ON THE VARIANCE OF ESTIMATES

By G. R. SErH
Columbia University

Summary. In this paper recent. results on the lower bound to the variance
of unbiased estimates have been brought together. Some of them have been
extended to sequential estimates and the others have been improved to some
extent. In the last section a general method for generating a system of orthog-
onal polynomials with respect to a certain class of weight functions is obtained
together with a result on the conditions under which the class of unbiased esti-
mates formed by all functions of an unbiased estimate consists of just one element.

1. Introduction.

§1.1. Let X;, X. --- be a sequence of chance variables whose distribution
depends upon an unknown parameter  and possibly also a finite number of other
parameters. It is assumed that either all the X’s are absolutely continuous or
that they are all discrete. Let pu(z1,22, - , Za ; 6) denote the joint probabil-
ity density function or the probability of (Xi, -+, X&) according as the X’s
are continuous or discrete. Let 6*(x1, 2, - -+ , x,) be an unbiased estimate of
0, where 1, 72, * ** , Z» is a sequence of observations on X;, Xz, -+, X,.

In this paper, we shall make use of the following short forms and abbrevia-
tions:

E(X) will represent the expectation of X.

o*(X) will represent the variance of X.

E(y | x) will represent the conditional expectation of y, given z.

6* will represent an abbreviation of 6*(zy, x2, - - , Zn).

f will represent an abbreviation of f(x; 6) or f(x; 61,62, - , 07).

pn will represent an abbreviation of p.(x1, x2, *++ , Zn ; 0) or Pa(z1, 22, - -,

w,.;al,oz, ,01').

py will represent p, for a fixed size sample, i.e.,n = N.

g will represent an abbreviation of g((i*; 0) org(8%,0%,---,07;01,0s,- -+ ,0r).

h will represent h(fs, k2, + - , En-1 | 6% 6) or h(Ex, b2, + -, En—z | OF, 67, -+ -,

%k
01';01)02) et 01’)'
tytigtecetip

Giyoig.---ir(n) Will represent 1. Pn.

D 303 0052 - - 0057
$1tigte iy

Gigvigee-rip Will rep?esent 7 m g.

ftigte i
$1,80,°° % .n tu T T o h.
hiy.i,-...ip Will represen R 305 00500
In case differentiations with respect to one parameter are involved, the last
three abbreviations will be shortened to ¢:(n), g; and h; respectively.
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2 G. R. SETH

In §1.1, n is assumed to be a constant equal to N, that is, the sequence of chance
variables is finite and fixed, consisting of X; , Xo, X5, -+, Xn.

Cramer [1] and Rao [2] have shown that under certain conditions of regularity,
the variance of 6*(z;, z2, - - - , Zy) satisfies the inequality:

1
2 p% - -
(1.1.1) o 0*(x1, 2, , Tw) > E( 1 apu)z.

Py 00
Cramér [1] has shown that the lower bound for the variance of
6*(x; , %2, -+ - , Tv) given by (1.1.1) is achieved if and only if:
(1.1.2). There exists a sufficient statistic for estimating 6.
(1.1.3). The probability distribution g(6*; 6) of the sufficient statistic
0*(xy , 22, - -+ , Zx) is of the form

0*(x1, T2, -+, ay) — 0 = g(o—*K,F) (% g(6*;6), whenever g(6*;6) > 0,
where K depends only upon N and the parameters in the distribution.

Cramer calls the statistic 6*(x;, 22, - -+, zw) satisfying (1.1.2) and (1.1.3)
an “efficient” statistic estimating § and we will use the word “efficient’” in this
sense alone. Bhattacharyya [3] has shown that there exists a lower bound to the
variance of 6*(z1, %2, - - - , x~) which is higher than or equal to the one given in
(1.1.1). This lower bound is A", that is,

(1'1'4) 0‘2(0*(1131 y T2y "0, xN)) D (m))\11
where B .
A | = 1IN 7
and
1 dipy d'p ..

where m is any positive integer. )
Let 6 consist of T components 6 , 05, - , 07, and py(21, 22, -+ , Ty ; Or)
N
be the same as || f(z:; 61, 62, -+, 67). Further let 05 (@, T2, -, Tn),
fe=]

0> (1, Tz, -+ 5 Tw), """ » 7(x1, T2, -+ , Zv) be unbiased estimates of 6, , 62,

., Or respectively, with the non-singular covariance matrix || Vi;||
(G,j =1,2,--+,T). Cramér [4] has proved that under certain regularity con-
ditions, the ellipsoid

T

(1.1.6) S VIt =T + 2

i,j=1

contains within itself the ellipsoid
T

(117) 3 I{jtitj =T + 2,

3,j=
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where
(1.1.8) NV~ =1 Vil
and .

_g(NY .
(1.1.9) I; = E(f2 26, a@_)~

This result is also implicitly contained in Rao [2].

§1.2. Let us now take n as a chance variable determined by a sequential pro-
cedure. X;, X2, X3, - is a sequence of chance variables having the same
probability density or probability f(x; 6), according as X is absolutely continu-
ous or discrete. The sequential process tells us, after each successive observa-
tion has been drawn, whether the next observation is to be taken or not. Thus
n will denote the total number of observations taken by the time the sequential
process has been completed. Under certain regularity conditions, Wolfowitz
[5] has shown that if 6*(z1, xz, - -+ , ) is an unbiased estimate of 8, then

En-E (566 lt)g flz; 0))2 .

(1.2.1) o*6%(21, 2q, **,Ta) >

Furthermore, if 0* consists of T compoxients, 6, 6, -+, 0z, and
of(xl, Ta, ot 3 &n)y O02(T1, 22, , Ta), -+, Or(T1, 22, - -+, ,) are unbiased
estimates of 61, 62, - - -, 0r respectively, Wolfowitz [5] has proved that

(1.2.2) ,-,,-T-x Lijtit; =T + 2
is contained within the ellipsoid

(1.2.3) Mzi:i Vitit; =T + 2,
where

I = En~E<a L‘;’ff"’g;ff), ij=1,---,T.

Blackwell and Girshick [6] have shown that the lower bound given by (1.2.1)
for the variance of an unbiased estimate of 8 is attained only for the sequential
process for which Pr(n = N) = 1, if the probability density function f(z; 6) of
X is such that E(X) = 6 and 21 + 2 + 3, - -+ + za is a sufficient statistic for
all integral values of M, for estimating 0;,, x2, - - - , T being M independent
observations on the chance variable X.

