SOLUTION OF EQUATIONS BY INTERPOLATION

W. M. KiNcAID
University of Michigan

Introduction and summary. The present paper deals with the numerical
solution of equations by the combined use of Newton’s method and inverse in-
terpolation. In Part I the case of one equation in one unknown is discussed.
The methods described here were developed by Aitken [1] and Neville [2], but
do not seem as widely known as they should be, perhaps because the original
papers are not readily available. (A short summary of Aitken’s work will be
found in a recent paper by Womersley [3].) Mention should also be made of
an interesting paper by Spoerl [4], which treats the same problem from a some-
what different viewpoint.

In Part IT these methods are extended to sets of simultaneous equations.

PART I. EQUATIONS IN ONE UNKNOWN

1. Nature of the problem. We first consider the problem of locating, to any
desired degree of accuracy, a real root z, of an equation of the form

(1 y() =0

where y(z) is assumed to be analytic in an interval containing the root in ques-
tion. Since we shall not be concerned here with the necessary preliminary work
of separating the roots, etc., we may suppose that 2, is known to lie within a
given interval that contains no zeros of y’(z). (Multiple roots are thus ex-
cluded; but of course any such root is a simple root of an equation obtained from
(1) by differentiation, and the methods described below can be applied to this
equation.)

2. Aitken’s method of interpolation. The method to be described, which
may be regarded as a generalization of Newton’s, depends on the use of inverse
interpolation. It is therefore desirable to recall a few points from the theory of
interpolation before proceeding further.

Let f be a function such that f(t) is known for ¢ = t,,4%, -+, ¢,. Then the
Lagrange interpolating polynomial fi...x({) is defined by

(¢ —0)(E = t)--(t — tn)
(th — to)(ty — to)e oo (tr — tn)

(6= ) — t5)-+- (¢ — ¢tn)
(G2 — t)(ts — ta)e - (te — tn)

(t=8)E —t) - (t — ta)
(tn — t)(tn — ta) o e+ (tn — tu-1)

fize..n(®) = (&)

@ + (%)

+-- o f(ta)
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We note that
i Tt
fill) = 1(0) bh— 1t + /@) b—t - h— 1 ’
®) | fu@®) t — @ Sz () t — &
) = L=t gy = et

80 that fis....(f) can be evaluated for any given value ¢, of ¢ by a succession of
linear interpolations. It is convenient to arrange the work in a table like the
following (n = 4):

TABLE Ia

t §10) I Ir IIr ' Parts

t f(t) j torty
fia(to) ,

by f(t2) fraa(to) ! to—ts
faa(to) Sraaa(to)

ts f (ta‘) f 234(10) i to—ts
‘ faa(to) . ;

ls J(ts) ; ] ; ! to—ts

This form is well adapted for machine computation, for each denominator
ti —t; = (b — t;) — (b — t:;) automatically appears in one set of counters when
the corresponding numerator is obtained in the other.

If f'(t) is known at one or more of the given points, this information is readily
fitted into the scheme. For we see that

4) fu@) = ‘lin} () = fl&) + (¢ — w)f' (%)
2%
and all that is necessary is to repeat certain entries in Table Ia and to fill in col-

umn I by using (4) as indicated in Table Ib. The extension to higher deriva-
tives is obvious.

TABLE Ib
t 7@ I II II7 l Parts
b f(t) | to—t
fu(to)
J(t) Sua(to) to—ty
fz(to) Jun(te)
by f(ta) fra3(to) | to—ts
fas(to) fross(to) |
ts f(t) Juas(to) L tots
\ fas(to) |
f (t,g) I to—ta
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In applying the above to obtaining the root x, of (1), we must suppose that
y(z) is tabulated or can be computed for a set of values of z in the neighborhood
of z,. What we do not know is the value of z corresponding to ¥y = 0. Itis
therefore convenient to regard z as a function of y whose value is known at cer-
tain points and then interpolate to get zo = 2(0). That is, we let i take the place
of ¢ and z that of f(¢) in the preceding discussion, while O replaces t,. The work
is slightly simplified by the fact that the column of “parts” becomes identical
with the left-hand column which contains the 3’s and can therefore be omitted.

3. Application to an example. The procedure will be most clearly indicated
by an example. Consider the equation
(5) y=z'+2 — 522 — 8 + 1 =0,

which has a root between 0 and 1. (If the root were located elsewhere, it would
be desirable to shift it to this interval in order to simplify the computation of y.)

