BOUNDARIES OF MINIMUM SIZE IN BINOMIAL SAMPLING

By R. L. PLAcCKETT
University of Liverpool

1. Introduction. Much attention has recently been concentrated on the prob-
lems arising when sampling a binomial population, since this is thought to form a
suitable model for certain industrial and biological procedures. A general
discussion of such procedures as applied in industry has been given by Barnard
[2] and various particular cases have received detailed treatment by Burman [3]
Stockman and Armitage [6], and Anscombe [1]. Unbiased estimation of the
population parameter (the “fraction defective’’) has been investigated by
Girshick, Mosteller and Savage [4] and Wolfowitz [7]. A paper by Haldane [5]
is also relevant.

For such sampling procedures it is necessary to find the probabilities of accept-
ing or rejecting material with a particular fraction defective; to calculate the
average sample size; and to form an estimate of the fraction defective when
sampling terminates. All three characteristics may be expressed in terms of
quantities N (z, y), defined in section 3, so that once these are known, the funda-
mental properties of the scheme are known. ‘

Here we present a method for determining the N (z, y); investigate the condi-
tions under which it is valid; relate the method to the estimation problem; and
exemplify its application. The schemes to which the method can successfully
be applied are of a special type (to which the title refers) and include all inspec-
tion procedures with a finite upper limit to the sample size likely to be used in
practice. Other schemes, when dissected in a manner similar to that used by
Stockman and Armitage, can doubtless be formulated as an aggregate of the

special types.

2. Nomenclature. Our nomenclature differs in some respects from that of
Girshick, Mosteller and Savage, although the same collection of terms is em-
ployed. References to their paper should therefore be followed by a comparison
of the terminology.

Taking a sample of one from a binomial population consists in observing either
of two events, whose probabilities are p and 1 — p (p # 0 or 1). The results
of successive samples of one can be represented by the path of a particle in a two-
dimensional lattice of points with non-negative integer co-ordinates. This
particle starts at the origin 0 and at any point (z, y) travels to (x + 1, y) if the
event whose probability is p has occurred, otherwise to (z, ¥ + 1). Sampling
terminates when the particle reaches a boundary point, and the set of such
points is denoted by B. Any point which can be reached during sampling,
including the boundary points, is accessible, and any path from the origin to a
point B which can be traversed during sampling is admissible; all other points
are inaccessible and all other paths tnadmissible. The index of a point is the sum
of its coordinates.
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It will probably help to note in particular that whereas Girshick, Mosteller and
Savage used p to correspond to events causing the y co-ordinate to increase, we
use it for x.

3. Determination of N(z, y). The set B determines the sampling scheme and
we are concerned with schemes in which all points of index greater than n,
the finite maximum index of points in B, are inaccessible. This condition guaran-
tees that if N(z, y) denotes the number of admissible paths from the origin to
a point (z, y) of B

}B: N, y)p"(1 —p)' =1,

the summation being over all boundary points. Consequently, to determine
N(z, y) equate coefficients of p in this identity, the coefficient of p° in the left
hand side being 1 and all others zero. When all the N(z, y) are known, the
probability of reaching any subset of B can be calculated and the characteristics
of the scheme found.

Sometimes it will be convenient to use

)B: N(z, y)¢"(1 — ¢)" = 1,

where ¢ = 1 — p, but the resulting set of equations cannot be independent of the
first set since if

?_.:a,-p" = ;bj(l - )},
then

a; = Z (—1)‘ (‘Z) bj-
= }
The polynomial in either p or ¢ is of degree n; the application of this method
alone is therefore limited to boundaries containing at most (n 4 1) points, other-
wise the number of unknowns exceeds the number of equations for them.

4. Properties of the boundary.

TaeoreM 1. If n is the maximum index of points in B and if any point of
greater index vs tnaccesstble, then B contains at least n + 1 points.

