ESTIMATING THE MEAN AND VARIANCE OF NORMAL POPULATIONS
FROM SINGLY TRUNCATED AND DOUBLY TRUNCATED SAMPLES!

By A. C. ComeN, Jr.
The University of Georgia

1. Summary. This paper is concerned with the problem of estimating the
mean and variance of normal populations from singly and doubly truncated
samples having known truncation points. Maximum likelihood estimating equa-
tions are derived which, with the aid of standard tables of areas and ordinates
of the normal frequency function, can be readily solved by simple iterative
processes. Asymptotic variances and covariances of these estimates are ob-
tained from the information matrices. Numerical examples are given which
illustrate the practical application of these results. In Sections 3 to 8 inclusive,
the following cases of doubly truncated samples are considered: I, number of
unmeasured observations unknown; II, number of unmeasured observations in
each ‘tail’ known; and ITT?, total number of unmeasured observations known,
but not the number in each ‘tail’. In Section 9, singly truncated samples are
treated as special cases of I and IT above.

2. Introduction. In practice, truncated samples arise with various types of
experimental data in which recorded measurements are available over only a
partial range of the variable. Such samples are usually classified according to
the form of the population (complete) distribution; according to whether the
truncation points are known or unknown; and according to whether the number
of unmeasured (missing) observations is known or unknown. In this paper, the
further classification of singly truncated or doubly truncated is made, accordingly
as one or both ‘tails’ of the sample have been removed. Pearson and Lee [1, 2],
Fisher [3], Hald [4]°, and this writer [5] studied singly truncated normal samples
with a known truncation point when the number of unmeasured observations is
unknown. Stevens [6], Cochran [7], and Hald [4] studied similar samples with a
known number of unmeasured observations. Stevens [6] also considered doubly
truncated normal samples with known truncation points when the number of
unmeasured observations in each ‘tail’ is known. In each of these papers, equa-
tions were derived with which maximum likelihood estimates of the population
mean and variance can be computed from samples of the type considered.
With the exception of [5], which uses standard tables of the normal frequency

! Based on papers presented before the American Mathematical Society, Durham,
North Carolina, April 2, 1949, and before a joint meeting of the Institute of Mathematical
Statistics and the Biometric Society, Chapel Hill, North Carolina, March 18, 1950.

2 The problem involved in this case was recently called to the writer’s attention by
Churchill Eisenhart. )

3 Reference [4] appeared while this paper was awaiting publication. Minor revisions have
been made in view of Hald’s results.
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558 A. C. COHEN, JR.

function, practical application of the various estimating equations involves
use of special tables which may frequently be unavailable.

3. Case I. Number of unmeasured observations unknown. Let z; designate
the left truncation point, zo + R theright truncation point, and hence R the sam-
ple range. Let no be the number of measured observations with values equal to
or between the truncation points. In this case, the number of unmeasured obser-
vations is assumed to be unknown. We translate the origin to the left terminus
by the change of variable z = 2’ — x5, and designate the left and right truncation
points in standard units of the population (complete distribution) as ¢ and §”,
respectively. We can write the probability density function for this case as

_ ___..i_— —4 (¢ +x/a)?
where
’ 1 © —$2/2 ” 1 * —t2/2
2) I, = :/—Q:f e dt, I, =ﬁf e dt,
™ JEr 12
and
3) u = zg — of’.

Thus (Ig — I's) is the area under the normal curve between ordinates erected at
¢ and£” respectively. Moreover (Ip — I's) = P(zq < 2’ < 20+ R). The likelihood
function for such a sample is

1 "0 —;zo(e'+z‘/a)2
(4) P(x1)x2) e ’xﬂo) = <(I(l) _ I,(),)O"\/2—7r> e 1 .

Since R is the truncated range, and since # and ¢’ are in standard units,
we have

5) £ =¥ + R/o.

It should be understood that £ is considered throughout this paper, as the
independent parameter of location. The mean, y, cf. (3), is a linear function of .

In the derivations which follow, we employ the Fisher I, functions, where
Iy(¢) is defined by (2) and

®) L@ = [ 1 a

and hence
dl,
dt
These functions satisfy the recurrence formula

(7) (n + 1)In+1 +E, — Inq = 0, n > —1.