The work of evaluating this root to ten places is summarized in Table II, and
explained below. In the first column, the numbers in parentheses are values

of % , and the other numbers are values of y, corresponding to the values of z

in the second column.
TABLE II

v x I Ir r

1.000 000 000 000 0.000
(—8.000 000 000) | 0.000 | 0.125 000 000 00
0.152 100 000 000 , 0.100 | 0.117 938 436 13 | 0.116 671 702 00

—0.001 054 385 279 0.117 | 6 882 964 17 884 075 87
(—9.081 459 548) 0.117 | 3 896 94 3 890 52 | 0.116 883 877 01
0.008 022 855 936 0.116 3 842 98 90 67 90 68
(—9.073 020 416) 0.116 é 4254 15 90 74 90 68

x = 0.116 883 890 7

The procedure is as follows. Taking x = 0 as a first approximation to zy,
we find that y(0) = 1, y’(0) = —8, and record this data in the y and z columns
of the table. Note that for convenience, the value of 3’(0) takes the place of a
blank entry in Table Ib. We now apply (4), which here takes the form

—1 —1
=04 7—7 =0+ _—_—8=O.125

dz

and enter the result in column I. Note that this is equivalent to one step of
Newton’s method.

In view of (6) we take z = 0.1 for our next approximation and apply (3) to

obtain the second entry in column I and the first in column II. This last sug-

gests £ = 0.117 for our next trial value. (We do not compute y’(0.1), as little

©6) 2u(0) = & |yt + (0 — 1) Z?fl

y=1

z=0
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would be gained by doing so, and the time is better spent in going ahead as
indicated.) Finding %(0.117) and filling in the table gives us the root to six
places.

4. Employment of tables. Continuing in the same line, it would seem nat-
ural to take x = 0.116884 at the next step; and doing so would lead to the most
rapid convergence. But another consideration enters. Up to this point the
values of y were computed with the aid of the WPA Table of Powers, which is
limited to three places in the argument. Rather than going to the extra labor
of evaluating y(.116884), we proceed as indicated in the table, using y'(.117),
y(.116) and %’(.116), and stopping when the values of z in the last column
agree to the desired number of places.

This point has been dwelt on because it is likely to arise whenever tables are
used in evaluating y(z). In the example just given, to be sure, we had a certain
freedom of choice; but if y(z) is not algebraic, direct computation may be quite
impractical. It may be noted that in such cases the method of inverse inter-
polation is not only faster than the simple Newton’s method but is capable of
giving more accurate results. ‘

The error in the final result can be estimated from the standard formula for
the error of interpolation, but this may be awkward because it requires the
evaluation of higher derivatives of  with respect to y. In practice it is generally
safe to rely on agreement of different interpolated values, and of course the result
may be checked by substitution in the original equation. One simple point is
worth noting, however—if the error in the original column of 2’s is O(e), that in
the successive columns to the right is O(¢’), O(¢), ete.

5. Applicability of the method. Although the example we have presented is
algebraic, the method is, of course, equally applicable to transcendental equa-
tions. Moreover, it can be used, theoretically at least, to yield complex as well
as real roots. The sole difficulty is that the numerical work becomes cumber-
some in this case; how serious it is depends on the type of computing machines
used. If the equation is algebraic, Bernoulli’s [5], [6] and Graeffe’s [7] methods
are applicable. In fact, they are likely to be the most effective since they do not
require prior knowledge of a first approximation to the root. If the alternative
procedure of replacing the equation by two simultaneous equations for the real
and imaginary parts of the root is decided upon, the methods described in the
next section may prove useful.

PART II. SETS OF SIMULTANEOUS EQUATIONS

6. Two equations; general considerations. It is natural to take up nextthe
problem of finding the simultaneous solutions of two equations in two unknowns,
Let these equations be
) u(z,y) =0, v(z,y) =0,
where u and v are analytic functions of z and y.



SOLUTION OF EQUATIONS 211

If we had a general method of interpolation of functions of two independent
variables, the problem could be solved in a fashion similar to that used in the
preceding section. That is, » and » would be computed for values of z and y
near the desired ones; then x and y would be regarded as functions of u and v
and interpolations would be performed to obtain the values corresponding to
u =19 =0. '

It is easy to set up interpolating functions in a variety of ways, but the author
has found none that are satisfactory for the problem in hand. Note that what is
required is to determine the value of a function at any point in the plane, given
its values at a set of fixed points. The most obvious idea is to use polynomials of
the least possible degree for this purpose, as is done in the case of a single variable.
In this case, however, the coefficients of a polynomial of the nth degree are de-

(n+ 1@+ 2)
2

termined by its values not at n + 1 but at points; thus if a func-

tion is given at 5 points, no unique quadratic interpolating polynomial can be
constructed. What is worse, even if a function is given at 6 points, say, the
quadratic polynomial determined will in general have large coefficients and take
on unreasonable values if all the points happen to lie close to a common conic.
Other schemes considered by the author have similar drawbacks, though the
possibility of course remains of finding a suitable one by further research.