In this paper the following results have been obtained. The specific condi-
tions under which the results hold are stated at their proper places along with

the results:
(1.3.1) The lower bound in (1.1.4) is valid when n is considered a
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chance variable determined by a sequential procedure instead of being a fixed
number N.
(1.3.2) The concentration ellipsoid defined in (1.2.3) contains within itself

another ellipsoid
T

"21 pijtity =T + 2
ii=
where pu;; is given by (3.1.18), which in turn contains the ellipsoid given by
(1.2.2).
(1.3.3). The Blackwell and Girshick result [6] for the achievement of the lower
bound for the variance of unbiased estimates given by (1.2.1) has been extended
M

to the case where the probability density (or probability) I] f(z: ; 6), for all
tm=]

fixed M > N, where N is the least value for which Pr(n = N) == 0, has an
unbiased “efficient” estimate for § in the sense defined by Cramer. This is
illustrated by two examples of Wald sequential procedures.

(1.3.4). Let N be fixed and pw(z1, Z2, -, 2v; 0) - |J| = g(6*%; 6)
h(tr, 82, -+, Ev—1 | 6%, 0), where J denotes the Jacobian of the transfor-
mation from =z, z2, -+, zy to 6% &, &, , v . Here g(6*; 6), and
h(k1, &, -+, £v-1| 6% 0) are respectively the probability density function (or
probability) of 6* and the conditional probability density function (or prob-
ability) of &, &, -+ -, év—1 for a given value of 6*.

The necessary and sufficient conditions under which the lower bound for the
variance of unbiased estimates given by Bhattacharyya [3] may be achieved are
that there should exist a statistic 6*(x;, x2, - -- , zx) such that:

(@) b1y hay -+, hm are linearly dependent considered as functions of &,

£, -+, Ev—1 for given values of 6 and 6*(z; , 22, - - - , zv) and

(b) the probability density g(6*; 8) of 6*(z;, z, - - - , xx) satisfies the follow-

ing equation:
P, m, o an) =0 = 2 B,
where K; are independent of the z;, x5, 23, -+, zv .

Equivalent conditions for the multiparameter case have also been given.

(1.3.5). The following properties of ¢1(n), ¢2(n), - - - are derived:

(a) Under certain conditions ¢;(N), ¢2(N) - - - form a system of orthogonal

polynomials in ¢;(N), the weight function being py(x1, 2, --- , zx ; 6).

(b) X Ki(n) cannot be a function of 21, 72, - -+ , T», independent of 8
fmm]

except for the constant zero.

(¢) If 6%(x1, 22, -+, x.) is linearly dependent upon ¢:(n), then no other
statistic except of the form a6*(x;, #2, --- , 2,) + b where a and b are
constant independent of 6, can be linearly related with ¢;(n).

(1.3.6). If a) 6*(z1, 22, - - - , Zx) is an unbiased estimate of 6 and b) if among
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all functions of 6*(x; , x2, - - - , ) which are unbiased estimates of § with finite
variance, 8* is the one with the least variance and such that the set of poly-
nomials with respect to the distribution function of 8* is complete, then there is
no function of 6* having a finite variance which is an unbiased estimate of 6.

2. Estimation of a single parameter.

§2.1. Let X;, Xz, --- and pa(21, 22, - - - Za ;9) be as given in the first para-
graph of (1.1). Let @ be the space of all possible infinite sequences (w) of obser-
vations x1, x2, --- . Let there be given an infinite sequence of Borel measur-
able functions ®(z1), (1, 22), -+, ®;(%1, 2. 73, -+, ;) -+ -, defined for
all observable sequences in Q such that each takes only the values zero and one.
We further assume that everywhere in @, except possibly on a set whose proba-
bility is zero for all # under consideration at least one of the functions ®;(z1),
®,(21 , 72), - - - takes the value of one. Let n be the smallest integer for which
this occurs. Thus n(w) is a chance variable. The sequential process is then
defined as follows:

Take an observation and find &;(r;). If it is unity, the sampling process stops;
otherwise continue sampling. If a second observation is taken and the value of
®,(r1 , ;) is unity, the process stops; otherwise continue sampling, and so on.
In general, if after taking j observations

@1(271,2?2,“‘,1‘,') = 0 for< = 1’21”'j_ 1,

and ®;(x1, x2, -+, x;) = 1, sampling stops; otherwise it is continued. @We
will denote by R;, the set of all points (21, 2, - -+ , ;) for which the procss
stops with the jth observation.

Let 6*(z;, 2, - - - , ) be a statistic whose expectation is a real valued func-
tion () of 6. The development proceeds on the assumption that
PaulTy, T2, -, Tar; 0) is a probability density function. The result is equally
valid if pu(z1, 22, -+, Zu; 0) is the probability of discrete variables X, ,
X,, -+, Xu provided that integration is replaced by summation whenever
this is required. Further the phrase “almost all points” in a Euclidean space of
any finite dimensionality is understood to mean all points in the space with the
following possible exceptions:

(a). A set of Lebesgue measure zero where py(z1, 72, - -+ , Za; ) is the prob-
ability density function;

(b). The points which belong to the set Z, where pa(21, T2, - -+ , Ta ;0) is the
probability function of the discrete chance variables X;, X5, ---, X» . The
set Z consists of all points (z; , 22, - -+ , Ta) such that pa(zy , 22, -+ , Tu; 0) =
0 identically for all 6 under consideration.

§2.2. Conditions of regularity. We will postulate the following conditions to
be satisfied by pu(z1,22, -+, Ta ;0) and 6*(z1, 22, -+ , Ta).

(2.2.1). 6*(z1, 72, - - - x.) has an expectation y(6) and a finite variance. All
the derivations of ¥(8) are assumed to be finite. The parameter 6 lies in an open
interval D of the real line. D may consist of the entire line or an entire half line.
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(2.2.2). The deriva.ives

BN .
_(‘-"g,'il: (7'=1’27"';m))

exist for all 0in D and almost all z; , 2z, - - - , T in Ry and for all M. We define

1 a‘pu _
Pu 60’ - 0,
whenever pu(21, 22, -+, Tar; 6) = 0; thus,
1 o Pu _
o T = sn)

is defined for all 6 in D and almost all (z1, 22, **+ , Zar) in Ba .

(2.2.3). For any integral j there exists non-negative L-measurable functions
Tz, 22, ,2), (=12 , m), such that
ae’pl(xl’ Lo,y Xy 0) l <T@, 22, -+, z;),

for all @ in D and almost all (21, 22, -+- , ;) in R;.

(@) | 6%z, 22, -+, i)z

7
(b)‘/;Ti(xlyx‘ly"',xi)zldxu,(i':1:2,""7”’),
i U=
are finite.

i
(2.2.4). Let t,(0) = j; 0*(171, Tg, ***, xj)pi(xly T2y o0 5 &5 0) III: dzy.
i u=
We postulate the uniform convergence of

E z,(o) (=12 ---,m)

1—1
(the existence of T (t 1(6)) is assured by the assumption (2.2.3).)

