | .015 | .006 | .003 | .001 | 2.783 .003
6 .356 | .139 | .055 | .023  .010 | .005 | .002 | 2.678 .004
7 .444 | .188 | .077 | .033 | .015 | .007 | .003 | 2.573 .005
8 .556 | .248 | .107 | .047 | .021 | .010 | .005 | 2.468 .007
9 315 | .141 | .064 | .030 | .014 | .007 | 2.363 .009

10 .387 | .184 | .085 | .041 | .020 | .010 | 2.258 .012
1 .461 | .230 | .111 | .054 | .027 | .014 | 2.153 .016
12 .539 | .285 | .142 | .071 | .036 | .019 | 2.048 .020
13 341 | 177 | .091 | .047 | .025 | 1.943 .026
14 .404 | .217 | .114 | .060 | .032 | 1.838 .033
15 .467 | .262 | .141 | .076 | .041 | 1.733 .041
16 633 | .311 | .172 | .095 | .052 | 1.628 .052
17 .362 | .207 | .116 | .065 | 1.523 .064
18 .416 | .245 | .140 | .080 | 1.418 .078
19 472 | .286 | .168 | .097 | 1.313 .094
20 .528 | .331 | .198 | .117 | 1.208 .113
21 377 | .232 | 139 | 1.102 135
22 426 | .268 | .164 .998 159
23 .475 | .306 | .191 .893 185
24 525 | .347 | .221 .788 .215
25 .389 | .253 .683 .247
26 .433 | .287 .578 .282
27 .478 | .323 .473 .318
28 .522 | .360 .368 .356
29 .399 .263 .396
30 .439 .158 .437
31 .480 .052 .481
32 .520
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We now seek an expression for En.(u’) where u = U — nm/2. After multiply-
ing (1) by (U — nm/2)’, using

Eun(u®) = EU;(U — 1m/2)? Pam(U)

and expanding:

€) Ban(®) = —2— By () + T Buna(’) + nm/4,

n+m + m

where E,n.(w) denotes the expectation of (U — nm/2) in sequences with n 0’s
and m 1’s. The initial conditions of (3) are seen by direct calculation to be

@ Eu(u) = Eon(u®) = 0.

By substitution E,,(u*) = nm(n 4+ m + 1)/12 is a solution of the recurrence
relation (3) and its initial conditions (4). Hence, it follows by mathematical
induction that

(5) Eun(@®) = nm(n + m + 1)/12.
The fourth moment is similarly a solution of the recurrence relation

n

n -+ m

m

n -+ m

(6) E.n (u4) = E,in (u4) + y J— (u4 )

+ 7{%(2n2m + 2nm® —n® — m’ —nm)
which is obtained from (1) by multiplication by (U — nm/2)* and expansion.
The initial conditions of (6) are found by direct calculation to be
) En(u') = Eom(u') = 0.

It may be verified that

(8) Epm(u') = nm(n 42_46” +1 (5n’m + 5nm’ — 2n* — 2m? + 3nm — 2n — 2m)
satisfies the recurrence relation (6) and its initial conditions (7) and hence (8)
follows by mathematical induction.

To investigate the limit distribution of u as n, m become infinite we investigate
the rth moment. Following the same procedure as in the case of the second and
fourth moments and using the symmetry of the distribution to find the odd
moments zero we get the following recurrence relation.

r

) Bunl®) = —— > (2”)1 (2 B ) + 100" Bas ()

n -+ mamo \20 /4

For r = 1, 2 it is known that E,.(u”) is a polynomial in » and m of degree 3r
and that it is divisible by nm(n + m + 1). Assuming that E,,(u’%), a < r
is a polynomial in n and m of degree 3« divisible by nm{n + m + 1) we will
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show that it is possible to find a polynomial of degree 37 in n and m divisible by
nm(n 4+ m + 1) which satisfies the recurrence relation (9) for E,.(u”) and
also its initial conditions, namely, Eno(v*) = Eom(v*") = 0.