There must be at least two boundary points of index n for any such point
(a, , b,) must be approached from (a. — 1, bs) or (a», b, — 1); in which case
either (@, — 1, b, + 1) or (a, + 1, b, — 1) is a boundary point. Let P be any
one of these points. At least one admissible path exists from 0 to P; suppose
one such path to consist of the points (a0, bo), (@1, b1) , +++, (an, ba) Where
ar+br=k(k=0,1,2,---,n). Itisclearthatone or more boundary points exist
on the line x = ay , having y > bi , for otherwise the particle could travel indefi-
nitely along this line; similarly one or more exist ony = b, with 2 > ay ; and if
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there is just one on each they cannot be identical unless k& = n since (az , bx) is
not then a boundary point. Initially (as, be) contributes two boundary points;
since then either azy; = az and by 5% by or aryr # a and bpa = by it follows
that each succeeding point up to and including (@1 , ba—1) contributes at least
one more; the point (a, , b,) is counted as soon as x reaches a, or y reaches b, ,
whichever occurs first. Consequently there are at least n 4+ 1 boundary points.

Reversely, if the boundary contains n + 1 points whose maximum index is
m, such that any point of greater index is inaccessible, then m < n. For suppose
m > n and apply the preceding result.

An important class of boundaries therefore comprises those with the minimum
number of points necessary to attain a given maximum index; they may con-
veniently be termed boundaries of minimum size and for them alone the method
of equating coefficients yields the number of equations equal to the number of
unknowns, the first being otherwise less than the second.

If there are exactly n + 1 boundary points then (a1, b1), (@2, b3),  * +, (@n—1, bat)
must each contribute to just one; since a@z41 = ar or ar + 1 there is one
point of B on each of thelinesz = 0,z = 1, --- , £ = a, and this set of points
0, dy)(1,dy), - -+, (a,, b,) can be denoted by U, the upper part of the boundary.
Clearly di41 > dr, — 1 for otherwise more than one boundary point is required
on the line x = k + 1. Similarly, there must be a second group of points of B
(¢, 0), (c1,1), ---, (an, bs) With cx41 = ¢ — 1 forming the lower boundary L;
and all (n -+ 1) points have now been enumerated, the point P belonging to both
U and L. The characteristic of such sets B is that the sequences U and L both
have monotonically non-decreasing index; the special case of sequences with
monotonically increasing index provides the rejection and acceptance boundaries
of non-rectifying industrial inspection procedures. (The difference between
rectifying and non-rectifying procedures is clearly stated in the introduction to
Anscombe [1]).

THEOREM 2. For boundaries of minimum size any two accesstble points not in B
of the same index m cannot be separated on the line x + y = m by boundary or in-
accessible points In the terminology of Girshick, Mosteller and Savage the
accessible points not in B form a simple region.

Let Q(z1, 1) and R(z:, y2) be any two such accessible points of index m and
suppose 1 < zz. There are two possibilities: (am , bm) does or does not lie be-
tween @ and R.

(1) (am, bm) lies between Q and R, i.e. ;1 < am < Z2. In thiscase there must
be points of B at Q'(x; , Y;) with Y1 > y; and at R'(X:, y») with X, > z.. The
boundary from @’ to P and from R’ to P has non-decreasing index; hence all
points of U on the linesz = 21,2 = 21+ 1, .-, & = am — 1 have index at
least z; + Y1 > m;similarly all points of L on the linesy = 2,y =92+ 1, -+,
9y = bm — 1 have index at least X; + y» > m. By definition of the boundary
there are no additional points of B on either group of lines between the path 0P
and the line x + y = n, so the proof of the theorem is completed.

(ii) If 21 > am or 2; < an the proof is precisely analogous to that given in (i).
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6. Justification of the method. TurorEM 3. For boundaries of minimum size
the equations for N (x, y) are soluble and of rank n + 1.

To prove this we give a general method of solution for the system of equations,
using powers of p and ¢ alternately: as already remarked, this is equivalent to
using the equations from the coefficients of powers of p only. In the first place,
note that the coefficient of ¢ is a linear combination of numbers N(z,y) with
z+y > uand y < u; and the coefficient of p‘ hasz + y > tand z < ¢.

Let s = Min(do, dy, da, -+, ba) — 1.

Then from the coefficients of ¢°, ¢', ---, ¢ can successively be determined
N(c ,0)N(cy,1), -+ ,N(cs,8), the matrix of the equations being triangular with
ones in the main diagonal. The points in U at (r;,s + 1), (r2, s + 1), + -+ now

appear in the coefficients of ¢°*, ¢’**, - - - and complicate the solution.

Let r = Max(ry, 72, -+ +).

