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ON THE POWER EFFICIENCY OF A t-TEST FORMED
BY PAIRING SAMPLE VALUES

By Joun E. WaLsu

Princeton Unsversity

1, Introduction. Consider two equal sized samples, one from a normal popu-
lation with mean p and the other from a normal population with mean v. Let
Z1, *+* , T, be the sample values from the populaticn with mean wand g1, «++, 9
the values from the population with mean ». If the two populations have the
same variance and the two samples are independent, the most powerful tests
for comparing x and » using these samples (one-sided and symmetrical two-
sided) are based on the statistic
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which has a Student ¢-distribution with 2n — 2 degrees of freedom. Tests based
on ¢, also have the desirable property of being invariant under permutation of
the data in each sample.

Sometimes, however, it is useful to combme the sample values in the form
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Examples: _

(a). When the samples are independent but it is not known that the two popu-
lations have the same variance (Behrens-Fisher problem).

(b). When there may be correlation between z; and y;, (¢ = 1, .-, n),
this correlation being the same for each value of ¢ (i.e. z; is independent of y;
if © % j while each pair z;, y;, (¢ = 1, --- , n), has the same normal bivariate
distribution). ’
~ In both (a) and (b) the z; are independently normally distributed with the
same variance and mean p — ».

The Student ¢-test for comparing u and » using the 2; is based on the statistic
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which has a Student ¢-distribution with n — 1 degrees of freedom. These tests
are not invariant under permutation of the data in each sample.

If it is true that all the sample values are independently distributed with the
same variance ¢*, efficiency will be lost by using the test based on #, instead of
the most powerful test based on ¢, . Thé purpose of this note is to determine the
power efficiency of the tests based on # as compared with the corresponding
tests based on £ for this case.
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TABLE I
Power Function Values for the t, and t, Tests

Approx. Values of Power Function

Approx.

Test

" Efficiency * =13 =1 | 6=1} | s=2
t1 6 87% .05 .276 .674 .933 .994
t2 5.2 .05 .275 .672 .932 | .994
t1 6 82.59, .025 .159 .486 .822 2970
te 4.95 . 025 .160 | .488 .823 .970
t1 8 909, .05 .355 .812 .985
te 7.2 .05 .354 .813 .985
t1 8 86.5%, .025 .226 .674 .952 .998
to 6.9 .025 .225 .675 .951 .998
t1 8 829, .01 .112 .458 .843 .983
173 6.55 .01 .112 457 .842 .983
t1 10 929, .05 .425 .898 .997
te 9.2 .05 .425 .897 . .997
t1 10 939, 025 . 289 .852 .988
to 9 .025 .29 .8C3 .988
t1 10 85.59%, .01 .159 .626 .950 .999
t2 8.55 .01 .159 .627 .950 .999
t1 15 95.59, .05 .579 .980
te2 14.3 .05 .579 " .980
t1 15 939, .025 .437 .950 1.000
to 13.95 .025 437 .949 1.000
t1 15 909, .01 .278 .876 .998
t2 13.5 .01 278 .876 .998
t1 25 989, .05 784 .999
te 24.5 ' .05 .784 .999
t1 25 969, .025 .670 .998
te 24 .025° .670 .998

]

t1 25 94.59, .01 .514 .992
te 23.7 .01 .514 .992
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Consideration is limited to one-sided tests, which is not a serious limitation
since any two-sided test can be considered as a combination of two one-sided
tests. Table IT contains approximate power efficiencies of one-sided tests for
n > 4 at the significance levels & = .05, .025, .01.

Tt is found that the efficiency of the ¢ test increases with the sample size but
is high even for small size samples.

2. Outline of computations. The method of obtaining power efficiencies
used here will be that outlined in [1]. Essentially this consists in computing the
power function for the test based on # and then adjusting the sample size for
the corresponding test based on & until its power function is approximately the
same as for the # test. The ratio of the sample size (perhaps fractional) of the
adjusted % test to that of the ¢ test is called the power efficiency of the ¢ test.
Intuitively this efficiency measures the fraction of the total available information
which is being used when the ¢ test is applied (since the ¢, test is most powerful) .

TABLE II
Approzimate Power Efficiencies for Given n and o

\Y"i 5
(-3

.05 182.5%|85% |87% (88.5%[90% [91% (92% [95.5%|98% | 1009,
.025(77%* 180%* |82.5%84.5%(86.5%)88.5%|90% [93% [96% | 1009,
01 |73% [75.5%[718% [80% [82% |84% [85.5%)90% [94.5%| 1009,

* These values were obtained by comparison with the corresponding values for
a = .05 and .01.

6 7 8 9 10 15 25

It is easily seen from symmetry that a one-sided # test of x < » has the same
power efficiency as the corresponding one-sided # test of u > ». Thus it is
sufficient to consider the one-sided tests of u > ».

The power function is found as a function of the parameter 8, where

s =22
T eV2’

Most of the approximate power efficiencies were determined by using the
normal approximation given in [2] to compute the power function values. This
approximation was used for fractional values of n. Table I contains the results
of these computations for one-sided tests of u > ».

Exact values of the power function for integral values of n and « = .05, .01
can be found from the tables in [3]. A comparison of the power function values
obtained from the normal approximation with these exact values shows that,
forn < 6,a = .0l and n < 4, a = .05, .025, the approximation underestimates
the true values for small § and overestimates for large 8. Although this combina-
tion of underestimation and overestimation tends to cancel out in the determina-
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tion of power efficiencies, so that little error in power efficiencies would be
-expected if the approximation were used forn = 6, « = .0l orn = 4, a = .05,
the efficiencies given in Table II forn = 4, « = .05 and n = 4, 6, « = .01 were
obtained from the exact values by graphical interpolation and cross-interpolation.

Power efficiencies were not considered for n < 4 because of the difficulties
of interpolation and the inexactness of the normal approximation in this range.

Forn = =, # and & both have a normal distribution with zero mean and unit
variance. Thus the power efficiency is 1009, at all significance levels for
this case.

These computations furnish approximate power efficiencies for n = 6, 8, 10,
15, 25, . at & = .05, .025, .01, and for n = 4 at @ = .05 and .01. The other
approximate power efficiencies listed in Table II were obtained by graphical
interpolation from these values.

The results of this note can. be roughly summarized for n < 15 by stating
that of the 2n sample values

(i). approximately 1.6 values are lost at the 5%, significance level,

(ii). approximately 2.1 values are lost at the 2.59%, significance level,

(iii). approximately 2.8 values are lost at the 19, significance level, if the’
tests based on ¢ are used instead of the corresponding tests based on ;. Exami-
nation of Table I shows that the number of sample values lost decreases as n
increases for n > 15.
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NOTE ON THE LIAPOUNOFF INEQUALITYIEOR ABSOLUTE MOMENTS.
By Mavurice H. Berz
The University of Melbourne

For a variate z measured from the mean of the population, the absolute
moment of order r is defined by

e =f |z dF (),

where F(z) is the cumulative distribution function. Treating r as continuous,
we have

d”r_ ° r
b = [ 1ol tom| 2] aF(a),

the integral on the right existing if »,., exists.