The problem can also be handled, at least in principle, by eliminating one of the
variables; but, apart from the difficulty of carrying this out in practice, the
resulting single equation is likely to be more complicated in form than the original
two. If so, solving it may require more computation than would be involved in
attacking the original equations directly by the methods-described below. So
far is this true that even when a single equation is given in the first place it may
be advantageous to replace it by a set of simpler equations.

7. Newton’s Method. Although a direct extension of the method of inverse
interpolation is not presently available, Newton’s method may be suitably
generalized for this case.

Starting with equations (7), we set up the auxiliary variables

8) X = wy, — vy, Y = w, — vu,,

. . o e ou ou
where the subscripts denote partial derivatives; u, = 3= R ete.
We have

aX—uv—vu + uvy — vu £(=uv — vy,

ax z Uy z Wy zy 2y )y ay vy vy )
9

Y )4

7 = UVzz — VUzz, Em = Uy Uy = Uy Uz + Uz — VUay .
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For u = 0,v = 0, equations (8), (9) reduce to

(10) X=y=‘2)_(=9.¥=0, X _ aY—J
oy ox

@ Ty )
where J is the Jacobian of % and v with respect to « and y.

Equations (10) will hold approximately for values of  and y near those satis-
fying equations (7). That is, in the neighborhood of a solution X can be re-
garded as a function of z alone and Y as a function of y alone. Thenif z = o,
y = 1y, is the desired solution, (z;, ¥1) is a point in its neighborhood, and z, =
X(xl ) yl)) Y, = Y(xl ) yl): Ji = J(xl ) yl)r we have

Xy

Y
(11) xo’\’xl—J—I, yo’\’?/1+J—11-

Also if (z2, 72) is another point near (zo, o),

Xy — 02Xy ~y1Y2'—'.l/2Yl

(12) o ~ —-———X2 -x, , Yo Ys — Yl

Relations (11) and (12) can be used to obtain successive approximations to the
solution. Use of these relations corresponds to employing Newton’s method
and linear interpolation for the solution of one equation in one unknown.

As a first example we consider the equations

uEx2+xy+y2—3=0

13
(13) v=ay+y  —1=0.
We have
U; = 20 4+ y Uy = =+ 2y
(14)

v, = 2zy v, = + 2.

Drawing a rough graph indicates a solution near (1, 1). We evaluate u, v, etc.,
at this point as shown in Table III. Using (11) we get (2, 0) for a second approxi-
mation, and proceed as before. We can now use both (12) and (11) to get new
approximations; they are (1.33, 0.57) and (1.25, 0.50), and are entered in the
last two columns of the table. We therefore try (1.3, 0.5) next, and continue
in this fashion until the desired accuracy is attained. Both (11) and (12) are
used at each step and the values obtained are entered in the last two columns.
The entries in the numbered rows are obtained by using (11), the others by using
(12). The number of places to take in each succeeding step is judged from the
agreement shown.

Table IV indicates the process of finding a second solution of (11) by the same
method. The convergence is very rapid in this case, mainly because the first
guess is fairly close.
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8. Inverse interpolation. In the preceding section, attention was drawn to
the difficulty that may arise when tables, necessarily limited to a certain number
of places in the argument, are used in the computation. In the example just
discussed the values of » and v were easily computed directly to the number of
places wanted. But a glance at the work will show that if we had been limited in
computing % and v to values of x and y having, say, two decimal places, the solu-
tions could have been carried to four places only.

The device adopted in the preceding section was to use quadratic and cubic
interpolates to secure greater accuracy, and it might occur to us to try the same
idea here. But for such an interpolation to be strictly valid, equations (10)
would have to hold identically. Since they hold only approximately, an error
is introduced which, in general, is of the same order of magnitude as the error in
linear interpolation. Thus continuing the interpolation would not improve the
results.

However, this very situation suggests a way out. For suppose we give z a
constant value z; , and compute X and Y for a number of values of y. For 2z =
z1, both X and Y can be regarded as functions of y alone; or we can regard X
and y as functions of ¥. Doing so, we can interpolate to any number of stages
to find values of X and y corresponding to Y = 0; call these X;, 1. Assigning
x other constant values zs, x3, - -+, Zm , We repeat the process, getting a set
of values X,,--+- X,, and ¥, -+, Ym, all corresponding to ¥ = 0. Now
along the curve Y = 0 we can regard z and y as functions of X; performing one
more interpolation, we obtain the desired values of z, y corresponding to X =
Y = 0. The error in the final result can be estimated from the errors in the
interpolations, and is of the same order of magnitude as the greatest of these.