If either (r, d.) or (c;, s) is the point P then all the remaining N (z, y) can
successively be determined from the coefficients of powers of p when the values
of N(co,0),N(e1, 1), --+, N(cs, 8) are substituted in the equations. Otherwise
the path OP fory > s + 1 must have z > r + 1 so that all points of Lon y >
s+ lhavez >r + 2ie.any point of Lonz =0,z = 1, ---, 2 = r has
y < s; for such points the number of admissible paths is now known. Therefore
from the coefficients of p°, p', - - - , p” can successively be determined N (0, do),
N(, dy), -+, N(r, d,), the matrix of these unknowns being again triangular;
in particular N(ry, s + 1), N(ry, s + 1), - - - can now be found.

Let s, = Min (dry1, drg2, -+, ba) — 1, so that s; > s. The coefficients
of ¢, ¢, --+, ¢" give successively N(co41, 8 + 1) N(Cop2, 8 + 2), -+,
N(ca, 81); for the pointsin U at (ru, 81 + 1), (r2, 81 + 1) --- . Let

r = Max (1‘11 , M2, : . ').

Since there is only one point of U on each line x = constant, r, > r. As
before, if either (1, d,,) or (¢s,, 81) is P the remaining points of U are soon deter-
mined. Otherwise the process continues and there result an increasing sequence
of points of L and a similar sequence for U; the process terminates when
(@n , bs) has been reached in both, when all N(z, ) will have been found.

It is clear that for particular cases alternative methods of solution will prove

more convenient.

6. Connection with estimation. Suppose that the point (¢, %) is accessible and
let N*(x, y) be the number of admissible paths from (¢, u) to (z, y) where (z, y)
isin B. Then Girshick, Mosteller and Savage have shown that N*(z, y)/N (x, y)
is an unbiased estimate of p'(1 — p)*; and a necessary and sufficient condition
for it to be the unique unbiased estimate is that the accessible points not in B
form a simple finite region. Hence from theorem 2 such estimates are unique
for schemes with boundaries of minimum size. An alternative proof is given by
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considering that if two unbiased estimates of any function of p exist and f(z, y)
is the difference between them at (z, )

2 fa, YN, 9)p*(L = p)* =0,

where f(z, y) is not everywhere zero. The equations formed by equating coeffi-
cients have rank (n 4 1) as shown by Theorem 3, so that the only solution is
flx,y)N(z,y) = 0. Sinceeach N(z,y) is certainly positive it follows at once that
f(z,y) = 0and there can only be one unbiased estimate.

7. An illustration. As an application of the method we take the interesting
rectifying sequential inspection scheme discussed by Anscombe. The boundary
points are at (H,0), (H + b, 1), --- (H 4 ub, u), where p is the greatest integer
less than (N — H)/(b 4+ 1), and thereafter on the line x + y = N. The equa-
tions for N (z, y) take here their simplest form, namely equation (4) of Barnard’s
paper. From the coefficients of ¢’, ¢', -+, ¢*, -+ -,

1 = N(H,0);
0=N(H+0b,1) — HN(H,0) whence N(H +b,1) = H;

0= NH + 2,2 — (H ;L b> H+ <§> whence N(H + 2b, 2)
CHH 42+ 1
=T
0 = N(H + 3b,3) — (H * 2b> HE+Z+ 1) (H : b) H + (1;1)

H(H +3b + 2)(H + 3b +1)
3! )

whence N(H + 3b, 3) =
It now appears reasonable to guess the general term as
g(H—}—yb-i-y— DH 4+ yb+y —2) - (H+yb + 1)

The proof is therefore complete if we show

H _(H+b)H+<H+2b)H(H+2b+1)
Y y — 1 Yy — 2 21!

_ H+3b>H(H+3b+2)(H+3b+1)
y—3 3!
HH+yp+y—DH+yp+y—2) - (H+yp+1) _

o+ (DY o 0.
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Put (b + 1) = £, and the left hand side becomes

H-1)! (H+¢—1)! + (H + 2t — 1)!
H—-yly! HAE-y)y— DI (H+ 2 —yly— 2)2!
— (=1 (H + y£ — 1)!

H+yt —ylyV’

which is y times the coefficient of ¢"” in (1 + #)*™*" X [(1 + &)~ — "
Rewriting the latter as (1 + )" [1 — (1 + ™%, it becomes clear that the
highest power of ¢ is t* """, whence the required result follows.
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