(2.2.5). There ex1st functions Si(z1 , z2, -+ - , z;) foreveryj, ¢ = 1,2, ---,m),
such that when 6*(x;, x2, -+, z;) and T;(:cl , T2, +*, Z;) are replaced by
unity and Si(z;, 2, - -+ , ;) respectively, conditions (2.2.3) and (2.2.4) still
hold good.

(2.2.6). The covariance matrix of ¢i(n) (z = 1, ---, m) exists and is non-
singular for almost all 8 in D and almost all (z1, 72, -+ - , Za).

§2.3. Let us consider the sequential process mentioned in §2.1 and the func-
tions 6*(xy , %2, + -+ , ¥a) and pu(21, 22, - *+ , Tar; 6) Which satisfy the regularity
conditions in §2.2. We will now find a lower bound for the variance of such es-
timates.

Let us examine

m 2
(2.3.1) F=E (0*(1:1, To, o xn) - 'Y(O) - g Kﬁ¢l(n)) )
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where K; (¢ = 1,2, --- , m) are independent of (x1, 2, - Z,). Now (2.3.1)
can be written as

F = 02(0*(xl y L2,y *° xn)) - 2 Z KzEO*(xl ’ x2, Y xn)¢t(n)

(23.2) N, -
+ 2v(6) Zx K;E¢in) + 2 ) KK\,
i 1,7
where
)\t'i = E(¢t(n)¢z(n)) (Lj = 1; 2) Tty m)'
Now
(234) E(0*(x1, 22, -+, 2)di(n)) = 2 | 0%y, 22, -+, 27) %—’ﬁ Il dz..
i=1JR; 0 a1
We also know that
o i
(2.35) Z f 0*(1?1, Lo, **°, x,-)p,- H dxu = 7(0).
=1 JR; u=1

Differentiating both sides of (2.3.5) ¢ times ( = 1, 2, - -+, m) we have, be-
cause of conditions (2.2.3) and (2.2.4):

’ (23.6) Z 0*(x1,x2,---,xi)apinxu=d7(0), (7'= 1,2,"',M)-

= I, 6 ami o’
From (2.3.4) and (2.3.6), we obtain )
(23.7) E(0*(z1, 22, +++, 2a)9i(n)) = 3—0: 7(6).
Differentiating )
(23.8) 1= f p; 11 dz.
i=1JR; " " u=l

7 times (¢ = 1, 2, -+, m) with respect to 6, we obtain because of conditions
(2.2.5) ‘

(2.3.9) O = Z ?—& H dxu’ (1: = 1’ see, m)'

i=1 JR; a6 u=l

(2.3.8) is valid on account of the type of sequential process (2.1). Now
] 7 . 7
2310)  Egm) =X [ ZPilde., G=1,--,m).

i=1VJR; 30”’ u=]
By (2.3.7) and (2.3.10), (2.3.2) reduces to
@311) F = A0, m, -, z) — 2 0 KA 4 5 kg

=1 ae =1

Now || As; || being non-singular on account of condition (2.2.6), we get just
one set of values of K’s which minimize F. These values are given by

(2.3.12) K=Y (m)x'id 7(_0) ’
i=1 do
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where
(2.3.13) lemA? 117" = 1IN ], (4§ =1,2, -, m).
Putting the above values of K;(j = 1,2, - -+ , m) in (2.3.11), we obtain

i 0 T v(0
(2'3'14) F = 0'2(0*(1’1, T2y o°°, xn)) - ,,Z-: (m)X’ ddzf ) dtZGE )

Hence, F being non-negative by (2.3.1), we have

2 5 d'yv(0) d'v(6)
(2.3.15) 0¥ (x1, 22y 0y Zn)) 2 ’Z_ A7 A
Thus R.H.S. of the above inequality gives the lower bound to the variance of
unbiased estimates of v(6)." When v(6) = 6, the above reduces to

(2.3.16) (0% @1, T2, 5 Ta)) = A

Whenm = 1and p.(%1, 22, -+, %a ;0) = Hf(:c.- ; 8), (2.3.16) reduces to
=]

(2.3.17) o (0%(z1, 22, -+ -, Ta)) > . 1 -
En-E ((a—os log f(x; 0)) )

which is the result given by Wolfowitz [5].

When 7, the chance variable, is constant and equal to N, then (2.3.15) and
(2.3.16) correspond to those given by Bhattacharyya [3]. Although the con-
ditions of regularity under which Bhattacharyya proves his results are not clear
from his paper, they are likely to be slightly different from those in §2.3, as the
results in [3] are obtained only for a fixed size sample.

§2.4. We will now investigate the necessary and sufficient conditions under
which the lower bound given in (2.3.16) is actually higher than that given in
(2.3.17).

We can easily see that

1

2.4.1 oA} = ,
( ) m Ml — Rizs.m)

where Rj.2s... is the multiple correlation coefficient between ¢1(n) and ¢.(n),

¢3(n)’ Y ¢m(n)
The excess of the lower bound given by (2.3.16) over that when we use m = 1

is given by
1 1
Ml — Rlssm) An

(2.4.2)

1 Under certain weak restrictions, an optimum lower bound to the variance of unbiased
estimates has been obtained by me along the lines of a similar result for fixed size samples
in an unpublished paper by A. Wald. Independently C. Stein has obtained the same result
in a paper not yet published.
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which is further equal to

Riss.m
Ml — Rigs.m)
Thus the lower bound for the variance of unbiased estimates of 6 is obtained
by using m > 1 is higher than that obtained by employing m = 1 if and only if
Ri.23...m 18 not zero for some m > 2. This is equivalent to the condition that for
at least one 7 > 2, \y; , the correlation coefficient between ¢,(n) and ¢:(n) (2 > 1),
is different from zero. Suppose further that we have used m = « and that we
wish to find the increase in the lower bound if « were replaced by a + 1. The
increase in this case is given by

2
P1(a+1).23...a

(2:44) Ml — Rias...asn)
where p1(at1).23...« 18 the partial correlation coefficient between ¢;(n) and ¢e1(n)
keeping ¢2(n), - - - , da(n) fixed. It is greater than zero if and only if pi(at1).2s...a
is not equal to zero.

§2.5. If po(x1, 22, -, . ; 61) also depends upon a finite number of other
parameters 0, , 03, - -+, 0r, then a lower bound higher than or equal to that
given in (2.3.16) can be obtained by using

(2.4.3)

Ky izeosip* $igsigeig(n)  instead of E K -¢:i(n) in (2:3-1).

f1Figte s Air<m i1=1
The lower bound in this case is given by (3.1.14) (see section 3) by taking 8 = 1,
that is,

(2.5.1) o (6%(21, 22, + -, 7)) 2 C(1, 1)

where C(1, 1) is the element in the first row and first column of the inverse of W
defined in (3.1.9).