= —In—l .
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I.(%) is ordinarily abbreviated to I, in this paper. Where no confusion seems
likely to occur, similar abbreviations are used for other functions of &.
We now obtain certain relations for use in subsequent derivations. Equations
(2), (5), and (6) enable us to write
ol al’y
® gz = —Iha=—e@), G

oy o
o

=-J" = —o¢"), & = -1
1 ¢(£ )y o 1 1 o 9

1
where ¢(£) is the ordinate of the normal frequency curve;i.e., o(¢) = We_izl 2,
™

Ordinarily. we abbreviate ¢(¢’) to ¢’ and <p(£") to ¢’. On differentiating (5)
we have

o8 R
)] 2 - T
and hence from (8)

do o’

Taking logarithms of (4), differentiating with the aid of (8) and (9), and
equating to zero, we obtain the maximum likelihood estimating equations

oL no(e’ — ¢’’) 20 , x;

= -1y ~2\¥t;)=o
(10)

L _ [ me” \E 7me 13 ) T

60=<I(I)——I(I)I>0'2-0+a2§1:{xi(f+0'>}=0'
If we define

/ 17

) G (A

and substitute these values in (10), the estimating equations become
o[Zy — Zy — §] — n =0,

(12) 2
ol — §(Z, — Zy — &) — Z:R/a] — v, = 0,

where »; and », are the first and second sample moments referred to the left

7o

. . %
terminus; i.e., . = 2 /N0 .
1

To obtain the required estimates & and £/, it is necessary to solve the two
equations of (12) simultaneously. As illustrated in Section 7, this can be accom-
plished without too much difficulty with the aid of the normal curve tables by
using a modified Newton-Raphson method for solving two equations in two
unknowns. This method is described in greater detail by Whittaker and Robinson
[8]. Note that Z; and Z,, cf. (11), involve only the normal curve ordinates
¢ and ¢” and the areas I; and I,” . Consequently they can be evaluated for any



560 A. C. COHEN, JR.

desired values of ¢ and ¢ from standard tables of the normal frequency function.
To determine £, substitute & and £ in (3).

Throught this paper, we designate the maximum likelihood estimates as
&, & and ¥ respectively, whereas corresponding population parameters are
designated as y, o, and £'.

4. Case II. Number of unmeasured observations in each ‘tail’ known. Let
the truncation points, the origin of reference, and the number of measured
observations be designated as for Case I. If we let n; and n, be the number of
unmeasured observations in the left and right ‘tails’ respectively, the likelihood
function for a sample of this type is

n 1 no no , ) n
(13) P@1, 22, +* ) Taypnginy) = K(1 = I)™- <W§7> IOt (1),
where K is a constant.

We take the logarithms of (13), differentiate with the help of (8) and (9), and
equate to zero to obtain the maximum likelihood estimating equations

oL o o no :
o =T 2 £'+;> =0,

oF’ I
(14 oL ' 10 ]
n & xX;
=G - ”0+“22{x¢<£’+ *)} = 0.
do I o o T o
Let
_m_ e e
(18) = t-n T

and (14) can be written as
olVi— Y, — ¢l — n =0,

(16) .
0’[1 —_ E(Yl_ Y2_£,) _— YQR/O'] — Vg = 0,

where »; and », are again the first and second sample moments referred to the
left terminus. The estimating equations (16) correspond to equations (12)
given for Case I, and the manner of solution is the same for both cases. ¥; and
Y, for a given sample are functions of £ and ¢ only. They can be evaluated for
any desired values of these variables from ordinary normal curve tables. As in
Case I, the mean is estimated from (3).

b. Case III. Total number of unmeasured observations known, but not the
number in each tail. Again, let the truncation points, the origin of reference,
and the number of measured observations be designated as in the two previous
cases. Let N be the total sample size and hence N — n, the combined number of
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unmeasured observations in both tails. In the notation of Case II, N — ny =
ny + ny . The likelihood function for a sample of this type is

no no
(17) P(:cl,xg, . xN) — K(l _ I(’) + I‘;I)N—no< ) 8—5213(61+z¢/¢)2.

e\ 2r
Taking logarithms of (17), differentiating with the assistance of (8) and (9) and
equating to zero, we obtain the maximum likelihood estimating equations

(?£1 ¢1_¢// no ) i B

oL _ _ ¢ \R me 12 A\
Py _(N—n0)<1—1(')+1(,),>02—0+ 22{%‘(5 +6>}—O.