The last condition is trivially satisfied if E,(«"") is divisible by nm(n + m + 1).
Our method here is to actually substitute a polynomial with undetermined
coefficients into (9) and show that the coefficients can be obtained uniquely.
Rearranging (9) we obtain

2ry n ory m 2r
(10) Enn(u ) n + m En—lm(u ) n + m Eum—l(u )
]- - 2 1 {3 r—2a o r—2a
= n'+'_ m 21(22)4?, {nm? En—lm(u2 ? ) + mn2 Enm—l(u2 > )}

Since for A < r we can write Enm(uz)‘) = nm(n + m + 1)P2® where P2 is
a polynomial in n, m of degree 3\ — 3 the above equation reduces to

n m —
Erin(U'") — —— Epp (W) = nmQ5n°

n+m n -+ m

where Q%* is a polynomial in n, m of degree 3r — 3.
Now let

(11) Epm(u™) —

Erw@®) = nm(n + m + 1) Z a;,n"m"

1,7=0
T+ <3r—3

where a;; = a;; are to be determined. Substitution in (11) yields:
3r—3

Z aijflin +m + Dn'm’ — (n — 1) — 1)'m’ — (m — Dn'm — 1)] = Q%
L]
and rearrangement yields:

(12) 372—:3 Gij l:"imj + z%.: (Z -Z 1) (=1’ m* + n“mj):l = QY0

7,d=0 a=0
t+7<3r—3

Consider first the terms of degree 3r — 3. In this casez + 7 = 3r — 3 and
a = ¢ will give

3r—3
E aiar—3—i[n‘ m31‘—3—t + (Z + 1)(n3r—3—17nz + n1m3r—-3—z)]
=0

or

3r—3
(13) 3r E Gizr—g—i 1" m31‘—3—1'
1=0
Equating the coefficients of these terms of degree 3r — 3 to the corresponding
ones in Q%,,° it is possible to calculate the value of ais;_s_i, (i = 0, -+ - , 3r — 3).
We assume now that the a;; are known forz + 7 > 3r — 3 — (k — 1) and
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we will find the value of a;; wheretz + j = 3r — 3 — 'k. Consider then the terms
in (12) of degree 3r — 3 — k. These terms will occur when

1i4+j=8r—-3,a=1—kji+j=3r—4a=7¢—k+1;---;
i1+j=3r—3—ka=:¢

All, but the last, contain coefficients which have already been evaluated. The

last one reduces to
3r—3—k oo
ek
(37‘ et 3) Z A;3r—3—k—i n'm _'.

=0

Thus by equating coefficients a3 for s = 0,1, -+ 3r — 3 — k can be
evaluated in terms of the coefficients a;; already known and those in Q%,°.
This concludes the proof that E,.(u”) is a polynomial in n, m of degree 3r and
is divisible by nm(n + m + 1).

We now investigate the coefficients of the terms of degree 3r. For A = 1, 2

1) --- 5-3-1
12*

We assume this to hold for A < r and we will show that it holds for A = r. Sub-
stitution reduces the right side of (10) to

a(3) 4{%2 [ 22 o 1

Eun(u®) = 2 (nm)*(n + m + 1) + terms of degree < 3).

+ mn I-(Zr — 1 = -5:3:1 n i m — 1)+ m)'_l:l + (terms of degree < 3r)}
or
r(2r — 1) o[ (@r—3)--- 531

T4 {(n + m) l: 121 ]

sl — D™ 4 mim — 1) w7 4 (terms of degree < 3r — 1)}

which reduces to

3r@r—1)--- 531 (nm) (n + m)™" + (terms of degree < 3r — 1).

12r

Comparison of coefficients with (13) multiplied by nm gives

37—3 — o o 0 . .

nm Y Gig_gin'm’ " = @r 1)12, 531 (umyn + my™

=0
or

2 2r—1) .-+ 5-3-1 . .,

= 1

(14) Epm(u™) 5 (nm) (n + m + 1)

+ (terms of degree < 3r).
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We now wish to show that E,.(u”) is at most of degree 2r in n or m. For
r = 1, 2 this has already been established. Assuming that it is true for lower
moments the right side of (10), which reduces to nmQ%,,® is at most of degree
2r — 1inn. We again compare coefficients in (12). First, for terms of degree
3r — 3 we have already seen that n has degree at most 2r — 2. For terms
of degree 3r —4weuseti+j=3r—3,a=¢—landi+j =3r — 4,a = i
The first case gives rise to no terms in 7 of degree greater than 2r — 2 so when we
solve for the coefficients a.s,—4_; the coefficients of terms in n of degree greater
than 2r — 2 must be zero. The process repeats and we find no terms in » or m
of degree greater than 2r — 2 in the left side of (12). This gives E..(u") at
most the degree 2r in n or m.