The result for n = N, N fixed, is obtained by Bhattacharyya [3, 1947]. Let
us illustrate it by an example. Take samples of fixed size N. Suppose we are
required to find the lower bound to the variance of unbiased estimates of 6,
in the normal population

(2.5.2) f(x; 6, 6) = \/2 5

on the basis of N independent observations x;, 22, -+ + , z» . The lower bound
for the variance of the unbiased estimates of 6, , when we use
2

Z K; - ¢4(N) in (2.3.1) is given by —2Nﬁ

ll—

However, if > Ki.i - ¢i.i(N) is used, the lower bound, by the help of
$1+ig<2

(2.5.1), is found to be equal to 26;/(N — 1). In fact there exists the statistic

N

E (z; — 2)°

1=1

N -1

—(z—02)2/20,
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N
whose variance is equal to 203/(N — 1) where & = > % Thus the use of

i=1 )
> K. i, * $i,,:,(N) brings into relief the unbiased estimate with the

$1+19<2
least variance.

3. Multi-parameter case. In this section we will prove the result mentioned
in (1.3.2) of §1.3.

§3.1. Let 0 consist of T components (61, 0z, --- , 0z) and 07 , 05 , -+, 67 be
unbiased estimates of 01, 63, - -+, Or respectively. Also, let a sequential process
of the type described in §2.1 be given. We postulate the following regularity con-
ditions:

(3.1.1). The covariance matriz || Vi; || of the estimates 07 = 1,2, .-+, T) is
non-singular in D, where D is an open interval of the T-dimensional parameter
space.

(8.1.2). The conditions of section (2.2) are satisfied for each one of
607G =1,2, -+, T) and $iriseerniz(n), Ga + 22 + -+ + ir < m).

(8.1.3). The covariance matric of @iyi,.....ir(0), 01 + @2 + -+ 4 ir < m exists
and is non-singular. Under the assumptions (3.1.1)-(3.1.3), we prove the result
(1.3.2) in section 1.3.

Proor: Using the same arguments of §2.3, we obtain

1 'ip=5pj(ﬁ=1,2,"',T),
’ i=512.--,T
(3.1.5) = 0 otherwise.

(3.14) E(07(m1, %2y +++ y Tn) Pigsigsens,in(n)) =

Let the covariance matrix of 67(j = 1,2, -+, 8;8 < T) and ipi,....ir(n),
(o + %2+ - -+ + ir < m) be given by

A B
(3.1.6) U= .
W
where
(8.1.7) 4 = ” Vc'i“: ,j=1,2--,8 s<T;
(3.1.8) B =|Lo];

(3.1.9) and W = covariance matrix of the set
[birigriz(®);is + 22+ + -+ + ir < m],
arranged such that the jth term in the leading diagonal is given by
(3.1.10) E(¢%,.y..ir(n)),  whered; = 1,35 =0,8%j, (j=12,---,T),

and B’ is the transpose of B.
As U is positive semi-definite, we have

(3.1.11) |U| > 0.
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The above can further be reduced to

(3.1.12) |W|-|A—=BW'B| >0,
which leads to
(3.1.13) |A — B+ W=.B'|>0,as W is positive definite.

By the use of (3.1.8) we obtain from above
(3.1.14) |A—-C|>0

where C is the top left part of W', consisting of s rows and s columns.
Let us now consider the matrix

(3.1.15) | Vii = vii |l ¢j=12--,1),
where || vs; || is the topleft part of W™ consisting of T’ rows and T columns, and
is equal to

(3.1.16) [| Wy — WiuaWa Wy “-1,

when W is written as

Wll Wl2
W21 W22

where Wy has T rows and T' columns.

By the repeated application of (3.1.14), we are led to the conclusion that all
the leading minors of the matrix in (3.1.15) are either positive or zero. Hence
the matrix in (3.1.15) is semi-positive definite.

If now we put

’

(3.1.17) W = }

(3.1.18) [ ai ] = lwes [T
we obtain
(3.1.19) s = V7
to be semi-positive definite. Thus the ellipsoid
T
(3.1.20) > Vit =T + 2
$,j=1

contains within itself the ellipsoid

T

(3.1.21) 2 wigticty =T + 2
%)=
Cramer calls the ellipsoid in (3.1.20) a ‘“concentration” ellipsoid.
We will now show that the ellipsoid given by (3.1.21) contains within itself

the ellipsoid

T
(3.1.22) D Ljebiet; =T + 2

i,j=1
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where || I;; || is the information matrix given by Wy, in (3.1.17). We will prove
the above by showing

(3.1.23) ”I"J' — Hij ”7 Gj=1-,T1),

to be semi-positive definite.
We obtain, from (3.1.16) and (3.1.18),

(3.1.24) “ Mij ” =Wy — WuW;len ’ (’i,j = 1, 2’ R} T)'
From the above it follows that
(3.1.25) [ Lij — pss || = WouWas Wa .

Thus the matrix on the right hand side is semi-positive definite since Wa. is
positive definite, we see that the ellipsoid (3.1.21) contains within itself the ellip-
soid given by (3.1.22). This proves the assertion made in (1.3.2) of §1.3. It
may be seen that (3.1.22) is strictly contained in (3.1.21) if and only if W;, == 0.
It may be mentioned that in this section as well as elsewhere, T + 2, appearing
on the right hand side of the equation of an ellipsoid, can be replaced by any
positive constant. Also the ellipsoid in (3.1.21) depends upon the choice of m
and it can be shown that for any two positive integers m; , my (my > m,) the el-
lipsoid for m = m, contains within itself the one for m = m,.

§3.2. In general, let 0:-"(:1:1 , T2, <, T,) be statistics whose expectations are
v:(61,02,-+-,07), (& =1,2, ---,T), the latter being assumed to admit partial
derivatives of all possible orders. Under the postulates enumerated in §3.1,
we see that the ellipsoid in (3.1.20) contains within itself the ellipsoid

T
(321) Z Sij’t."tj =T+ 2
£, j=1
where
(322) ” Si; “ = ” RW'R ”..1’ "’.7 = L,2---,T,
and

ai1+i2+‘ cotip

)

(3.2.3) R==H&Eﬁ%§7i7§§7ﬂﬁ,%,-“,00

G=12-,Tia+i+ - +ir <m),

where j and % + % + - -+ + 77 indicate the number of the row and the column
respectively and is arranged to correspond to the arrangement of W, where W
is the same as given in (3.1.9).