In this instance, let

_ (N = n ¢’ _ (N —n, 0"
M)&—G% %—u+m’ @‘@% %—n+m’

and (18) can be written as

(18)

U[Ql - Qz— 5'] - = 0;
Il — E(@Q — Q — &) — QR/c] — », = 0.

It will be recognized that equations (20) correspond to (12) and (16) for Cases
I and II respectively. Since the manner of solving the estimating equations is
identical in all three cases, it will not be discussed further here. For any given
sample, @, and @, are functions of ¢ and ¢ only, and they can be evaluated for
any desired values of these arguments from standard normal curve tables. In
this case also, the mean is estimated from equation (3).

(20)

6. First approximations.

CasE 1. In this case, the following relations will usually provide satisfactory
first approximations for estimating o and £':
(21) =8, &=—wn/s,
where s> is the sample variance; i.e., s2 = (v, — »)). It should be remarked
that the only penalty involved in beginning with a poor first approximation is
to increase slightly the number of steps necessary before arriving at a satisfactory
final approximation by the method of Section 7.

CasE 11. Since n; and n, are known in this case, it is more expedient to read
first approximations to ¢ and £’ directly from standard tables of normal curve
areas where we set

22) N S g = fE' 1 gy
n1+no+n2_ 0_\/2_‘"' —ooe ’
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and

N2 " 1 ©
23 —_— =], = —=— f 2 t.
@3) ny + no + g 0 Vo gne d
With £ and ¢’ determined from (22) and (23), we obtain a first approximation
for estimating ¢, from equation (5), which we now write as

(24) o = R/(& — &)

Cask 1. For a first approximation in this case, it will usually be satisfactory,
in the absence of contrary information, to assume that the unmeasured observa-
tions are divided equally between the two tails, and then proceed as in Case II.

7. Numerical examples. As previously mentioned, a modified Newton-
Raphson method for solving two equations in two unknowns is satisfactory in
each of the three cases considered, for solving the estimating equations to obtain
& and ¢ in practical applications. A random sample from a normal population
with p = 0, and ¢ = 1, selected from Mahalanobis’s tables [9] will serve to
illustrate the solution in each case.

CasE 1. For the sample selected, no = 32; v; = 1.244625; v, = 2.105275;
zo = —1.000000; and R = 2.750000. The estimating equations to be solved
simultaneously for ¢ and & are thus

olZ, — Z, — £'] — 1.244625 = 0,
Nl — €2y — Zy — &) — 2.750000 Z,/c] — 2.105275 = 0.

Tor first approximations, we employ (21) to obtain; oy = s, = 0.75; and £, =
—1.244625/0.75 = —1.66. Beginning with these approximations, we subse-
quently obtain the results displayed in Table 1.

TABLE 1
Solution of estimating equations in Case I
o ¢’ from v, ¢’ from », Difference
1.536313 —0.5389 —0.5387 —0.0002
1.527778 —0.5455 —0.5460 +0.0005

Interpolating in this table, we obtain & = 1.534 and ¢ = —0.541. On substituting
these values in (3) we obtain i = —0.170. Even though the first approximations
in this instance proved to be considerably in error, no appreciable increase was
experienced in the number of steps necessary to arrive at the final values given.

Cask 11. Solution of estimating equations (16) for this case can also be illus-
trated with the same sample which was used in Case I. In this instance, however,
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we have the additional information; n;= 7 and n, = 1. The equations to be
solved are:
oY1 — Yo — #] — 1.244625 = 0,
[l — (Y, — Yy — &) — 2.750000 ¥,/q] — 2.105275 = 0.