Now consider the ratio

E”m(u%')
[Em(u?)]r

@r = 1)1'2,' 3L iy m o+ 1)

[nm(n + m + 1)/12]
+ (terms of degree < 3r;in n or m, < 2r)
[nm(n + m + 1)/12]
(terms of degree < 3r;in n or m, < 2r)

(mm)r(n + m + 1)"

~
]

=@ —1)--- 531+

Hence

(15) Lim I =@r—1)...5-3-1

and by a well known theorem it follows from (15) that the limit distribution is
normal.

b. Consistency of the U test. If f and g are the cumulative distribution
functions of the 2’s and #’s then our null hypothesis is f = ¢g. The alternatives
admitted are f(a) > g(a) for every a. Let E, denote the expectation under the
alternative.

Defining

Oifz; < y;

Tij =

lif s > y;
we have

@) = P >y) = [ gdf <3
E (@iza) = Pl > yi32: > Y) = _[ 92 df < %

Ei(@azi) = P > yr, 2 > yo) = j: 1 -fdg <3
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We can now write
Eszi) = § — N Euziza) = § — &, Ezazp) = 3 — e

where A, € , € are positive numbers.
We have then

da(zi) =1 — ¥ oa(Tiza) = %5 — e+ A — A
aA(x.-,a:k;) =0fors#k,j#1 oalzars) =& — a4+ A — A
Now
(16) E.(U) = Z Ei(xi;) = nm/2 — Anm
and

(A7) dA(U) = 2 o2u(@i) + 2 oalzigwa) + 2 oalzazyp) + = ou(zign)
or

A (U) = nmn + m + 1)/12
+am-Nn+m—=1)4+ 0 —ea)m—1)+ K —a)(n— 1)
Let the critical region under the null hypothesis consist of those U’s satisfying
nm/2 — U > t,o where lim ¢, = {. Then

n—o0
lheo — A\nm
(Y

P(nm/2 — U 2 two|A) = P(EL(U) — U > k-c4) where k=

and by Tchebycheff’s inequality, since for large values of nym k < 0

2
oA

Pnm/2 — U 2 two|A) > 1 — e = S’
which by (5) and (17) gives
Plum/2 — U > tyo|4) > 1
1) g rmf—Xn 4 m — 1)+ (8 = e)m — 1)+ (A — e)(n — 1)
(ta N/ nm(n + m + 1)/12 — Anm)*
>1
1 +n+1m+ T=X(n 4 m — 1) + (A — a)(m — 1) +(\ — )(n — 1]

B 12nm Y '
(=2 /i55)

We obtain then that
Lim P(nm/2 — U > t.o|4) =1

n,m—c0

which is the requirement for consistency.
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6. Comparison with other tests. Another test which might seem appropriate
for the comparison of a control group with a group receiving treatment is the
test introduced by Wald and Wolfowitz [2]. The test by Wald and Wolfowitz is
consistent with respect to every alternative g. However in the case considered
we are only interested in the alternative hypothesis that measurements in the
group receiving treatment are stochastically larger than in the control group.
Intuitively, it seems that the test proposed here is more efficient for detecting the
particular alternative considered than the test proposed by Wald and Wolfowitz.
This intuitive feeling was borne out by the results of the test in the particular
experiment described in the introduction. All in all, 62 experiments were
conducted using various bacteria in different solutions and various amounts of
the protective drug. The U Test gave 14 significant results on the 5%, level
and 4 on the 19, level. The test of Wald and Wolfowitz gave 7 significant
results on the 5%, level and 2 on the 19, level. A final decision between the two
tests can, of course, only be arrived at on the basis of their power functions,
which present formidable difficulties.

In comparing the two statistics it was noted that a slight dislocation of a
value may cause a significant change in the number of runs easier than it can
cause a significant change in the statistic proposed here. For instance, in the
sequence T1TaTsTaTsT sl 1Y2l3Y4YsYs both statistics would give a probability less than
.05. If however, the sequence is slightly altered to X ToxsaXsy:Teyoysysysys ,
P (number of runs < 4) > .05 while P(U < 1) = .002.

After completion of the present paper it came to the authors attention that
the U test had already been proposed by K. K. Mathen [3]. However Mathen’s
distribution of U is incorrect and its derivation erroneous, since it assumes
independence of the random variables x;; as defined in section 5 of the present
paper, while obviously x;; and x are not independent.
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