4. Achievement of the different lower bounds. In §4.1 we will demonstrate
the desirability of finding a higher lower bound to the variance of sequential
estimates than that given by Wolfowitz, by giving two examples in which the
latter is not achieved. From §2.4 it is clear that this will be so if E(¢1(n) « ¢i(n))
is not zero for at least one value of 2 > 2. We will demonstrate that this is true
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for 7 = 2. In §4.2 we show that if “efficient’ statistic exists for all M > N,
the bound is achieved only in the case when the sample size is fixed. In §4.3
we obtain necessary and sufficient conditions for the attainment of the bound
given in (1.1.4). In §4.4 we discuss the conditions under which there exists a
“concentration ellipsoid” which coincides with the ellipsoid given in (3.1.21) for
samples of fixed size N.

§4.1. Ex. 1. The Wald sequential procedure for testing § = 6, , against 6 =
6. in a normal population

(4.1.1) f(z30) = _\/1_2_; et

is given as follows: f

S
(4.1.2) B<Z(x,-—0‘+0”)<A,(s=1,2,---,j—-1),

=1 2
and
i
(4.1.3) > (x,- b —; 02) s either > A or <B,
tu=]

we cease sampling and make a decision. Here A and B are constants fixed by the
probability levels of making a correct decision.
Let us denote the set of points satisfying (4.1.2) and (4.1.3) by R;. In this

case

(4.1.4) i(n) = 2 (x; —0) = Z, — nf, where Z, =D z.
=1

t=]

The above is differentiable with respect to §. On differentiating we have

(4.1.5) ¢:(n) = (Z, — nd)’ — n.

Now M

(4.1.6) E@(n) - ¢u(n)) = E(Z, — 16)° — E(n(Zs — nb)).
By theorem 7.3, Wolfowitz [5],

(4.1.7) E(Z, — n8)° = En - E(X — 6)° + 3E(n(Z, — nb)),

where X has the distribution given in (4.1.1). As E(X — 6)® is equal to zero,
(4.1.6) reduces to

(4.1.8) E(pi(n) - ¢o(n)) = 2E(n(Z. — nb)).

We will now show that right hand side of (4.1.8) is not identically zero in 6.
Let us consider

419 E@m) =3 fR ,~ (_2-1{7,2 [exp (—-;- 2'_:1 (& — 0)2)] I do...

=1 ym==]l



14 G. R. SETH

Differentiating with respect to 6, we get

d 2 10 ] Fl

w1 & @) =3 [ Gt [ (-4 3 - o) | L an.
The righthand side of the above equation being equal to E(n(Z, -- n8)), the lat-
ter does not vanish identically in 6, because the lefthand side is not identically
zero. The step from (4.1.9) to (4.1.10) can be easily seen to be valid.

Ex. 2. The Wald sequential procedure for testing p = p; against p = pzin a
binomial distribution, where p is the probability of the event occurring, is given
as follows: If

(4.1.11) B<Z(x.—d)<A §s=1,2,-++,5 =1,
=]
and
)
(4.1.12) > (xi—d) iseither >A or <B,
=]

where d ts given by [log (1 — p1)/(1 — p2)l/log [(p(1 — p1)/pr(1 — ps)], the
process stops with the jth observation and a decision is taken. Here, z; is the
characteristic function of the event at the ¢th trial, that is:

z; = 1, when the event occurs at the ¢th trial;

= 0, otherwise.

Let us denote the set of points satisfying (4.1.11) and (4.1.12) by R;. In this

case we find

@113  Elam)-am)] = ot Ea(Z, — ),

where Z, = Z z;. We have now to show that the righthand side is not iden-
f=1 i

tically zero. Differentiating

(4.1.14) E(n) = 2 22 jp™i(1 — p)%
i=1 Rj
with regard to p, we obtain
a = J(Z _.717) p%i.(1 — p)y~Zi
(4.1.15) p (E(n)) ’f_,: ;i S =p) (1 — p)~%i.

The righthand side of the above is the same as

(4.1.16) E(n(Z, — np)).

_1
p(1 — p)
Thus, the lefthand side of (4.1.15) being not identically zero, the same is true for
(4.1.16), and consequently the bound given by Wolfowitz is not achieved in this

case.
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The step from (4.1.14) to (4.1.15) is valid as

. 2 Zi1 _ o\i—Zi, % T J°P
is absolutely and uniformly convergent.

§4.2. Let * be some unbiased estimate of 8, where z;’s are successive inde-
pendent observations on the chance variable X having the probability density
function or probability function f(x; 6). We adopt a sequential procedure men-
tioned in §2.1 satisfying the regularity conditions in §2.2 and also postulate
the following:

(i) For all positive integral values of M > N

M
Pu(Ty, o, -+, Tu;0) = IIlf(an)

possesses an ‘efficient’ estimate for 6, where N is the least value of n for which
Pr(n = N) £ 0.

(ii) E(n) exists and admits derivatives up to the second order with respect
to 6. Furthermore, (%(E(n)) is either zero for all 6 under consideration or is
never zero.

Under the above conditions the Wolfowitz lower bound for the variance of unbiased
estimates 1s achieved only when Pr(n = N) = 1.

Proor: This bound will be attained if and only if there exists an unbiased
estimate 6* of 6 such that

(4.2.1) E(0* — 6 — K¢u(n)) = 0,
that is,
(4.2.2) 6* — 9 = K¢u(n)

with probability one, where K is independent’of all z;’s and n. As there exists
an ‘efficient’ estimate, say ¢ (M) for all M > N, we have

R == s é 11og a0 |

forall M > N. From (4.2.2) and (4.2.3), it follows that

(4.2.4) *—0=K-n-@n) —0) - -E [(%{; log f(x; 0))2] .

Now as
1

En - E [ g—o log f(:c;@))il ’

(4.2.5) K =
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we have
(4.2.6) o —g =" (¥(n) — 6)
En :

If E(n) is independent of 6, then from (4.2.6), we obtain
(4.2.7) n/E(n) = 1,

that is, » is constant with probability one and the sequential procedure reduces
to a fixed size sample case. If E(n) is not independent of 6, then differentiating
(4.2.6) with regard to 6, we obtain

d
(4.2.8) - (¥(n) — 6) - = (En)
- n n d0 Y(}

n
Eny T Ene
Asg—o (En) is not equal to zero for any 6 under consideration, substituting the

value of ¢(n) from (4.2.8) in (4.2.6), the latter takes the form:

(4.2.9) 6 — 0= dE” -,
Differentiating the above with respect to 8, the result is:
En —
(4.2.10) “1= - & )+ 1.
de
[5 @]

Now if %(En) = 0, then (4.2.10) is not valid, thereby contradicting (4.2.2).
d

If 7 (En) =% 0, then rearranging (4.2.10), we obtain
2
2 (g-e En)
(4.2.11) n=—- X 7 4 B
| < (En)
de:

that is, n is a constant with probability one. This proves that Wolfowitz bound
is achieved only in the case when n = N with probability one. This generalizes
the result of Blackwell and Girshick [6]° to the extent that in [6] the existence of
an efficient estimate is assumed for all integral values of M instead of M > N,
as assumed here. Moreover the proof given here, with slight modifications, is
also valid when the successive observations are not independent.