From (22), (23) and (24) we obtain the first approximations: £, = —0.935;
g = 1.960; and hence o; = 0.950. Beginning with these values, we proceed as
in Case I, and after several trials obtain the results displayed in Table 2.

TABLE 2
Solution of estimating equations in Case I
o ¢ from v, £/ from v, Difference
1.041667 —0.9381 —0.9360 —0.0021
1.000000 —0.9820 —1.0094 +0.0274
Interpolating, we have & = 1.039 and ¥ = —0.941. From (3) we then obtain.
4 = —0.022.

CasE 1m1. Again we use the same sample that was employed to illustrate
Cases I and II. In this instance, however, we assume that the only information
available about the unmeasured observations is that their total number is 8.
In the notation of Section 5, wehave N = 40, n, = 32, and hence N — ny = 8.
The estimating equations in this situation are

o[Q — Q. — #] — 1.244625 = 0,

[l — &(Q — Q, — &) — 2.750000 Q;/s] — 2.105275 = 0.
Under the assumption that 4 unmeasured observations are in each ‘tail’, equa-
tions (22), (23) and (24) give first approximations: & = —1.28; £ = 1.28;

and hence o; = 1.074. Starting with these values and proceeding as in the two
previous cases, we obtain the results displayed in Table 3.

Il

TABLE 3
Solution of estimating equations in Case I11
4 & from v, ¢’ from v, Difference
1.000000 —1.0794 —1.2091 +0.1297
1.100000 —1.0118 , —0.9739 —0.0379
By interpolation, we have & = 1.077 and ~/ = —1.027. From equation (3),

we then compute g2 = 0.106.

8. Precision of estimates. To determine asymptotic variances of ¢ and "/, we
construct the variance-covariance matrices. This requires that we obtain the
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second partial derivatives of logarithms of the likelihood function in each of
the three cases considered. Results stated in (8) and (9) are involved in these
derivatives.

Cask 1. The second partial derivatives in this case are

1
do?

1L
9L

o’L

(25) G = MAEE), oo = THE ), = 55,8 ;

where

[EE) = =1+ 2, — £'Zy — (Z1 — Zu)Y,

(26) L8, E) = { Z(Zy — Zy) — £+ [Z1 — Zy — E]}

e, By = {(j?) W) - |2-tt-m- ) - 2 f}]}

Subsequently we obtain

@7) m)—%ﬁ], VE) = - [??3,:%] ”"’*‘V%;'

CasE 11. In this case the second partial derivatives are

o’L , d°L

i agL No
@—nogl(é,ﬁ), 35 9s

gz(E E ) — = P ga(«f, EH) )

(28) do?

where

anE, &) = — [1 + £, — 'Y, + Y1 + — Yz],
r gt R o 7" ’
(29) gz(f , & ) = {-Y2|:— Y, — ¢ ] + [Yl - Y, — f]}.
g No

2
gs(&, &) = {(?) Y2<£” - %:Y2> - R2-{¥W—-Y,—¥) — YzR/‘T]}-
Finally we can write

o’ — 0 :| Al 1 l: —gs ] . gi_
80) V&) = [gl gs — gz’ Ve = 910s — g3 " g

Casg 1. This time, the second partial derivatives are

o’L ) 'L L _ no y
(31) 'f,z = noh1(£,$ ), W’ 5—2 = (f ¢ )

=Y, &),
g
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where

hl(f’, EH) = - l:l +£'Q1 - E"Qz + N T) o (Ql - Q2)2],

he (¢, &) = {? Q> [(N 7_2_0 m) (Q— Q) — E":| +[Q— Q — E']},

k(' £) = {( >2 Q- (E" W 7_2_0 o Q2>

- [2 — Q- Q- —Q ?]}
Accordingly we obtain

o _ O =k oy _ L [_-hs_] o
(33) V(a) N o l:hlhs - hg:l’ V(E) - no | by hg — hg ? Totr = \/m
Note that variances of the estimates for each case considered, can be computed
for given values of £ and o from standard normal tables of areas and ordinates.