It will be noted that we did not refer to the definitions of X and ¥ in describing
this procedure. Any pair of independent (analytic) functions X’ and Y’ having
the property that X’ = Y’ = 0 when v = » = 0 could be used. However, it

14 14
is convenient to choose them so that % and 6—6};— are small. Probably the
simplest course is to set

X' = aqu + bw, Y' = agu + by,
where a; , a2, b1, b; are constants such that

a U]_l ‘ [27] Uz
_— N — ) .
by Uy be Uz

Let us apply this procedure to the example we have already worked (Table III).
Suppose we wish to use values of z and y having not more than two decimal
places. Within this restriction, we can still carry through the first few steps
indicated in Table III to ascertain that x, ~ 1.514, yo ~ 0.375 where (2, 7o)
is the desired solution. At the point (1.51, 0.37) we have

X = 3.0201u — 2250, Y = 1.1174u — 3.3%.
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Noting the ratios of the coefficients of » and v, we select
X' =4u — 3, Y =u— 3.

Next we evaluate X’ and Y’ for the 16 points having z-coordinates 1.50,
1.51, 1.52, 1.53 and y-coordinates 0.36, 0.37, 0.38, 0.39, as shown in Table V.
Starting with the four points for which x = 1.50, we interpolate to find the values
of y and X’ corresponding to Y’ = 0; they are y; = .3750000007, X; = —.1406-
250025. We proceed in the same way with the points corresponding to the other
values of z; the results, as shown, are y, = .3749981706, X; = —.03908741039;
ys = .3749927660, X; = .06302572977; ys = .3749839124, X; = .1657149545.
(The extra digits given in Table V are to take care of rounding-off.) Finally,
using these values, we interpolate to find the values of z and y corresponding to
X’ = 0, and get

z = 15138345192, y = .3749965140.

Comparing these results with those obtained earlier, we see that they are in error
by about 1 unit in the ninth place; a distinet improvement over the four correct
places that could have been secured without using this device. Note that if we
had not had our earlier results for comparison, a check could have been obtained
by carrying through the interpolation in the reverse order; i.e., starting with
fixed values of y and finding values of  and Y’ corresponding to X’ = 0.

As in the case of one equation in one unknown, derivatives could be brought

into the interpolation scheme, permitting greater accuracy with fewer points.
0x dx %

But the derivatives needed would be aX' 3V aX'aV" ,ete., and the general
setup would be rather awkward, so that extra labor would probably be required.

9. Three or more equations. The methods discussed in this section are
readily extended to the solution of three or more simultaneous equations in an

equal number of unknowns. For example, if we are given three equations of the
form

u(w, Y, z) = 0, 1)(1}, Y, z) =0, w(x, Y, Z) =0,

we define new variables

luwow | | Uy v Ws | Us Uz Wy
I' E
X=§u1,v,,'wl, , Y= luvw  , Z | uy v, w,
i ; | i
i | | |
}uzvzwzl iuzvzwzi U W |

which are analogous to the X and Y of (8); from this point on the work is practi-
cally the same as before.
REFERENCES

[1] A. C. ArTkEN, “On interpolation by iteration of proportional parts, without the use
of differences,” Edinb. Math. Soc. Proc., ser. 2, Vol. 3 (1932), pp. 56-76.



SOLUTION OF EQUATIONS 219

[2] E. H. NeviLLg, “Iterative interpolation,” Indian Math. Soc. Jour., Vol. 20 (1934), pp.
87-120.

[3] J. R. WomERSLEY, “Scientific computing in Great Britain,”” Mathematical Tables and
aids to Computation, Vol. 2 (1946), pp. 110-117.

[4] C. A. SpoErw, “Solving equations in the machine age,” Amer. Inst. Actuar. Record,
Vol. 31, Part I (1942), pp. 129-149.

{5] T. C. Fry, “Some numerical methods for locating roots of polynomials,” Quart. Appl.
Math., Vol. 3 (1945), pp. 89-105.

[6] W. M. Kincarp, “Numerical methods for finding roots and vectors of matrices,” Quart.
Appl. Math., Vol. 5 (1947), pp. 320-345.

[7] E. Bopewrg, “On Graeffe’s method for solving algebraic equations,” Quart. Appl.
Math. Vol. 4 (1946), pp. 177-190.