2 In (6] the assumption that “z, + 22 + --- + zux be a sufficient statistic for all M
really amounts to the postulate that “z; + zz + -+ + zx be an “efficient’” statistic for all
M,” when we restrict ourselves to probability density functions satisfying the conditions

given by Koopman in [7].
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§4.3. Let us consider a sample of fixed size N. Let 6* together with the
probability density function px satisfy the following regularity conditions:
(i). There exists a transformation 7' from (zy, 23, -+ - , Zx) to the variables

£i=£5(xlyx2""7zlv)r 0*=0*(231,$2,"',2N),
4.3.1)
i=1,2 N -1,

such that
(a). The functions ; are everywhere unique and continuous, and have con-

tinuous partial derivatives

g—ii)% (i= L2 .-, N-1Lu=12, ""N)
in all points (z;, 2z, « -+ , ») except possibly in certain points belonging
to a finite number of hyper-surfaces.

(b). The relation (4.3.1) define a one-to-one correspondence between the
pOintS T = (xly T2y, xN) and y = (El’ £, tva, 0*) so that
conversely z; = #(&, &, -+, Ev-1, 0*) where 5; are unique.

(ii). There exists partial derivatives of g(6 *;0), h(t:1, &, « - - , Ev—1 | 6%; 0) with
regard to @ of all orders up to and including m, where m is some finite integer.
The variances of 6*, h;and g; - g;,%,7 = 1,2, - -+ , m, are finite, where A; and g;
are defined in section 1.

(iii). There exist functions

fi=1,2-,m
T"(j= 1,23 )

such that .
al
] azo? < Taler, za, -+, zn);
| <o)
|22 < Tate;
a'h
FY <Tt'3(£l)£2""9 N—l;o*):
for all 6 in D and for almost all (x;, z2, -+ -, zv) where D is an open interval.
Further

N
fTsx(xl,xzy "'rxN) Hldxu;

N-1
fT;z(O*) d¢* and fT.'a(& By ey Enaa; 0%) I_jg .

are all finite, the range of integration, in each case, being the whole range for
the arguments indicated. Then the necessary and sufficient conditions that the
variance of 6* equals the lower bound given in (1.1.4) are
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(iv). k1, b, - -+, hy are linearly dependent considered as functions of & , &,
-+, &£x-1 for any given 6* and 6, and
(v). The probability density function g of 6* is of the form

0* — 0 =2 Kig:
=1

where K; may depend upon 6 and N only.
The proof here is given when py is a probability density function. It is also
valid with slight modification when py is the probability of discrete variables.
Proor: Let J be the Jacobian of the transformation T in (4.3.1). Then
because of conditions (i) and (ii) above, we have,

(4.3.2) oz, 2, y "y TNy 0)' J l = 9(0*; 0)-h(t1, & y s Eva ’ 6*;6)
Further

N—1
(4.3.3) f Me, &y o005 Ena | 6% 50) III dé, = 1,

the range of integration being the space of &, &, -+, év—1. Differentiating
the above ¢ times under the integral sign, it follows that

(4.3.4) E(h: | 6% 6) = 0.
Similarly we have
4.3.5) E(gi-h)) =0

as the expectation of the quantity on the L.H.S. is finite by virtue of (ii). More
generally, we have

(4.3.6) E(F(6*) - hs) = E[F(6*) - E(h; | 6%)] = 0

if E(F(6*) - h;) is finite. Let us now examine

(4.3.7) E (o* -0- Z: K; ¢.«(N)>2,

where K $:(N) can also be written as

(4.3.8) K (g,. + (’1) higis 4 - + h;).

Now (4.3.7) can be put in the form

4.3.9) E(o* —0- 3 Kigi— 3 Li- hs)z,

where

(43.10) L=3x-0) o G=12,m,

clearly depend on 6 and 6* only.
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By virtue of (4.3.4-4.3.6) and F(6*) involved in (4.3.9) being such that
E[F(6*) - b = 1,2, ---, m) is finite because of (ii), we can further reduce

(4.3.9) to
)]

m 2 m 2
(4.3.11) E(o* —-0—- 2 K g,-> +E [E ((Z L; h,)
The lower bound will be achieved if and only if the above expression is zero,

{=] fe]
the necessary and sufficient conditions for which are:

(4.3.12) * — 0= Ki- g,
=1
and
(4.3.13) 2 Lik=0 in &,&, -,

]
for any given values of 6* and 6.
(4.3.13) is equivalent to the condition that k; , (¢ = 1,2, - - - , m) are linearly
dependent considered as functions of & , &, - - - , £éx—1 for any given values of 6

and 6*.

When m takes the value one, the above reduces to the Cramer conditions for
the existence of an “efficient’”’ estimate.

§4.4. Multiparameter case. Let 0%, 03, -+, 97 be the unbiased estimates
of 6,, 02, ---, 07 in the probability density function

pN(xli T2, °°, xN;ola 02, ] 01’)
and the regularity conditions of §4.3 are satisfied when 6* and 4'?_0' ¢t=12---,
m) are replaced by 67 (j = 1,2, -+, T) and

girtirt i
0 o0 - a0 wt+i+ - +ir<m)

respectively. Further let
pv(@1, T2, -, Tn; 01,0, -, 0p) - |J|
(4.4.1) = g(0%, 62, -+, 075 61, 6, -+, Or)
R, b2y ey Evaa | OF, 03, -+, 67)

where g and h are respectively the joint probability distribution functions of
o1, 0, -+, 07 and the conditional probability distribution of &, &, - -+ , f¥—1
for a given set of values of 67, 65, --- , 63. In order that the ellipsoid (3.1.20)
coincides with the one given by (3.1.21), it is necessary and sufficient that the
following be satisfied for each t(t = 1,2, ---, T)

4.4.2 E (6; — 6, — O K trigeerir * Bigsigeerni®)’ = 0.
( ) ( t t it ir S, $368200 08T ¢‘l' 20 l‘T)
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Now reasoning similar to that in §4.3, we conclude from the above that the
necessary and sufficient conditions are:

There exist T independent linear combinations of
(4.4.3) Riyige.nip 3 Wttt - Firm
which vanish with probability one for any given values of the sets
61,0z, --+,6r) and (61,0, , 61),
and
(444) 0 —6= X “KigeirGiineir,  t=12 -+, T

iytiste-Hir<m
where the K’s do not depend upon 6; and £’s. For T = 1, the above reduce
to the conditions in §4.3. We will now give an example in which (4.4.3) and
(4.4.4) are satisfied. Let

1 1 N .
(4.4.5) Pa(Ty, T2, -+, 2w 00, 0) = W[exp-;&~2(x; —02)2]

gl

We have
(4.4.6) 0 = ZA_; (z: —2)"/(N — 1),
(4.4.7) 0; = f: z/N = 1z,

=]
unbiased estimates of 6; and 6; in (4.4.5). The joint distribution of 67 and
05 is given by
g(o’;’ 0:)011 02) = C
(4.4.8) —N@F — &) (N — 1)6F - -
. expl: ( 2 ;;1( ) 1 . (OI*)N 1/2.(01) N/2.]