(32)

L

9. Singly truncated samples. If only the left ‘tail’ is missing from the samples
thus far considered, then £’ = w,ny = 0, ¢” = 0, I’ = 0, and hence Z,, Y,
and Q. each equal zero. Upon substituting these values in (12), (16), and (20)
respectively, estimating equations applicable to singly truncated samples are
obtained as special cases of the estimating equations for doubly truncated
samples. Of course Cases IT and III become identical when samples are singly
truncated. When Y, = @, = 0, then Y; = @, cf. (15) and (19).

Case 1. With Z, = 0, the estimating equations (12) become

olZ, — & =wn,
Ol = E(Zi— &) = ».

Eliminating ¢ between these two equations we have

_ 1 ( 1 ,>
n Zi— ¢ Zl_f,—s ’

which is recognized as the Pearson-Lee-Fisher equation in a form which was

previously given by the author [5].
Cask 1. With Y, = 0, the estimating equations (16) become

oY1=l =mn
Fll— g1 — &) =wn.

Eliminating ¢ between the above equations, we obtain

m_ 1 1 ,
(87) o Y —E'<Y1—f'— E)’

34

N

(35)

(36)
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which is in a form completely analogous to (35). Furthermore, this equation
can be solved for £’ in the same manner as (35), cf. [5]. Since ¢ can be eliminated
between estimating equations in singly truncated cases, but not in doubly
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F1e. 1. Weighting factors for use in determining the variance of &.

truncated cases, the numerical computations are much simpler and less laborious
for singly truncated samples.
If the right rather than the left tail is missing from singly truncated samples,
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applicable estimating equations can be obtained from (12) and (16) by translating
the origin to the terminus on the right and setting Z; and Y; equal to zero
rather than Z; and Y, .

100

90 }—
80—
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- \
30—\
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20— \\
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3 5 V(’é')'%w' (n/N unknown)
= \
- \ V(;’)-?’w" (#"estimated from n/N only)
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w
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Fic. 2. Weighting factors for use in determining the variances of £’ and &*.

The variance formulas (25) and (28) likewise assume more simple forms with
singly truncated samples. Substitute Z, = 0 in (25) and the variance formulas
applicable with singly truncated samples when the number of unmeasured
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observations is unknown, become identical in form with those previously given
by the writer in [5]. When the number of unmeasured observations in a singly
truncated sample is known, the applicable variance formulas (28), on setting
Y, = 0, become

2
38) V(@) = SWE) and VE) = @),

where W and w may be regarded as weighting functions defined by

1 4 Yi(Yine/n, + &)
[2 - E/(Yl - E')][l + Yl(Ylno/nl + E')] - [Yl - 5'12

B9) W) =

and

N 2 - —§)
@0 ) = 5, = L + VaVano/m + O] — Vs — €1
Similarly, the correlation between sampling errors of & and £’ in this case becomes
_ V- ¢
AV = E = O+ Yi(Yme/m + E)]°

A comparison of the variances (38), with those applicable when the number of
unmeasured observations is unknown, serves to indicate the extent to which
information contained in a singly truncated sample is increased by adding
knowledge of the number of unmeasured observations. To facilitate such com-
parisons, W, w, and corresponding functions W’ and w’ applicable when the
number of unmeasured observations is unknown, are displayed graphically in
Figures 1 and 2. In computing the plotted values of W and w, the ratio n/N
in (39) and (40) was replaced by I, . This ratio is, of course, an estimate of I, ,
and for n and N sufficiently large, the substitution is amply justified. Equations
for W’ and ' can be found in [5]. For further comparisons, a graph of w’’ ap-
plicable in determining the variance V (£*), where £* is estimated from n/N alone
is also included in Figure 2. This latter function is defined as

(41) Te,Er

I3(1 — Io)
42 w(E¥) = 7,
(42) QEEL
It follows from the well known formula for the variance of £*:
1 [I,(1 — Io)} 1 {13(1 - 10)}
V) = (-0 — fol 2 glelr 7 AU
3) @ = 3{ L

An examination of Figures 1 and 2 discloses that except when the omitted
portion of the distribution is small (¢ < —3), the variances of the estimates of
o and ¢ based on singly truncated normal samples are substantially less when
the number of unmeasured observations is known than when this information
is lacking.
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