It can be easily seen that the condition (4.4.3) is satisfied, and the estimates
themselves can be put in the form

. 2° 1 ag A 1%

(4.4.9) =0ty —7 g NN =1 go6’
* 01 1 ag

(4.4.10) 6 = 6 N g 602.

It is thus seen that the ‘concentration’ ellipsoid for 6, 65 coincides with the el-
lipsoid (3.1.21) for m = 2. On the other hand if we use m = 1, the condition
(4.4.3) is satisfied but not the one in (4.4.4), as can be seen from (4.4.9), and thus
the concentration ellipsoid strictly contains within itself the one given by the
information matrix. It may be noted that for m = 1, the condition (4.4.3)
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merely requires that a system of sufficient statistics exists for estimating 6, ,
0, -+, 0r. Thereason is that the condition (4.4.3) takes the equivalent form

oh
4.4, oh _
(4.4.11) 3, 0

fors = 1,2,---, T identically in &, &, - -+ , £v—r that is, that A is free of
01, 03,---, Or.

6. Miscellaneous. In §5.1-§5.3 we discuss certain properties of ¢:(n). In
§5.4 we obtain conditions under which there exists no unbiased estimate of 8,
having a finite variance, which is functionally dependent upon a given unbiased
estimate 6* of 6.

§5.1. Assume that there exists an “efficient” statistic 6*(x1, 22, ---, Z»)
for estimating 6, in probability density function (or probability)

pN(xly x27""xN;0)'
That is,
(5.1.1) @, 22, -+ ,28) — 0 = K - $2(N)

where K as usual may only depend on 8. We postulate as usual the existence
of all partial derivatives of px of all orders and also of K up to the third order

with

&K
(5.1.2) T =
Further we assume that
aa‘%v < Ti(xly X2y *°, xh’)
where .
fTe(xl,xz,'“,xn)den is finite for all ¢
. uw=l

Under the above assumptions we will show that
$(N) = 1, 2(N), ¢2(N), - -+ , di(N), - -
form a set of orthogonal polynomials in ¢;(N') with respect to the weight function
Px(@1, X3y o0, Tn; 0).

ProoF: We can easily see that

0
(5.1.3) 3‘3- = Gis1 — Givdi

where ¢;(N) is shortened to ¢; for convenience. Differentiating ’(5.1.1) with

respect to 6,
oy 1 dK 1

(5.1.4) %= K d ¢ — 7
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Let us designate )
1d'K
(5.1-5) 2 = K. do'
for all integral values of 2. From (5.1.3) and (5.1.4), it follows that
(5.1.6) ¢ — ¢1 = —21¢1 — Il{

Differentiating (5.1.6) further with regard to 8 and using (5.1.3) and (5.1.6) we
obtain

(5.1.7) ¢3 — d1¢2 = —2z1¢ — (13{ + Zz) ¢1.
Differentiating (5.1.7) with regard to 6, and using (5.1.2) we get

(518) P4 — 13 = _321¢3 - (322 + I%) ¢2.
We assume generally that

(5.1.9) birt — P1s = —i21¢; — (?—'(L;—l) 2 + I%) di-1.

Differentiating (5.1.9), and employing (5.1.3), (5.1.3) and (5.1.9) we obtain

(5.1.10) iz — d1din = —(@ + Dardin — (2-(1'_2'_—1) a+" ; 1) @i

We know that (5.1.9) holds for 7 = 1, 2, 3; ¢ being taken equal to one, and
we have proved that if (5.1.9) is true for ¢ = j, it is true for ¢ = j + 1. Thus
by mathematical induction (5.1.9) holds good for all integral values of <.

It is also clear from (5.1.6) and (5.1.9) that ¢; can be expressed as 4 poly-
nomial in ¢; of the ith degree, the coefficient of é1 being equal to unity.

To complete the proof of our assertion we will now prove that

(5.1.11) E@:-¢) =0, 1i¥F].
From (5.1.9) . )
(5.1.12) d1°¢i = i1 + 1210 + (z(z -2- D) 2+ I%) di1,

where 1 is any positive integer. We multiply both sides of (5.1.12) by ¢: and

reduce every product ¢:; to a linear combination of ¢;41, ¢; and ¢;1 with the

help of (5.1.12). Repeating this process j — 1 times (j < 1) it follows that:
2j—1

(5.1.13) bl b = diri + ; Al iviu + di;i b

where d’, are functions of K, z; and zz. From (5.1.13), by taking expectations
of both sides,

(5.1.14) E@i-¢:) =0, (G <9).
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Now, since ¢; is a polynomial of the jth degree in ¢1 we conclude that (5.1.11)
is true for all integral (positive) values of ¢.
Thus we obtain

(5.1.15)  ¢o(N) = 1~ &u(N), ¢u(N), -, &N), -+,

as a sét of orthogonal polynomials in ¢;(N), the weight function being

pr(@y, 22,y -+, N5 0).
Furthermore
(5.1.16) $1 i = ¢nia + 22__:: 4 pairi—u + daice
where
(5.1.17) dyis = ’Iilz B;
and
(5.1.18) B, =14 - D+ L.
Hence
(5.1.19) B@i-e) = 11 B;.

Thus if we divide ¢; by /‘/ II1 B;, (5.1.15) becomes the orthonormal set.

Ju=

Some cases, where we obtain ¢; as orthogonal polynomials, are given below,

1 — 1 _%fgl(z‘—o)z = i ( o)
. Py = (\/2—1r)' e ’ ¢ = o ”xs .
N
2
2 ___1__ ,e_%gglze ¢ =;x'_1_!
- P¥ = (org) " T e T 2
N N
Z "= gy
3. px = (1 -9 z; = 1 with prob. @
= 0 with prob.1 — 6/’
N
Z z; — N6
¢l = L .
6(1 — 0)
N N
—No iz—:lﬁ Z xX; — No
e -0 i=1
4, Pv = —5— ¢ = —'T-
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A; and B;, the coefficients of ¢; and ¢;_; respectively in (5.1.12) for the above
four cases are given as below:

A" Bi
1. 0 N

. i(z — 1) , N
2. 27'/0 ——-—0?——- + ﬁ

3 (1 — 26) —i(z — 1) + iN
" 91 —0) o(1 —08) ' 6(1 — 0)
4. /0 iN/6
It may be mentioned that in all these cases {¢:} are also a complete set of
polynomials.

§5.2. Let ‘Z‘, Kp:(n), where K;( = 1,2, - - -, m) depends upon 8 be such that
-1

Y K.i(n) and ¢:(n) satisfy the regularity conditions mentioned in §2.2. Then
f=]

we will show that D K.:(n) cannot be a function of 2, , 22 , - - - , Z alone except
tm=1

for constant zero.
Proor: Let us assume that 2 K; - ¢:(n) is independent of 8, that is, it is
tm]

some statistic, say,

(5.2.1) 0*(z1, T2, -+, Ta) = 2 Ki-diln).

=]
Taking expectations of both the sides, we obtain:
(5.2.2) E(6*(z1, 72, -+, @a)) = 2, Ki-Egn) = 0.
: gm]
Differentiating (5.2.2) 7 times with regard to 6, we have, because of the regu-
larity conditions on ¢:(n) and 6*(z1, 22, - , Tn),
(5.2.3) E(O*(x; y Xz, e, xn) . ¢‘-('n)] = 0’ i1 = ]_’ 2’ cee,m.

It may be noted this is similar to the result in (2.3). From (5.2.3) and (5.2.1)
it follows that

(5.2.4) E[o*(xl yXe, xﬂ)lz =0
Thus 6*(21, %2, -+ , Tn) is zero with probability one, that is,

ii-.-:l Ki'd’i(n)’

if independent of 0, is zero with probability one. This proves our assertion
that this cannot be a function of z;, 22, - - - , Z» alone except for constant zero.
From the foregoing we deduce the following conclusions:
1. ¢:(n) or any power of it cannot be a function of the observations free of 6.
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II. If a statistic 6*(x1, 22, + -+ , Za), Which is not a constant with probability
one, can be put in the form

(5.2.5) 0*(x1, 22, + -, o) = Ko + Z‘i Ki-¢i(n),

where m is some finite positive integer, then

(i) Ko must depend upon 6,

(ii) The expression (5.2.5) for 6*(xy, 2, - - - , x,) in ¢i(n) is unique.

(iii) No other unbiased estimate of K, satisfying the regularity conditions
can be put in the form (5.2.5).

(iv) When m = 1, there is no other statistic except a6* + b, where a and b
are constants independent of 6, which can be put in the above form
Ky + K, - ¢1(n), Ko and K; are differentiable functions of 8 and K; does
not vanish for any 6 under consideration.

(v) Let £ be any function of 2, , 23, - - - , x, free of 6, satisfying the regularity
conditions of §2.2 with E(¢) = 0. Since the covariance between ¢ and
0*(xy, 2, -+ -, Ta) in (5.2.5) is equal to zero, the statistic of the form
(5.2.5) has the least variance of all unbiased estimates of K, that satisfy
the regularity conditions of §2.2.

Also, if the probability density or the probability function depends on more
than one parameter, then all the above results except (iv) hold good if

2 Kigir(n)
is replaced by
K igeoig Digsigeomip(m).

s1tigt - Fip<m
§5.3. Let us now prove the assertion made in (iv) of §5.2, when m is equal to

one.
Suppose the contrary that there is a statistic 6,*(z; - 23, + - - , z,) which is of

the form

(5.3.1) a*l(xl b} x2 ’ M ’ xn) = Lo + Ll * ¢1(n)'
0*(x1, 22, **+ , Ta), of course, has the form
(5.3.2) o*(xl ) 172 PR zﬁ) = Ko + Kl ¢ %(n)'

We will assume Ky, K;, Ly, L, to be differentiable functions of § and that
K, Ly do not vanish for values of 8 under consideration.
Differentiating, with respect to 8, the expressions in (5.3.1) and (5.3.2 , we

have

dL, dL1 2y — 0O
(5.3.3) Eb_ + ?lb‘ i + Ll(¢2 - ¢1) - 0»
K K
(5.3.4) By d~—do‘ “ 1+ Ki(¢s — 61) = 0,

de
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where ¢; is short for ¢:(n). Taking the expectations of the above and rearrang-
ing, it follows that

2y _ 1 dLe _ 1 dK,
(5.3.5) E(¢1) = Ld " K a8
From (5.3.3) to (5.3.5), we deduce that
1 dIL, 1 dK,

(5.3.6) — 2= _

Now solving the above differential equation, we get

(5.3.7) L, = aK,,
where a is a constant independent of 6. From (5.3.5) and (5.3.7) it follows that
(5.3.8) Ly = aK, + b,

where b is a constant independent of . From (5.3.7) and (5.3.8) we conclude
that the statistic in (5.3.1) must be of the form a 6* + b, which proves our asser-
tion. An immediate consequence is that if there exists an efficient statistic for
estimating v(6), then no other function of 6 except a v(6) + b can have an effi-
cient estimate.’
§5.4. If 6*(x1, 22, - - - , %) is an unbiased estimate of 8 satisfying the follow-
ing conditions:
(i) Among all unbiased estimates of 6 having finite variances, which are also
functions of 6*, 6* is one with the least variance,
(ii) For all 6 there exists a complete set of polynomials with respect to the dis-
tribution function of 6*, then there exists no unbiased estimate of 8 with
a variance, which is functionally dependent upon 6*, except 6* itself.
Proor: Let 6* be the unbiased estimate of # which has the least variance
among all unbiased estimates of § which are functions of 6*. Further let S(6*)
be any function of 6*, free of 8, whose expectation exists and is equal to zero.
Let the variance of S(6*) be finite. It is well known that for any such S(6*)

(5.4.1) E(6*S(6*)) = 0.

Now 6*S(6*) in turn having expectation equal to zero, we obtain
(54.2) E(6¥S(6)) = 0.

Repeating the above 7 times we obtain, in general, that

(5.4.3) E(6*'S(6%)) = 0

d d
3 We assume the existence of d?‘z ( =1,2) and Eﬂ(Ed’:) for all 6, and also postulate that

‘%‘(f—) and E(¢:) do not vanish for any 6 under consideration.
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for all positive integers 7. From the above, with the help of condition (ii),
we conclude that S(6*) must be equal to zero. Thus if H(6*) is an unbiased
estimate of § with finite variance, then from above, H(6*) — 6*, having the ex-
pectation zero and a finite variance, must be zero with probability one. Thus
" H(6*) is the same as 6*, which proves the result.

ExampLeE. If 6* is of the form (5.2.7) and condition (ii) is satisfied, then
there is no function of 6*, free of 8 and having a finite variance, whose expec-
tation is K-

Conditions (i) and (ii) above are satisfied for estimating 6 in the examples
quoted at the end of the section 5.1, and thus in these cases the result holds
good when 6* is the efficient estimate.

I am highly thankful to Professor J. Wolfcwitz for his guidance and help in
this research.
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